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Abstract

Objective: Dietary factors mediate racial disparities in hypertension. However, the physiological 

mechanisms underlying this relationship are incompletely understood. We sought to assess the 

association between 1-methylhistidine (1-MH), a metabolite marker of animal protein 

consumption, and blood pressure (BP) in a community-based cohort of black and white middle-

aged adults.

Methods: This analysis consisted of 655 participants of the Bogalusa Heart Study (25% black, 

61% women, aged 34–58 years) who were not taking antihypertensive medication. Fasting serum 

1-MH was measured using liquid chromatography-tandem mass spectroscopy. Animal food 

intakes were quantified by food-frequency questionnaires. Multivariable linear regression assessed 

the association between 1-MH and BP in combined and race-stratified analyses, adjusting for 

demographic, dietary, and cardiometabolic factors.

Results: A significant dose–response relationship was observed for the association of red meat 

(P-trend <0.01) and poultry (P-trend = 0.03) intake with serum 1-MH among all individuals. 

Serum 1-MH, per standard deviation increase, had a significant positive association with SBP 

(β=3.4 ± 1.6 mmHg, P = 0.04) and DBP (β=2.0 ± 1.1 mmHg, P = 0.05) in black participants, 

whereas no appreciable association was observed in white participants. Among a subgroup of 
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black participants with repeat outcome measures (median follow-up = 3.0 years), one standard 

deviation increase in 1-MH conferred a 3.1 and 2.2 mmHg higher annual increase in SBP (P = 

0.03) and DBP (P = 0.03), respectively.

Conclusion: Serum 1-MH associates with higher SBP and DBP in blacks, but not whites. These 

results suggest a utility for further assessing the role of dietary 1-MH among individuals with 

hypertension to help minimize racial disparities in cardiovascular health.
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INTRODUCTION

An estimated 103 million adults in the United States, or 46% percentage of the population, 

suffer from hypertension according to the 2017 American College of Cardiology/American 

Heart Association guidelines [1]. From 1999 to 2016, the age-adjusted prevalence of 

hypertension increased by nearly 10% among individuals without clinical cardiovascular 

disease (CVD) [2]. National surveys and trends consistently demonstrate that CVD dis-

proportionately affects blacks compared with whites, as the risk of hypertension and 

downstream stroke, myocardial infarction, and heart failure are all higher among the US 

black population [3]. In particular, blacks are 40% more likely to have hypertension, 30% 

more likely to suffer a fatal coronary heart disease event and have twice the risk of stroke 

compared with whites [4]. In addition to improving equitability in the social determinants of 

health, identifying novel biological CVD risk factors in a race-specific fashion is an 

important approach that may help minimize racial disparities in CVD and improve disease 

prevention. The application of innovative omics research to relatively young and diverse 

cohorts may facilitate the development of precision health strategies for blood pressure 

reduction, providing an optimal approach for targeted CVD prevention.

Diet is a primary modifiable risk factor for blood pressure [5,6] and is also a robust mediator 

of the difference in hypertension incidence between whites and blacks [7]. In addition to the 

established dietary factors influencing blood pressure, including sodium [8,9], potassium 

[10], as well as fruits and vegetables [5], meat intake may also occupy a key role in the 

development, progression, and management of hypertension. Specifically, epidemiological 

evidence suggests that red meat and poultry consumption associate with a higher SBP and 

DBP [11,12]. The Dietary Approaches to Stop Hypertension (DASH) and Mediterranean 

diet patterns, which contain smaller amounts of red meat compared with traditional western 

diets, have both been associated with a reduced risk for hypertension incidence and 

progression [5,6,13]. Likewise, a high intake of a Southern dietary pattern, rich in fried 

foods, organ meats, processed meats, and egg dishes, has been noted to be an important 

lifestyle mediator of the higher hypertension risk in blacks versus whites [7]. Despite the 

presence of these data, information regarding the biological mechanisms underlying the 

relationship of meat intake with blood pressure, and whether this association is modified by 

race, remains unknown.
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Urinary metabolite 1-methylhistidine correlates with red meat, poultry, and fish intake 

[14,15], and thus serves as an important biological marker of their consumption. 

Additionally, urinary 1-methylhistidine predicts vegetarian status [15], and pesco-

vegetarians, lacto-ovo-vegetarians, and vegans all excrete lower urine 1-methylhistidine 

compared with nonvegetarians [16]. Metabolite 1-methylhistidine, also known as pi-

methylhistidine (Π-methylhistidine), is among a class of organic compounds referred to as 

histidine and derivatives and has a half-life of approximately 12 h in humans [14,17–19]. 

The pi-methylhistidine chemical nomenclature refers to the concept that the nitrogen atoms 

of the imidazole ring of 1-methylhistidine are near, or pros (Π), in relation to the side chain 

[20]. Humans do not endogenously generate 1-methylhistidine in the absence of dietary 

meat intake [18], as 1-methylhistidine derives from anserine, a dipeptide associated with 

neuromuscular functioning in animal skeletal muscle [15]. Although 1-methylhistidine could 

help explain the documented positive associations of red meat intake with CVD and all-

cause mortality, there is a paucity of research linking this metabolite to CVD or blood 

pressure as an upstream risk factor. Furthermore, potential race differences in these 

associations have not been assessed.

The current study used metabolomic profiling, food frequency questionnaires, and clinical 

assessments to measure the association between animal food consumption and serum 1-

methylhistidine; and assess the relationship of serum 1-methylhistidine with SBP and DBP, 

as well as their respective longitudinal changes, in a biracial (black-white) sample of middle-

aged adults of the Bogalusa Heart Study. We hypothesized that serum 1-methylhistidine 

would associate with red meat intake, as well as with higher SBP and DBP levels.

METHODS

Study population

The Bogalusa Heart Study, consisting of participants residing in Bogalusa, Louisiana, is an 

epidemiological study that observes cardiovascular health across the lifespan [21]. Between 

1973 and 2016, seven surveys of children aged 4–17 as well as 10 surveys of adults, who 

had been previously examined as children, were conducted. The current BHS cohort (2013–

2016) includes 1298 participants, born between January 1959 and June 1979 who were 

examined twice in both childhood and adulthood. For the current analysis, individuals were 

examined between 2013 and 2016. There were a total 843 BHS participants who were not 

taking antihypertensive medication and whom had also undergone dietary, metabolite, and 

blood pressure measurements. After excluding 188 individuals because of missing 

covariable data, we selected the 655 individuals who were not taking antihypertensive 

medication and who had previous blood pressure, metabolomic, nutritional, as well as 

respective covariable data. Among the 655 participants with cross-sectional blood pressure, 

metabolomic, nutritional, and covariable assessments, 132 individuals had follow-up blood 

pressure examinations (Supplemental Figure 1, http://links.lww.com/HJH/B399).

All study participants provided written informed consent at each examination, and study 

protocols were approved by the Institutional Review Board of the Tulane University Health 

Sciences Center.
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General clinical examination

Stringent protocols were used to collect clinical data on Bogalusa Heart Study participants 

[22]. Validated questionnaires were used to acquire demographic and lifestyle variables 

specifically, age, race, sex, cigarette smoking, and alcohol consumption. Blood pressure was 

measured in triplicate on the right arm of participants by trained study personnel using the 

Omron HEM 907XL digital blood pressure device after 5 min in sitting position and 

avoiding caffeine, cigarettes, alcohol, eating, and physical activity for 12 h prior to the clinic 

visit. The mean values of each of the three SBP and DBP measurements were used for 

analysis. Hypertension was defined as a SBP at least 130 mmHg or DBP at least 80 mmHg 

[23]. Fasting measures of LDL-C, HDL-C, serum triglycerides, and HbA1c were collected 

using standardized procedures [24,25]. Weight in kilograms was divided by height in meters 

squared to calculate BMI as an assessment of adiposity. Serum creatinine was quantified 

using the kinetic Jaffe method. Serum creatinine was used to calculate estimated glomerular 

filtration rate (eGFR) via the CKD-EPI equation [26]. Semiquantitative urine protein 

dipstick analysis was performed on collected urine samples (Siemens Healthcare 

Diagnostics, Newark, Delaware, USA).

Metabolomic analysis

Fasting serum samples were collected from study participants and subsequently stored at 

−80 °C prior to metabolite analysis. Metabolomic analysis was performed by Metabolon Inc. 

(Durham, North Carolina, USA) using ultrahigh performance liquid chromatography-

tandem mass spectroscopy (MS) [27,28]. Metabolite peaks for 1-methylhsitidine were 

quantified by leveraging the area-under-the-curve, as original values represented raw data 

counts. A normalization procedure was then completed to account for variation because of 

inter-day tuning differences in the instrument. Metabolite values for 1-methylhistidine were 

corrected in run-day blocks by rescaling the median to one and normalizing each data point 

proportionately. Detection and semi-quantification of the 1-methylhistidine analyte occurred 

via automated comparison of ion features to a reference library of chemical standard entries 

that include retention time, molecular weight (m/z), preferred adducts, and in-source 

fragments as well as associated MS spectra. Each participant’s raw metabolite value was 

divided by the standard deviation of the overall sample. Thus, each unit of 1-methylhistidine 

reflects a one-standard deviation change in the metabolite value.

Dietary assessment

Diet was assessed using the semiquantitative 283-item United States Department of 

Agriculture Delta Nutrition Intervention Research Initiative (NIRI) food-frequency 

questionnaire [29]. The Delta NIRI food-frequency questionnaire was specifically created 

and validated for adult residents of the lower Mississippi delta region. Participants were 

asked to indicate, on average, how often they consumed each food using 10 frequency 

categories: never; less than once per month; one time per month; two to three times per 

month; one time per week; two times per week; three to four times per week; five to six 

times per week; once per day; and two or more times per day. These values were all 

converted to weekly consumption and then multiplied by the food quantity consumed to 

obtain total servings consumed per week. Comprehensive analysis of nutrient intake, 
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including dietary animal protein, sodium, potassium, vitamin E, and total energy, was 

performed at the Channing Laboratory, Department of Medicine, Brigham and Women’s 

Hospital at Harvard Medical School, Boston, Massachusetts. Relevant animal food items 

from the Delta NIRI food frequency questionnaire were aggregated into predefined food 

groups: red meat, processed meat, poultry, fish, dairy, and eggs (Supplemental Table 1, 

http://links.lww.com/HJH/B399).

Statistical analysis

Study population characteristics were presented as means and standard deviations for 

normally distributed continuous variables, median and interquartile range for nonnormally 

distributed variables, and frequencies and percentage for categorical variables. Normality of 

continuous variables was assessed via the Kolmogorov–Smirnov test. The student’s t-test 

and chi-square test were used to assess differences in normally distributed continuous 

variables and categorical variables, respectively, between blacks and whites. Differences in 

nonnormally distributed continuous variables were assessed via the Wilcoxon signed-rank 

test. Serum triglycerides underwent natural logarithmic transformation to normalize the 

distribution of this covariable.

The association between animal food consumption and 1-methylhistidine was assessed using 

multivariable linear regression, adjusting for age, sex, race, and total energy intake [15]. The 

associations of 1-methylhistidine with SBP and DBP were assessed using multivariable-

adjusted linear regression models, adjusting for age, sex and race (whenever appropriate), 

education, cigarette smoking, alcohol drinking, BMI, LDL-C, HDL-C, natural logarithm of 

serum triglycerides, HbA1c, eGFR, urine protein, as well as dietary factors -, sodium, 

potassium, total energy intake, and vitamin E. Vitamin E was included as a covariable in the 

model because vitamin E deficiency can lead to elevations in systemic 1-methylhistidine 

because of increased skeletal muscle oxidation [30]. For prospective analyses, absolute 

changes in SBP and DBP levels were divided by the time between the two visits to obtain 

their annualized changes. These outcome variables were then used as dependent variables in 

the multivariable-adjusted linear regression model described above. We conducted an a 
priori specified sensitivity analysis additionally adjusting for gait speed, a surrogate measure 

of skeletal muscle breakdown. In addition, we also conducted a post hoc sensitivity analysis 

adjusting for dietary animal protein, to assess whether 1-MH predicted higher blood 

pressure, independent from upstream animal protein sources. For all analyses, race and sex 

interactions were formally assessed by adding the respective race or sex × 1-methylhistidine 

interaction term to the multivariable linear regression models. We presented race-specific 

and sex-specific statistics when interaction was indicated.

RESULTS

Table 1 presents the baseline characteristics for the 655 Bogalusa Heart Study participants 

according to sex and race (mean age, 48 years; 61% women; 25% black). On average, study 

sample participants were overweight (BMI = 30 ± 7 kg/m2), prediabetic (HbA1c = 5.7 ± 

0.8%), and had evidence of mild dyslipidemia (LDL = 115 ± 34 mg/dl) with preserved 

kidney function (eGFR = 94 ± 15 ml/min per 1.73 m2). The average sample SBP and DBP 
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were 121 ± 15 and 77 ± 11 mmHg, respectively. A significantly higher proportion of black 

women (46%) had hypertension compared with white women (28%), and sex differences 

were identified among whites such that men had significantly higher SBP (P < 0.01) and 

DBP (P < 0.01) compared with women. Men also had significantly higher serum 1-

methylhistidine compared with women. No significant difference in 1-methylhistidine was 

identified between white and black participants. There were several race and sex differences 

among CVD risk factors, including BMI, triglycerides, HDL-C, eGFR, and urine protein.

Consumption of animal foods and relevant dietary intakes of the study sample are also 

highlighted in Table 1. Individuals consumed, on average, at least two servings of red meat, 

fish, and poultry per week. Black women and black men consumed significantly higher 

servings of poultry per week compared with white women (P < 0.01) and white men (P = 

0.04). Men had higher intakes of total calories, total animal protein, red meat, processed 

meat, and poultry compared with women among both white and black participants. There 

were no significant differences between the two race groups with respect to weekly 

consumption of red meat, eggs, nor total energy, total animal protein, sodium, potassium, 

and vitamin E intake per day.

Follow-up assessment of blood pressure was available on 132 out of the 655 participants 

included in the cross-sectional analyses (Supplemental Table 2, http://links.lww.com/HJH/

B399), with a median follow-up time between measurements of 3.0 years. Individuals on 

average had an elevated SBP (123 ± 18 mmHg) at follow-up, whereas DBP was in normal 

physiological range (77 ± 12 mmHg). There were no significant race differences with 

respect to change in SBP or DBP between the two study points. Similar to baseline, black 

participants had significantly higher SBP (P = 0.02) and DBP (P = 0.03) and were more 

likely to have hypertension at follow-up, compared with white participants. Among 

individuals with follow-up blood pressure measurements, 6 out of 32 black participants and 

11 out 100 white participants had 1-methylhistidine values at least one standard deviation 

above the mean (Supplemental Table 3, http://links.lww.com/HJH/B399). Regardless of 

race, participants with 1-methylhistidine values at least one standard deviation above the 

mean had higher average baseline and follow-up SBP and DBP compared with those with 

lower 1-methylhistidine metabolite values.

Figure 1 presents the relationships of serum 1-methylhistidine with red meat, poultry, 

processed meat, fish, eggs, and dairy intake per week, after adjusting for age, sex, race, and 

total energy intake. A significant dose–response relationship was observed for the 

associations of red meat and poultry with serum 1-methylhistidine, such that systemic 1-

methylhistidine linearly increased per higher tertile of red meat (P-trend <0.01) and poultry 

consumption (P-trend = 0.03) among all study participants. Serum 1-methylhistidine did not 

show a significant linear trend among tertiles of processed meat, dairy, or egg consumption. 

Neither race nor sex modified the associations between animal foods and serum 1-

methylhistidine.

Serum 1-methylhistidine was significantly associated with both SBP and DBP in black 

participants, but not white participants, in cross-sectional and prospective analyses (Table 2). 

Overall, 1-methylhistidine had consistent parameter estimates and statistical significance 
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with and without adjustment for dietary animal protein. For every standard deviation 

increase in 1-methylhistidine, we observed a 3.4mmHg higher SBP (P=0.04, P-

interaction=0.04) and 2.0mmHg DBP (P=0.05, P-interaction=0.06), among black 

participants at baseline. Prospectively, one standard deviation increase in 1-methylhistidine 

significantly associated with a 3.1 and 2.2mmHg higher annualized change in SBP (P = 

0.03) and DBP (P = 0.03), respectively. Parameter estimates in the cross-sectional and 

prospective relationships of 1-methylhistidine with SBP and DBP remained consistent in the 

sensitivity analyses that additionally adjusted for gait speed (Supplemental Table 4, http://

links.lww.com/HJH/B399).

DISCUSSION

Here, we report on the first study to assess the role of serum 1-methylhistidine in blood 

pressure among middle-aged black and white men and women. Though dietary factors have 

previously been identified to be key drivers in the difference in hypertension incidence 

between blacks and whites [7], the mechanisms underlying such associations remain largely 

unexplored. In the current study, red meat and poultry consumption predicted higher serum 

1-methylhistidine in a dose-response pattern among both white and black individuals. 

However, race modified the association between 1-methylhistidine and blood pressure. 

Specifically, serum 1-methylhistidine conferred an elevated hypertension risk in blacks, but 

not whites, predicting a respective 3.1 and 2.2 mmHg higher annualized increase in SBP and 

DBP for each standard deviation increase in the metabolite. This observational research 

suggests that targeted reduction of serum 1-methylhistidine may help to minimize racial 

disparities in hypertension incidence and improve CVD prevention.

Our study observed significant associations of red meat and poultry, but not fish, egg, nor 

dairy consumption with serum 1-methylhistidine. The manifestation of 1-methylhistidine in 

human body fluids is largely a product of dietary exposures, particularly red meat, chicken, 

and to a lesser extent fish [14,15,19,31]. These findings are consistent with previous studies 

involving urinary 1-methylhistidine and diet [14,15], particularly those demonstrating 

significantly lower levels of 1-methylhistidine excretion in vegetarians compared with 

nonvegetarians [16]. Metabolite 1-methylhistidine is a biological derivative of the dipeptide 

anserine (Fig. 2). Anserine is a dipeptide found in the skeletal muscle of mammals and is 

typically absent from human tissues [18]. Upon consumption, anserine undergoes cleavage 

to yield 1-methylhistidine and beta-alanine [19]. The human enzyme carnosinase catalyzes 

this process almost predominantly in plasma, and approximately 90% of dietary anserine is 

excreted as 1-methylhistidine via urine [31]. Carnosinase also appears to be expressed in 

human colonic mucosa [32], thereby possibly implicating a role for the gut microbiome in 1-

methylhistidine metabolism.

Findings from our cross-sectional and prospective analyses suggest that serum 1-

methylhistidine may be a novel and independent risk factor for elevated blood pressure in 

black individuals. Furthermore, the associations between 1-methylhistidine and blood 

pressure were highly consistent with and without adjustment for dietary animal protein. 

These results suggest that for a given level of animal protein intake, serum 1-methylhistidine 

may vary based on metabolism, providing more support for using 1-methylhistidine as a 
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marker of red meat and poultry intake. As mentioned earlier, carnosinase expressed both in 

the gut and serum, holds a key upstream function in 1-methylhistidine metabolism 

[19,31,32] and future studies are warranted to further identify the role of this pathway in 

hypertension and cardiometabolic risk.

Although 1-methylhistidine has not been implicated previously in hypertension, it has been 

associated with related cardiometabolic phenotypes. For example, 1-methylhistidine has 

previously been implicated in left ventricular diastolic dysfunction, one downstream result 

of chronic hypertension [33]. Likewise, evidence suggests that methylhistidine may be 

involved in the pathogenesis of obesity, as increased urinary excretion of 3-methylhistidine 

and 1-methylhistidine have been described among individuals with a higher BMI [34] and in 

those with nonalcoholic fatty liver disease (NAFLD) [35], respectively. Insulin resistance is 

hypothesized to be one mechanism linking both obesity and NAFLD to hypertension, 

particularly through renal sodium retention [36] and heightened stimulation of the 

sympathetic nervous system [37]. In the current study, we adjusted for BMI as well as 

HbA1c when assessing the association between 1-methylhistidine and blood pressure, 

suggesting that the association with elevated blood pressure are independent of these 

previously reported mechanisms.

The observed race differences in the relationship between 1-methylhistidine and blood 

pressure are unclear. We did not observe significant differences in serum 1-methylhistidine 

values between black and white participants, and kidney function was either nonsignificantly 

different (black men versus white men) or higher in blacks compared with whites (black 

women versus white women). Given these two observations, an association between 1-

methylhistidine and blood pressure with blacks but not whites may reflect differences in 1-

methylhistidine metabolism, rather than differences in dietary intake or renal excretion. 

However, it is still possible that differential renal excretion regulation of tubule membrane 

channels may affect the relationship between 1-methylhistidine and blood pressure. Future 

physiological and genetics research studying ancestral differences in enzymes involved with 

1-methylhistidine metabolism, including carnosinase, may help further build on associations 

identified in the current study.

This study has several important strengths. We measured serum 1-methylhistidine in a 

diverse community-based cohort constituted of both black and white individuals. Through 

this process, we were able to identify cross-sectional associations of 1-methylhistidine with 

SBP and DBP, relationships that were temporally supported in a subsample of Bogalusa 

Heart Study participants with longitudinal blood pressure data. We believe these results will 

serve as a starting point for future mechanistic and multiomic studies involving diet and 

blood pressure.

Limitations of this study, however, should also be discussed. First, this was an observational 

study, and thus residual confounding is important to consider. It is plausible that 1-

methylhistidine is associated with unmeasured variables, including unknown dietary 

variables, or CVD risk factors that may also associate with blood pressure and hypertension. 

Thus, future dietary randomized controlled trials are necessary prior to conclusively stating 

that 1-methylhistidine independently predicts blood pressure and hypertension. Likewise, 
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metabolite values were only measured once, thus preventing longitudinal exposure 

assessment. To minimize residual confounding, we conducted extensive covariable 

adjustments in our statistical analyses. Yet, it is possible that inaccurate measurements of 

dietary sodium and potassium intakes, as well as unmeasured and unknown confounders, 

may have influenced the relationship between serum 1-methylhistidine and blood pressure.

In conclusion, the current study characterizes the relationship between dietary metabolite, 1-

methylhistidine, and blood pressure in a biracial cohort of middle aged-adults in the 

Bogalusa Heart Study. Our analyses demonstrate that red meat and poultry consumption 

exhibit dose–response relationships with serum 1-methylhistidine. Furthermore, we 

observed more than a 3 and 2 mmHg higher SBP and DBP per year, respectively, for each 

standard deviation increase in serum 1-methylhistidine among blacks, whereas no 

appreciable association was observed among whites. These observations suggest a utility for 

further assessing the role of dietary 1-MH among individuals with hypertension to help 

minimize racial disparities in cardiovascular health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LDL-C low-density lipoprotein cholesterol

MS mass spectrometry

NAFLD nonalcoholic fatty liver disease

NIRI nutrition intervention research initiative
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FIGURE 1. 
Mean serum 1-methylhistidine value according to tertile of weekly animal protein 

consumption, adjusted for age, sex, race, and total energy intake. *Median.
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FIGURE 2. 
Overall scheme showing dietary precursors of 1-methylhistidine and its proposed relevance 

in the development of hypertension. 1. Carnosinase catalyzes conversion of dietary anserine 

into ß-alanine and 1-methylhistidine predominantly in systemic circulation. 2. Cumulative 

exposure to dietary 1-methylhistidine may increase risk for both obesity and nonalcoholic 

fatty liver disease, two independent risk factors for hypertension.
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