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ABSTRACT Microbial resistance to processing treatments poses a food safety con-
cern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks
caused by pathogenic Escherichia coli have led to human and economic losses.
Therefore, this study screened for the extreme heat resistance (XHR) phenotype as
well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli
isolates from diverse meat animals at different processing stages. The prevalences of
XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%,
respectively, with 19% agreement between the two. Finished meat products showed
the highest LHR prevalence (24.3%) compared to other processing stages (0 to
0.6%). None of the LHR1 E. coli in this study would be considered pathogens based
on screening for virulence genes. Four high-quality genomes were generated by
whole-genome sequencing of representative LHR1 isolates. Nine horizontally acquired
LHRs were identified and characterized, four plasmid-borne and five chromosomal.
Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to
68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our obser-
vations suggest positive correlation between the number of LHR regions present in
isolates and the extent of heat resistance. The isolate exhibiting the highest degree of
heat resistance possessed four LHRs belonging to three different variant groups.
Maintenance of as many as four LHRs in a single genome emphasizes the benefits of
the LHR in bacterial physiology and stress response.

IMPORTANCE Currently, a “multiple-hurdle” approach based on a combination of dif-
ferent antimicrobial interventions, including heat, is being utilized during meat proc-
essing to control the burden of spoilage and pathogenic bacteria. Our recent study
(M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438–1443,
2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor
Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly con-
tributes to the global stress tolerance in bacteria and hence poses a food safety con-
cern. Therefore, it is important to understand the distribution of the LHRs among
meat-borne bacteria identified at different stages of different meat processing sys-
tems. Complete genome sequencing and comparative analysis of selected heat-re-
sistant bacteria provide a clearer understanding of stress and heat resistance mecha-
nisms. Further, sequencing data may offer a platform to gain further insights into
the genetic background that provides optimal bacterial tolerance against heat and
other processing treatments.

KEYWORDS Escherichia coli, extreme heat resistance, locus of heat resistance, red meat,
whole-genome sequencing

E scherichia coli is one of the top five pathogens in the United States contributing to
domestically acquired foodborne illnesses requiring hospitalizations. During the

last 5 years in the United States, meat-borne E. coli infections have caused multistate
outbreaks with almost 300 reported cases. Almost all of these cases are caused by
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Shiga toxin-producing E. coli (STEC), a pathotype that commonly colonizes ruminant
animals, such as cattle and sheep (1), but can be found among other meat animal
types (2). Meat animals serve as a reservoir of these pathogens that can potentially get
introduced at any point in the meat production system (as reviewed in reference 3).
Currently, a “multiple-hurdle” approach based on a combination of different antimicro-
bial interventions is used to ensure meat safety (4–6). Existing interventions include
hot water wash (80° to 85°C), organic (lactic, acetic, and citric) acids, peroxyacetic acid,
and halogen-based compounds (acidified sodium chlorite, chlorine dioxide, sodium
hypochlorite, and bromine) (7–10). Despite this, reports of meat-borne E. coli outbreaks
continue to emerge.

Evidence suggests the role of a novel 15- to 19-kb genetic element called the locus
of heat resistance (LHR) in E. coli stress tolerance. The LHR consists of 16 to 19 open
reading frames (ORFs) putatively grouped into three functional motifs contributing to
tolerance against heat shock, envelope stress, and oxidative stress. The heat shock
motif possesses genes encoding the ATP-dependent protease ClpK and small heat
shock proteins that are known to have roles in heat resistance. Two variants of ClpK
have been reported; ClpK1 is associated with a 15-kb LHR, while ClpK2 is associated
with a 19-kb LHR. The two ClpK2 LHRs that have been characterized to date are plas-
mid borne in nature and shown to have a complementary role to ClpK1 in the heat re-
sistance phenotype (11–14). In some instances, the LHR is colocalized with genes
related to multidrug resistance, biofilm formation, and an antibacterial peptide to-
gether with a self-immunity protein (11). E. coli strains carrying the LHR have increased
resistance toward heat (60°C for 5 to 20 min) (11, 15) and antimicrobials (bleach, perox-
yacetic acid, and hydrogen peroxide) (16). Further, the LHR-mediated extreme heat re-
sistance (XHR) is transferable to both pathogenic and nonpathogenic E. coli via conju-
gative transfer (11).

The LHR is prevalent among many Enterobacteriaceae, including E. coli. Bioinformatic
analysis of all E. coli in the NCBI genome assemblies and NCBI whole-genome shotgun
sequences predicted LHR to be present in ;2% of E. coli, none of which carry any viru-
lence factors (12). High prevalences of the LHR and XHR phenotype were reported
among E. coli isolates from Canadian beef (27.2%, n = 55) (12, 17) and Danish raw milk
cheese (36.7%, n = 253) (18). In a subsequent study of Canadian beef E. coli isolates, prev-
alence of the LHR and XHR was found to be 4.3% (n = 92) (15). In another study, the LHR
was found in 59% (n = 70) of E. coli isolated from chlorinated sewage water (19). These
studies reported a lack of virulence factors in the majority of LHR1 E. coli. On the other
hand, 0.49% of human clinical E. coli isolates (n = 613) (20, 21) and 2% of extended-spec-
trum beta-lactamase-producing E. coli isolates from hospital settings (n=115) (22) carry
the LHR with XHR phenotype. A recent study identified STEC of serogroups O26, O45,
O145, and O157 that possessed the LHR and demonstrated moderate heat resistance
(23). This indicates that LHR-mediated stress-tolerant enteric pathogens can be isolated
and that more are likely to emerge.

Our recent study showed that LHR1 E. coli and XHR E. coli are present in beef and
cull cattle types harvested in multiple geographical regions of the United States (24).
Our current study aims to expand this investigation by examining a large and diverse
collection of meat-borne E. coli isolated from various meat sources at different stages
of processing, with the objective of establishing the incidence of the LHR and XHR phe-
notype E. coli isolated from red meat sources. These isolates have been recovered dur-
ing previous studies of red meat animal sources (beef, veal, pork, and lamb) at different
processing stages and archived at the U.S. Meat Animal Research Center. Further, we
aimed to gain better insight into LHR-mediated heat resistance by comparative
genomic analysis of the LHR1 isolates.

RESULTS AND DISCUSSION
E. coli isolate collection at USMARC. E. coli isolates at the U.S. Meat Animal

Research Center (USMARC) were collected from beef, veal, lamb, and pork through
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numerous studies focused on sources and control of pathogen contamination present
during red meat animal harvest and processing (Table 1). Strains selected from the col-
lection used in this study provided isolates from diverse meat animals and processing
systems as summarized in Table 1. Beef and veal were represented by isolates from
ground beef (25), beef trim intended for grinding (26), and veal carcasses during proc-
essing (27). Lamb was represented by STEC that were isolated from three stages of
sheep harvest (28). Pork was represented by STEC previously isolated from pork car-
casses at three steps of harvest process (29, 30). Nonpathogenic E. coli was not the tar-
get of the studies the strains were drawn from; therefore, generic E. coli from ground
beef (31) and pork chops (32) that had been isolated during studies of antimicrobial re-
sistance were added. Further, generic fecal E. coli from USMARC-raised pigs was iso-
lated for use in this study to more fully represent the swine/pork continuum. Isolates
of E. coli from beef cattle feces have been described previously in regard to XHR and
LHR (18) and are not included here.

To ensure proper classification, all E. coli isolates were screened for the Shiga toxin
(stx) and intimin (eae) virulence genes. Isolates were considered nonpathogenic back-
ground strains when neither of the virulence factors were present. One or both viru-
lence factors were present in 65.8% of the isolates (Table 1). Out of a total of 4,123 iso-
lates, 14.1%, 36.2%, 15.5%, and 34.2% were grouped as enterohemorrhagic E. coli
(EHEC: stx1 eae1), Shiga-toxigenic E. coli (STEC: stx1 eae2), enteropathogenic E. coli
(EPEC: stx2 eae1), and nonpathogenic E. coli, respectively (Table 2). In some cases, the
earlier studies characterized the pathoserotypes of the isolates and identified stx sub-
types. However, since not all strains had been characterized in detail, we limited the
definition of pathogens to these two genes. Further, in cases such as STEC isolated
from pork processing, where most stx genes were the stx2e subtype, which is not com-
monly associated with human disease (33), severe STEC disease may still result (34).
Thus, all STEC strains are considered pathogens for the sake of the current study.

Prevalence of LHR in meat-borne E. coli. In order to determine the prevalence of
the molecular determinant of extreme heat resistance, the E. coli isolates (n=4,123)

TABLE 1 Number of E. coli isolates by meat production systems and processing stages

Meat production system

No. found in:

Total
Source of strain or
reference(s)Fecesb

Hide, pelt, or
skinc

Preintervention
carcassd Final carcasse Finished productf

Beef 0 0 0 0 1,548 1,548 25, 26, 31
Pathogenic 901a 901
Nonpathogenic 647 647

Veal 0 0 948 0 46 994 27
Pathogenic 763 26a 789
Nonpathogenic 185 20 205

Sheep 0 14 10 487 0 511 28
Pathogenic 14 10 484 508
Nonpathogenic 0 0 3 3

Pork 243 475 33 9 310 1,070 29, 32, this study
Pathogenic 21 448 33 9 1a 512
Nonpathogenic 222 27 0 0 309 558

Total 243 489 991 496 1,904 4,123
Pathogenic 21 462 806 493 928a 2,710
Nonpathogenic 222 27 185 3 976 1,413
aIsolates possessing stx and/or eae genes are considered to have a pathogenic background.
bFecal samples of preharvest and harvest animals.
cSkin/hide of preharvest and exsanguinated animals before antimicrobial interventions.
dCarcass after exsanguinated animals were skinned and eviscerated but before any antimicrobial interventions.
eCarcass after antimicrobial interventions and chilling.
fFinal carcass further handled and fabricated to produce consumer-ready products.

XHR E. coli in U.S. Red Meat Applied and Environmental Microbiology

April 2021 Volume 87 Issue 7 e02343-20 aem.asm.org 3

https://aem.asm.org


were screened for the LHR using a multiplex PCR assay as previously described (24).
Overall prevalence of the LHR among meat animal and meat-borne E. coli in the sam-
ple collection was found to be 11.4% (Table 3). The prevalence of LHR in meat process-
ing environments was previously reported to be 4.3% and 27.2% (12, 17). The differing
sources and sites of collection in the previous reports may have had an influence on
the number isolates found to possess the LHR. The majority of the LHR-positive popu-
lation we identified (82.8%) possessed an intact LHR based on the presence of all four
PCR products in our assay that identifies the 59-, 39-, and two internal regions of the
LHR (data not shown). The additional heat resistance-imparting factor, ClpK2, was
found present in 6.5% of the isolates (data not shown). The prevalence of LHR was
highest among isolates from beef (20.8%), followed by those from pork (13.4%), and
least among isolates recovered from veal (1.0%) and sheep (0.4%). The prevalence of
LHR also varied greatly among processing stages. Isolates recovered from finished
meat products showed the highest LHR prevalence (24.5%) compared to isolates from
earlier processing stages and animal feces (0 to 0.9%) (Table 3).

Similar to previous reports (11, 12, 19–22), the prevalences of LHR and virulence fac-
tors appear to have an inverse relationship. The majority of the LHR1 E. coli (99.4%) in

TABLE 3 Prevalencea of the LHRb among E. coli isolates

Source of
isolate

% found inh:

TotalcFeces
Hide, pelt,
or skin

Preintervention
carcass

Final
carcass

Finished
product

Beef NA NA NA NA 20.5 20.5Pe

Veal NA NA 0.6 NA 2.2 0.6QR
Sheep NA 0 0 0.4 NA 0.4QR
Pork 0 0 0 0 46.1g 13.45S

Totald 0Vf 0V 0.6V 0.4V 24.3Z 11.4
aPrevalence is calculated as the percentage of E. coli isolates that screened positive.
bPresence of at least one region of locus of heat resistance (LHR) during four-plex PCR is considered LHR positive.
cPrevalence of LHR in meat animal types.
dPrevalence of LHR in meat processing stages.
eLHR prevalence among meat animal types in a column with the same subscript letter are not significantly
different (P. 0.05).
fXHR prevalences among meat processing stages in a row with the same subscript letter are not significantly
different (P. 0.05).
gXHR prevalence in finished pork product is significantly different (P, 0.0001) compared to those from other
meat processing stages of pig.

hNA, data not available due to lack of samples.

TABLE 2 Prevalencea of the LHRb and XHRc phenotypes among different pathotypesd of
E. coli

Pathotyped Total no. of isolates (%)e

No. of isolates (%)

LHR+f LHR2f XHR+f XHR2f

EHEC 582 (14.1) 0 (0) 582 (100) 39 (6.7) 543 (93.3)
STEC 1,491 (36.2) 3 (0.2) 1,488 (99.8) 81 (5.4) 1,410 (94.6)
EPEC 640 (15.5) 0 (0) 640 (100) 55 (8.6) 585 (91.4)
EC 1,410 (34.2) 467g (33) 943g (67.9) 176 (12.5) 1,234g (87.5)

Total 4,123 470 (11.4) 3,653 (88.6) 351 (8.5) 3,772 (91.5)
aValues represent the number of E. coli isolates of each type that screened positive.
bPresence of at least one region of locus of heat resistance (LHR) during four-plex PCR is considered LHR positive.
cE. coli isolates surviving 60°C for 20min are considered extremely heat resistant (XHR).
dE. coli isolates possessing the stx and/or eae gene are considered to have a pathogenic background. Types of E.
coli: enterohemorrhagic E. coli (EHEC; stx1 eae1), Shiga toxigenic E. coli (STEC; stx1 eae2), enteropathogenic E.
coli (EPEC; stx2 eae1), and nonpathogenic background E. coli (EC).

eNumbers in parentheses are the percentage prevalence of each pathotype among total 4,123 isolates.
fNumbers in parentheses are the percentage prevalence that screened positive among each pathotype.
gThe prevalence between pathogenic and nonpathogenic E. coli within a column is significantly different
(P, 0.0001) as determined by Fisher’s exact test.
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our study did not carry virulence factors stx (Shiga toxin) and eae (intimin). Only 0.1%
of virulent isolates were found to be LHR1 (Table 2). Together with predicted LHR
domains, these findings suggest that the major role of the LHR is tolerance to environ-
mental stresses rather than a pathogenicity advantage. E. coli strains lacking the viru-
lence factors associated with EHEC, STEC, and EPEC are common nonpathogens har-
bored by all mammals and are merely an indicator of fecal contamination. Nevertheless,
LHR detection in human clinical isolates and EHEC pathogenic serogroups (20, 21, 23),
combined with LHR-mediated transfer of heat resistance to pathogens (11, 15), clearly
emphasizes the likelihood that treatment-tolerant foodborne pathogenic E. coli can pose
a serious public health threat.

Since nonpathogenic E. coli had the highest prevalence of the LHR, this explains the
higher prevalence of the LHR among the beef and pork isolates, as these were the col-
lections with the highest proportions of this type of E. coli (see Table S1 in the supple-
mental material). On the other hand, despite similar numbers of pathogenic and non-
pathogenic isolates, finished meat products showed the highest prevalence of the
LHR. Among pork isolates, which were represented across the processing continuum
from animal feces to consumer-ready meat, the prevalence of the LHR was highest in
those recovered from finished products (46.1%) while entirely absent from isolates
found at earlier processing steps. A similar observation in a previous study of raw milk
cheese E. coli isolates suggested that the LHR might be selected for or enriched during
processing treatments (18). However, there is not enough current evidence to either
conclude or suggest an alternative environmental source of LHR1 E. coli in finished
products.

Prevalence of the XHR phenotype among meat-borne E. coli isolates. E. coli iso-
lates from various steps during animal harvest and meat processing were screened
for the extreme heat resistance phenotype. We employed a previously validated XHR
screening method that recovered the XHR/LHR type strain AW1.7 from samples and
distinguished it from other heat-sensitive isolates (18). A total of 426 isolates (10.3%)
survived 60°C for 20min (Table 4). The prevalence of XHR was highest among E. coli
isolated from beef (13.6%), followed by pork (10.6%), and veal (9.2%), and was lowest
among lamb (2.3%). XHR E. coli was most prevalent in feces (17.3%) and least preva-
lent on final carcasses (1.8%) compared to other processing stages (7.3% to 12.6%).
Only 90 (21.1%) of XHR isolates possessed the LHR, among which, the LHR was intact
in 85 isolates. This is in agreement with our recent observation that only 9% (13/140)
of XHR E. coli tested positive for LHR (24), indicating the need for investigation into
non-LHR-mediated extreme heat resistance. Alternately, this incongruity may be the

TABLE 4 Prevalencea of XHRb phenotype among E. coli isolates

Source of isolate

% found inh:

TotalcFeces Skin
Preintervention
carcass

Final
carcass

Finished
product

Beef NA NA NA NA 13.6 13.6Pe

Veal NA NA 9.5 NA 2.2 9.2QS
Sheep NA 0 40g 1.6 NA 2.3R
Pork 17.3 7.6 18.2 11.1 9 10.6QS
Totald 17.3V

f 7.3WX 10.1WXZ 1.8Y 12.6WZ 10.3
aPrevalence is calculated as percentage of E. coli isolates that screened positive.
bE. coli isolates surviving 60°C for 20min are considered extreme heat resistant (XHR).
cPrevalence of XHR phenotype in meat animal types.
dPrevalence of XHR phenotype in meat processing stages.
eXHR prevalence among meat animal types in a column with the same subscript letter are not significantly
different (P. 0.05).
fXHR prevalence among meat processing stages in a row with the same subscript letter are not significantly
different (P. 0.05).
gXHR prevalence in finished lamb product is significantly different (P, 0.0001) compared to those from other
meat processing stages of lamb.

hNA, data not available due to lack of samples.
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result of influences of water bath versus heating block phenotyping methods (23). In
contrast to previous reports where strains possessing intact LHR and/or its variant
always show the XHR phenotype (11, 12, 15, 22), 81% of LHR isolates in our study did
not show the XHR phenotype (data not shown). This challenges the use of LHR alone
as a reliable marker for the prediction of the XHR phenotype. Mutational analysis has
shown that LHR transcription requires the presence of the two-component system
EvgAS in the genome (13). More investigation of the cellular genetic background
required for optimal LHR expression will lead to a better understanding of LHR-medi-
ated resistance.

Two LHR variants are known to have complementary roles in the XHR phenotype
(11), and an intact LHR has been shown to impart maximum heat resistance (13). Similarly,
in our study, one LHR2 ClpK21 isolate, but none with less than 3 LHR fragments, showed
the XHR phenotype (data not shown). Overall prevalences of the XHR phenotype in viru-
lent and nonvirulent isolates were similar in our study (Table 2).

ClpK2-mediated heat resistance. In addition to the LHR-detecting multiplex PCR,
a ClpK2-specific PCR was performed to detect the second variant of the LHR (22). ClpK2
was prevalent in 6.5% of the isolates. While most ClpK2 isolates (91%) detected were in
an intact LHR background, one was detected in an LHR2 background (data not shown).
LHR variants have been shown to have complementary roles in heat resistance, and
the presence of both variants conferred a slight but significantly higher degree of heat
resistance compared to the ClpK1 variant alone (11, 22). To determine if this was the
case with the isolates identified here, a refined heat sensitivity measurement was per-
formed with four XHR isolates. The isolates were selected based on the presence or ab-
sence of ClpK2 and various lengths of the LHR. Heat treatment of the prototype strain
AW1.7 (intact LHR, ClpK22) at 60°C for 1 min, 5 min, 10 min, and 20 min reduced cell
counts by 2.3 log CFU/ml, 3.8 log CFU/ml, and 7.1 log CFU/ml, respectively (Fig. 1).
Isolates Beef 97.3 (intact LHR, CLpK22) (Fig. 1A) and Beef 730V1 (nonintact LHR,
CLpK22) (Fig. 1B) showed heat resistance profiles comparable to that of AW1.7. Isolate
Beef 873.10 (intact LHR, ClpK21) (Fig. 1C) showed remarkably high heat resistance,
with only a 2.5 log (CFU/ml) reduction after 20m of heat treatment. Isolate Sheep
2273PO3 (intact LHR, ClpK21) (Fig. 1D) showed an overall heat resistance profile com-
parable to that of AW1.7, with slightly increased survival at 20min (6.2 log CFU/ml).

FIG 1 Heat resistance of meat-borne E. coli isolates carrying LHR. Isolates were arbitrarily selected
based on the presence or absence of ClpK2. Overnight cultures were exposed to 60°C for 1min,
5min, 10min, and 20min. The data presented are representative of at least two independent
experiments, each with three technical replicates. Data indicate the mean 6 standard deviations of
three independent technical replicates. *, P, 0.01 (one-way ANOVA of log CFU/ml reduction at each
time point).
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While our findings clearly show a positive correlation between degree of heat resist-
ance and presence of both LHR variants, a discrepancy in the extent of heat resistance
between two ClpK2 strains led us to investigate the genomes of these isolates.

Comparative genetics and phylogenetic analysis of LHR. The four isolates identi-
fied above (Beef 730V1, Beef 97.3, Beef 873.10, and Sheep 2273PO3) were sequenced with
the PacBio sequel system to examine the genomic differences underlying the varying
degree of their heat resistance. Mapping of these genomes against a reference library of
LHR sequences that were phenotypically and genotypically characterized in earlier studies
(11, 13, 14, 35, 36) identified 9 LHR regions (Table 5) among the four isolates. Coordinates
of LHR genes were derived from PGAP annotation (37, 38) and further confirmed using
Prokka annotation (39). All LHRs identified in this study were flanked by mobile genetic
elements and possess higher G1C content than the rest of the genome, indicating their
horizontal acquisition. Each LHR harbors the core genes necessary for extreme heat resist-
ance as previously identified (13) and appears to maintain genetic synteny (Fig. 2).

Phylogenetic analysis yielded two clades, and each clade distinctly included one of
the two variants of reference LHRs, ClpK1 LHR or ClpK2 LHR (Fig. 3). ClpK1 LHR and
ClpK2 LHR shared 61 to 68% nucleotide identity. The reference sequence pFAM21805
LHR (4) showed lower nucleotide identity with other LHRs (38 to 62%) due to the pres-
ence of an additional 11-kb microcin cluster (11). LHRs in both clades possess 12 com-
mon genes encoding DNA binding protein, small heat shock proteins sHSP20 and
sHSP, ATP-dependent Clp protease ClpK, cell division protein FtsH, putative chaperone
proteins YfdX1 and YfdX2, acid stress resistance membrane protein HdeD, thioredoxin
reductase TRX2, phosphate-starvation-inducible protein PsiE, zinc-dependent protease
HtpX, and periplasmic serine protease DegP. Most of the corresponding genes within a
clade shared high levels of nucleotide identity (.90%). Between clades, the lowest
level of identity is observed among HtpX (72%) and PsiE (76%). Unique to the ClpK1
LHR were highly conserved genes (96 to 100% identity) encoding two hypothetical
proteins (2 and 4) and a glutathione-regulated potassium-efflux system protein, KefB.
On the other hand, only ClpK2 LHRs possessed 6 highly conserved genes (.99% iden-
tity) encoding cardiolipin synthase (Cls), mechanosensitive channel (Msc), hypothetical
protein 5, cation:proton antiporter (CPA), PAS-domain containing protein (PAS), and
diguanylate cyclase (DGC). Cls was located at the position corresponding to hypotheti-
cal protein 2 of ClpK1 LHR. Msc and hypothetical protein 5 were found to be inserted
in the hypothetical gene 4 of ClpK1 LHR (Fig. 2).

The ClpK1 LHR was located chromosomally in isolates Beef 730V1 (730V1 LHR) and
Sheep 2273PO3 (2273PO3 LHR2) and on the plasmids of isolates Beef 873.10 (873.10p2
LHR) and Beef 97.3 (97.3p1 LHR). The four newly identified ClpK1 LHRs within the first
clade shared high nucleotide identity (92 to 100%) with each other as well as with pre-
viously described ClpK1 LHR, approximately 15 kb in size with a G1C content of 62%

TABLE 5 Loci of heat resistance among meat-borne E. coli isolates

Organisma LHRb Location Coordinates G+C content (%) Length (bp)c ORF no. LHR variantd

Beef 873.10 873.10 LHR1 Chromosome 22754–51098 57.7 28,345 28 ClpK2
873.10 LHR2 Chromosome 2186098–2207888 59.8 21,791 22 ClpK2
873.10p1 LHR Plasmid 35177–52973 62.3 17,797 17 Hybrid
873.10p2 LHR Plasmid 65948–79550 61.7 13,603 15 ClpK1

Sheep 2273PO3 2273PO3 LHR1 Chromosome 2941510–2921761 61.3 19,750 22 ClpK2
2273PO3 LHR2 Chromosome 3923433–3938938 62.1 15,506 17 ClpK1
2273PO3p1 LHR Plasmid 55553–36612 61.4 18,942 20 ClpK2

Beef 730V1 730V1 LHR Chromosome 3826448–3841903 62.2 15,456 17 ClpK1
Beef 97.3 97.3p1 LHR Plasmid 139116–124551 61.8 14,566 18 ClpK1
aAll isolates possess evgAS (a global regulator of LHR) (13); ClpA, ClpB, and ClpX (Clp chaperones); and ClpP (Clp protease).
bLoci of heat resistance were identified by mapping the genomes against previously characterized LHR regions.
cLength of LHR regions between flanking mobile elements.
dThe LHR variant is determined based on its homology to one of the two known variants of LHR, ClpK1 LHR and ClpK2 LHR.
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(11, 12, 14). Genes encoding FtsH in 873.10p2 LHR and 97.3p1 LHR, however, were
shorter and shared only 41 to 43% identity with that of other ClpK1 LHR. In p873.10(2)
LHR, the highly conserved gene degP, with a yet unidentified role in heat resistance,
was severely truncated.

The second clade consisted of the five newly identified ClpK2 LHRs which shared
high nucleotide identity with a previously described ClpK2 LHR, approximately 19 kb in
size with a G1C content of 61 to 62% (11, 14). ClpK2 LHR was present in only two iso-
lates, Beef 873.10 and Sheep 2273PO3, which is in agreement with the PCR results for
the clpK2 gene. The presence of both ClpK LHR variants in these isolates correlated
with their greater heat resistance as suggested by complementary functions (11).
Chromosomes of the isolate Beef 873.10 harbored two (873.10 LHR1 and 873.10 LHR2)
and Sheep 2273PO3 harbored one (2273PO3 LHR1) ClpK2 LHR. In addition, two more
ClpK2 LHRs were also located on plasmids of these isolates (873.10p1 and 2273PO3p1).
Four ClpK2 LHRs (873.10 LHR1, 873.10 LHR2, 2273PO3 LHR1, and 2273PO3p1 LHR)
were .98% identical in their nucleotide sequences among themselves and to a previ-
ously identified TLPQC1 in Salmonella enterica serovar Senftenberg 775W (14). Some of
the newly identified LHRs carried other genes in addition to core LHR genes.
Additional genes include five genes encoding a phosphate transfer system and
three genes encoding a 6-phospho beta-glucosidase system in 873.10 LHR1 and a
DNA binding transcriptional regulator, DmlR, and a leucine efflux protein, LeuE, in
873.10 LHR2. Thirteen corresponding genes in these ClpK2 LHRs were nearly identi-
cal (.99%) to one another. Despite lower overall LHR sequence identity, corre-
sponding individual genes in the reference sequence pFAM21805 LHR showed

FIG 2 Multiple sequence analysis of LHR regions. The core LHR regions were manually extracted and aligned using
MAFFT. The corresponding genes are represented by the same color. The alignment graph above each LHR shows
identical nucleotides in gray and single nucleotide substitutions in black highlights. ORFs are denoted by the following
colors: light gray, DNA binding protein; turquoise, sHsp20; black, ClpK; purple, hypothetical protein 2; dark blue, ClsA; dark
gray, FtsH; bright blue, Hsp20; light brown, YfdX1; brown, YfdX2; red, HdeD; dark pink, hypothetical protein 4; gold, Msc;
orange, Trx; pink, KefB; dark green, PsiE; green, Dgc; yellow, HtpX; white, DegP; olive green, microcin genes; light pink,
hypothetical protein 5; gray, PAS domain protein; mint green, CPA; and dark red, small hypothetical proteins (1 and 3).
The reference LHR sequences and corresponding NCBI accession numbers are E. coli FAM21805 (KY646173.1), E. coli
FAM21845 (CP017220.1), E. coli AW1.7 (LDYJ01000141.1), Salmonella enterica serovar Senftenberg ATCC 43845 TLPQC1 and
TLPQC2 (CP016838.1), Cronobacter sakazakii ATCC 29544 (CP011047.1), and E. coli pFAM21805 (KY416992.1). *, LHR
identified in this study.
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similarly high nucleotide identity with ClpK2 LHRs. Out of five ClpK2 LHR identified in
this study, 873.10p1 LHR shared only 87% (versus .98%) sequence identity with other
ClpK2 LHRs. Unlike all other ClpK2 LHRs, it lacked genes encoding Msc and hypothetical
protein 5 and instead possessed a 1,146-bp gene encoding hypothetical protein 2 similar
to that in the ClpK1 LHR. The gene trx2 shared relatively lower homology with that of
other ClpK2 LHRs. Further, trx2 of 873.10p1 LHR shared higher identity with its ClpK1
LHR variant. This suggests possible genetic exchange/rearrangements between ClpK1
LHR and ClpK2 LHR 873.10p1 giving rise to a hybrid LHR.

Observations from this study indicate a correlation between the number of LHR
regions present in an isolate and the extent of the heat-resistant phenotype (Beef
873.10 [4 LHRs] . Sheep 2273PO3 [3 LHRs] . Beef 730V1 [1 LHR] = Beef 97.3 [1 LHR])
and lay a foundation to investigate the stress tolerance potential of a hybrid LHR.

Conclusion. This study assesses XHR and the LHR in meat-borne E. coli in the
United States. A higher prevalence of LHR1 E. coli was observed in finished meat
products and demands further studies directed toward identifying the source(s) of
LHR1 E. coli in the meat processing continuum. The genomes of meat-borne LHR1

E. coli were characterized to better understand these LHR regions. Our analysis
highlighted the unique features of LHR variants. We identified a novel hybrid LHR,

ClpK1 LHRClpK1 LHR

ClpK2 LHR

*

ClpK2 LHR

*

*

*

*

*

*

*

*

FIG 3 Bayesian inference phylogenetic tree of LHR nucleotide sequences. The phylogenetic tree was
constructed using MRBAYES utilizing generalized time reversible model with discrete gamma distribution
(GTR1G). Ten newly identified LHR regions and seven genetically and phenotypically characterized LHR
regions were reincluded in the MAFFT alignment, which was then used for phylogenetic analysis. *, LHR
identified in this study.
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which shared genes between two known LHR variants. Our study suggests that the com-
paratively higher heat resistance of some LHR isolates is positively correlated with the
quantity of LHRs present in the isolate. Maintenance of as many as four LHRs in a single
genome emphasizes the importance of LHR in bacterial physiology/survival. The findings
of this work, therefore, will provide a platform for future investigations aimed at under-
standing LHR-mediated global stress tolerance and its molecular mechanisms.

MATERIALS ANDMETHODS
Samples and processing. E. coli isolates from the collection at the U.S. Meat Animal Research

Center were used in this study. These isolates (n= 3,880) were previously collected from various steps
(skin/hide, n= 489; preintervention carcass, n= 991; final carcass, n= 496; finished product, n= 1,904)
during animal harvest in commercial meat processing plants. Due to concerns regarding anonymity of
the participating commercial locations, the various anitmicrobials used in each plant to reduce contami-
nation were only described in general terms. In short, the isolates were recovered from processors using
single or sequential interventions consisting of hot (85°C) water, organic acids, and chlorine/bromine
compounds. Difco tryptic soy broth (TSB; Beckton Dickinson, USA)-grown overnight cultures had been
archived at 280°C with 17% glycerol as a cryoprotectant. Frozen cultures were revived on Difco tryptic
soy agar (TSA; Beckton Dickinson, USA) plates following incubation at 37°C for 15 to 22 h. A single col-
ony from each plate was utilized for the further studies. Pig fecal isolates (n= 243) were collected from
rectal swabs of 5 arbitrarily selected pigs per each of 14 pens located within one enclosed swine feeding
facility. Swabs were streaked for isolation onto the surface of CHROMagar E. coli medium (Paris, France)
and incubated at 37°C for 18 to 24 h. Representative colonies (2 to 6 per sample) were selected for the
study. Presumptive colonies were confirmed using a previously described PCR method for E. coli (40).

LHR detection assay. A four-plex PCR assay was used to detect LHR as previously described (24).
Briefly, oligonucleotides designed to target 59, 39, and interior regions of a 14-kb LHR were used to dif-
ferentially amplify various regions across the LHR. Oligonucleotide primer pairs used were 1266F/1373R
(AATGCAGGCGGTGATGAAGA/CGCTGATTGCCCATCAACAG), 4295F/4505R (CGAGGGAGAATTCCAGTCCG/
GGCACTACGCTAATCCTGCT), 7069F/7404R (CTCATTGGATGCTTCGCTGC/ACGGAAACCATTGAGGCGAT),
and 14160F/14699R (CCTGGCATTGTTTTCTGGCC/GGCTGTTCGATGACGCATTC). Isolates with all 4 ampli-
cons present were considered to possess intact LHR. To detect the second variant of LHR, E. coli isolates
were screened for the presence of marker gene ClpK2 using primers ClpK2F/ClpK2R (ACGATCA
CTATCGCCAACTG/AGTATTTATCCAGCTCGGGCGTG) as previously described (22). All amplicons were
resolved on 1.5% agarose gels, electrophoresed in 1� sodium borate buffer (Faster Better Media LLC, USA),
and stained with ethidium bromide for visualization. Prevalences were compared using Fisher’s exact test.

Heat killing assay. XHR E. coli was identified in a previously validated high-throughput 96-well assay
format (18). Briefly, each isolate was inoculated into Difco buffered peptone water (BPW; Beckton
Dickinson, USA) and incubated statically at 37°C for 16 h. The cultures were diluted 1:10 into fresh BPW
and further incubated at 37°C for 16 h to remove the influence of carbohydrates and buffers present in
TSB, which would otherwise affect the heat-resistant phenotype. Then, 0.5 ml of each BPW cultured iso-
late was transferred to a thin-walled plastic test tube for heat treatments. Isolates were exposed to 60°C
for 20 m in an aluminum heat block and then transferred and rapidly cooled in an ice-water bath for 45
s, followed by recovery at room temperature for 1 h. At the end of 1 h, an equal volume of 2� Difco
MacConkey broth (Beckton Dickinson, USA) was added to each tube, and the mixture was incubated
overnight at 37°C. Any heat-treated isolate showing growth, as evident by yellow coloration of medium,
was considered an XHR E. coli. LHR1 XHR strain AW1.7 was included as a positive control in each series
of heat treatments. Prevalences were compared using Fisher’s exact test.

Selected LHR isolates were further characterized for differences in their extent of heat resistance.
Briefly, overnight cultures were grown in Luria Bertani (LB) broth (Beckton Dickinson, Sparks MD) at
37°C, 150 rpm. The optical densities at 600 nm (OD600nm) of overnight cultures were normalized to 0.2
before use. A 3-ml portion of each normalized culture was incubated in a 60°C water bath for 0, 1, 5, 10,
and 20min. At the end of each time point, 100 ml of the culture was immediately transferred to 900 ml
BPW. Serial dilutions were then plated on 3M Petrifilm E. coli/coliform count plates (St. Paul, MN, USA)
and incubated at 37°C for 18 to 24 h. Fold reductions in bacterial population were calculated by the log
reduction in CFU/ml of untreated versus treated cells for each time point. Two independent experi-
ments, each with three biologic replicates were carried out for each isolate.

Whole-genome sequencing and assembly. Overnight cultures of the bacteria were diluted 1:40
times in LB, followed by incubation at 37°C at 190 rpm for 3 h. Genomic DNA was extracted and purified
using Qiagen Genomic-tip 100/G columns and the Qiagen genomic DNA buffer set (Qiagen, Valencia,
CA) using the manufacturer’s recommended protocol. Genomic DNA (gDNA) was sheared to an average
size of 20 kb using g-TUBE (Covaris Inc, Woburn MA). Sequencing libraries were prepared using
SMRTbell template prep kit 1.0 (Pacific Biosciences, Menlo Park, CA) and size selected for 20-kb frag-
ments using BluePippin High Pass Plus cassettes (Sage Science, Inc., Beverly MA). Single-molecule real-
time (SMRT) sequencing was performed on a PacBio Sequel system (Pacific Biosciences, Menlo Park, CA)
with chemistry 3.0. De novo assembly, circularization, and plasmid identification were done using microbial
assembly application within the PacBio SMRT analysis pipeline 8.0. The origin of replication was determined
by using Ori-Finder 2.0 (41) and then was reset to position 1 of the chromosome. Replicon regions were
identified by in silico analysis of the plasmid sequences with PlasmidFinder 2.1 (42). For contigs that were
not circularized with SMRTLink microbial assembly, 50 kb sections from each end of the contigs were
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extracted and mapped to each other using the LASTZ aligner in Geneious Prime. Overlapping ends were
trimmed and concatenated to form a complete chromosome. The manually closed chromosome was reor-
iented and mapped against error-corrected PacBio and Illumina reads. Consistent read depth coverage of
the mapped reads over the chromosome indicated that it was correctly closed.

For the resulting assemblies, mean coverage and mean subread length ranged from 85� to 359�
and 13,561 bp to 16,097 bp, respectively. The assembled genomes were analyzed using Geneious Prime
(Biomatters Ltd., New Zealand). For error correction of the PacBio assemblies and detection of smaller
plasmids, short reads were generated with an Illumina MiSeq 300-cycle kit 2 (paired-end sequencing).
Genomic DNA was sheared to an average size of 350 bp using a Covaris microtube (Covaris, Inc,
Woburn, MA). An Illumina (San Diego, CA) sequencing library was prepared using a TruSeq DNA PCR
free LP kit. Paired read sequencing was performed on a MiSeq platform using kit 2 (300 cycles)
(Illumina). Quality trimming and adapter clipping of raw reads was done with Trimmomatic 0.39 (43).
Trimmed ends were mapped against PacBio assemblies using Pilon 1.23 (44). Unused reads were de
novo assembled for smaller plasmids using the Geneious assembler.

Genome analysis. LHR regions and the flanking mobile elements were located and identified by high-
sensitivity mapping of full-length genomes against the reference sequence library using Geneious Mapper.
Regions in de novo contigs showing at least 80% overlap identity (.99.9% confidence) with reference LHR
sequences upon pairwise alignment over the full length were determined to be LHR. The reference sequence
library consisted of seven genetically and phenotypically characterized LHR nucleotide sequences from ear-
lier studies. The complete genomes were annotated with the NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) (37, 38), and nucleotide sequences were submitted to GenBank. The coordinates of newly identified
LHR regions and the flanking transposons were derived from PGAP annotations and further confirmed with
rapid prokaryotic genome annotation software Prokka 1.14.6 (39). Transposons were further confirmed by in
silico analysis using ISfinder (45).

For comparative analysis, nucleotide sequences for core LHR regions were extracted and aligned with
MAFFT 7.450 (46) in Geneious Prime. The best fit model for the alignment as determined with jModelTest 2
(47, 48) using Akaike’s information criterion (49), was found to be a generalized time reversible model with
discrete gamma distribution (GTR1G). These criteria were used to construct a Bayesian inference tree with
MRBAYES 3.2.6 (50) in Geneious Prime. The Bayesian inference tree was supported with a maximum-likeli-
hood tree generated using PhyML 3.3.20180621 (51). LHR variants were primarily determined based on the
nucleotide identity between clpK genes; LHRs with clpK genes sharing $95% nucleotide identity were
grouped as one variant. Further, the variant identity was confirmed by the length of LHR regions (;15kb
versus;19 kb) and the presence or absence of highly conserved genes encoding cardiolipin synthase (clsA),
diguanylate cyclase (DGC), and PAS-domain containing protein (PAS).

Data availability. All of the genome sequences have been uploaded to NCBI under BioProject no.
PRJNA663878. The GenBank accession numbers for the individual PGAP-annotated genomes are
CP061749, CP061750, CP061751, CP061752, and CP061753 (Sheep 2273-PO3); CP061754, CP061755,
CP061756, and CP061757 (Beef 873.10); CP061758, CP061759, CP061760, CP061761, CP061762, and
CP061763 (Beef 97.3); and CP061764, CP061765, CP061766, and CP061767 (Beef 730V1).
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