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Archaeal and bacterial communities
assembly and co-occurrence networks in
subtropical mangrove sediments under
Spartina alterniflora invasion
Weidong Chen and Donghui Wen*

Abstract

Background: Mangrove ecosystems are vulnerable due to the exotic Spartina alterniflora (S. alterniflora) invasion in
China. However, little is known about mangrove sediment microbial community assembly processes and interactions
under S. alterniflora invasion. Here, we investigated the assembly processes and co-occurrence networks of the archaeal
and bacterial communities under S. alterniflora invasion along the coastlines of Fujian province, southeast China.

Results: Assembly of overall archaeal and bacterial communities was driven predominantly by stochastic processes,
and the relative role of stochasticity was stronger for bacteria than archaea. Co-occurrence network analyses showed
that the network structure of bacteria was more complex than that of the archaea. The keystone taxa often had low
relative abundances (conditionally rare taxa), suggesting low abundance taxa may significantly contribute to network
stability. Moreover, S. alterniflora invasion increased bacterial and archaeal drift process (part of stochastic processes),
and improved archaeal network complexity and stability, but decreased the network complexity and stability of
bacteria. This could be attributed to S. alterniflora invasion influenced microbial communities diversity and dispersal
ability, as well as soil environmental conditions.

Conclusions: This study fills a gap in the community assembly and co-occurrence patterns of both archaea and
bacteria in mangrove ecosystem under S. alterniflora invasion. Thereby provides new insights of the plant invasion on
mangrove microbial biogeographic distribution and co-occurrence network patterns.

Keywords: Community assembly, Co-occurrence network, Bacterial community, Archaeal community, Mangrove,
Spartina alterniflora

Background
Mangroves, as a blue carbon reservoir, lie in special locations
connecting coastal and estuarine areas [1]. The microorgan-
isms that inhabit mangrove sediments play a critical role in
the biogeochemical cycling (i.e. methane cycling, ammonia
oxidation, sulfate reduction) and the deposition of heavy
metals from adjacent land [2, 3]. However, Chinese mangrove

ecosystems are vulnerable to the invasive species Spartina
alterniflora, which was introduced in the 1970s and has
spread throughout mangrove coastlines over the past few de-
cades [4]. Extensive studies have showed that S. alterniflora
invasion may alter mangrove ecosystem functions through a
variety of mechanisms, such as changing plant, animal and
microbial biodiversity [5, 6] and carbon or nitrogen cycling
(e.g. soil N2O emissions) [7]. Whereas the effect of the S.
alterniflora invasion on mangrove microbial community as-
sembly and species interactions remains unclear.
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Determining the mechanisms and processes control-
ling community diversity and biogeography across
earth’s ecosystems is a central topic in microbial ecology
[8, 9]. Niche-based and neutral-based theories constitute
two important and complementary mechanisms for un-
derstanding microbial community assembly [10, 11].
Niche-based theory asserts that deterministic processes
largely control the patterns of community structure. In
general, deterministic processes involve nonrandom,
niche-based mechanisms, including environmental filter-
ing and various biological interactions (e.g., competition,
facilitation, mutualisms, and predation) [12, 13]. Neutral
theory assumes that all species or individuals are eco-
logically functionally equivalent, and species dynamics
are controlled by stochastic processes [9, 10]. In contrast
to deterministic processes, stochastic processes consider
that community diversity is maintained by a few indis-
tinguishable processes including probabilistic dispersal
(e.g., random chance for colonization), random speci-
ation and extinction, and ecological drift (e.g., random
changes in organismal abundance) [8–10, 12]. Recently,
it has been generally accepted that both deterministic
and stochastic processes occur simultaneously in the as-
sembly of metacommunity. A central debate currently
focuses on their relative importance in controlling com-
munity structure, succession, and biogeography [12–14].
Over the past few decades, the biogeographic patterns of
microbial communities have been reported for a wide
range of ecosystems at different scales such as in sub-
tropical river [15], agricultural soil [16] and wastewater
treatment plants [17]. However, in the mangroves, which
are essential intertidal ecosystems [18], microbial bio-
geographic patterns are still poorly understood. Disen-
tangling the mangrove microbial ecological processes
and interaction will promote our understanding of the
mangroves ecological function.
Uncovering species coexistence in microorganism

communities is an enduring challenge and large gap
for microbial ecologists. Co-occurrence networks
often reveal non-random co-variation patterns which
may reflect community organization – such as direct
interactions [19] or shared guilds or niches, and pro-
vide a tool for investigating ecological concepts which
are difficult to assess in microbial communities [20–
22]. Under this approach, interactive taxa are linked
together either positively or negatively indicating mu-
tualistic or antagonistic co-occurrence patterns. Net-
work analysis has been used to explore microbial
interactions and/or symbiotic patterns among differ-
ent microbial taxa in various environments [20–22].
Furthermore, by identifying the most connected mi-
crobial populations or analyzing the effects of nodes
and linkages of different methods, network analysis
could also identify keystone species that may have the

greatest impact on microbial community structure
and potential functions [19–23]. A previous study
showed that the core microbes with abundant and
ubiquitous characters in mangroves were mostly
assigned to Gammaproteobacteria, Deltaproteobac-
teria, Chloroflexi and Euryarchaeota [24]. Meanwhile,
the role of rare species in microbial networks remain
still unclear. A better understanding of the mecha-
nisms that influence highly connected taxa compos-
ition and structure may provide an insight into the
underlying response of the whole community [21].
Currently, it is well recognized that both bacteria and
archaea are abundant and critical in mangrove,
whereas most studies explored mangrove plant, ani-
mal and microbial diversity, greenhouse gas emissions
and climate change [18, 24]. And these studies fo-
cused largely on single taxonomic group [6, 24].
There remains knowledge gap on comparison of eco-
logical processes and species co-occurrence network
of both bacterial and archaeal communities in man-
grove ecosystems.
The mangrove ecosystem across the coastlines in Fujian

province, southeast China is occupied by S. alterniflora,
which make it an ideal system to address the effect of
plant invasion on microbial ecological processes and spe-
cies interaction. Here, we characterized the mangrove
microbiome using 48 sediment samples (each 12 samples
from 4 different types of vegetation zones including man-
grove, ecotone, cordgrass, and mudflat) from four man-
grove regions (Fig. S1). We focus on comparing the
ecological distribution patterns and co-occurrence of bac-
teria and archaea, meanwhile, explore S. alterniflora inva-
sion on the community assembly and microbial
interaction. Considering the difference of diversity, abun-
dance, dispersal ability and environmental tolerance of ar-
chaea and bacteria [25], we firstly hypothesize that the
community assembly and co-occurrence network patterns
are different between these two groups. In addressing this
hypothesis, we compare the overall archaeal and bacterial
community assembly and co-occurrence patterns. Fur-
thermore, the S. alterniflora invasion may affect microbial
community and sediment physicochemical factors [6, 7],
thus we secondly hypothesize that S. alterniflora will
change the relative importance of deterministic and sto-
chastic processes and microbial co-occurrence relation-
ships. In addressing this hypothesis, we separately
compare the community assembly mechanisms and net-
work complexity under four different types of vegetation
zones (mangrove, ecotone, cordgrass, and mudflat). The
aims of the present study were to: 1) compare the differ-
ence of bacterial and archaeal community assembly and
co-occurrence networks; and 2) evaluate the influence of
S. alterniflora invasion on bacterial and archaeal commu-
nity assembly and co-occurrence networks.
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Results
Microbial community composition and alpha-diversity
Rarefaction curves for a combined set of 48 samples
showed that the archaeal and bacterial communities data
tended to approach saturation. Furthermore, the trun-
cated Preston log-normal model showed that our sam-
pling found 84.77–86.51% of the archaeal OTUs and
94.86–95.18% of the bacterial OTUs (Fig. S2). These re-
sults indicated that the majority of the microbial taxa had
been recovered from the studied metacommunity. A total
of 6836 archaeal and 31,639 bacterial OTUs were identi-
fied from 332,304 archaeal and 2,081,856 bacterial high-
quality sequences at 97% identity level, and all microbial
taxa were divided into five categories (no OTU was de-
tected as moderate taxa, Table S1). We found that bacteria
showed higher alpha diversity (richness and shannon-
wiener index) than archaea (Fig. S3, Tukey’s HSD test). S.
alterniflora invasion altered microbial alpha diversity
although no significant differences were found among dif-
ferent vegetation zones of archaea and bacteria (Fig. S4,
Tukey’s HSD test). The most three abundant archaeal
phyla among four different types of vegetation zones were
Thaumarchaeota (54.47%), Nanoarchaeaeota (20.57%) and
Crenarchaeota (18.20%). The most three abundant bacter-
ial phyla were Proteobacteria (49.61%), Chloroflexi
(11.98%) and Bacteroidetes (9.85%) (Fig. S5).

Ecological processes controlling overall mangrove
microbial community assembly
The Sloan neutral model showed that the overall ar-
chaeal and bacterial communities were driven predomin-
antly by stochastic processes, with the R2 value were
0.775 and 0.831 for overall archaea and bacteria, respect-
ively, and larger explained community variance for bac-
teria was observed (Fig. 1a, b). The estimated migration
rate (m), a measure of the influence of dispersal on com-
munity composition, were higher in overall bacteria
(0.520) than in overall archaea (0.494). Both the R2 and
estimated migration rate (m) indicated a stronger effect
of dispersal limitation on archaea than bacteria. The
community-level habitat niche breadths (Bcom) were es-
timated to reveal the contributions of deterministic and
stochastic processes. Niche breadth (Bcom) of bacteria
was much greater than that of archaea in overall man-
grove ecosystem and four different types of vegetation
zones (Tukey’s HSD test, P < 0.001, Fig. 1c).
The null model indicated that the differential action of

ecological processes may promote different biogeo-
graphic patterns in archaeal and bacterial assemblages.
However, the stochastic processes (sum of dispersal limi-
tation, homogenizing dispersal, and drift) explained a
higher proportion of the archaeal and bacterial commu-
nities (including the overall mangrove ecosystem and
four different types of vegetation zones) variation than

deterministic processes (Fig. 2), which supported the re-
sults of the neutral community model. These results
suggested that stochasticity was more important than
determinism in influencing mangrove microbial commu-
nity. The stochastic processes accounted for 79 and 87%
of the community assembly in the overall archaea and
bacteria, respectively, and bacteria were more controlled
by stochasticity than archaea (Fig. 2). Drift and hom-
ogenizing dispersal were the most important processes,
accounting for 72 and 73% of the archaeal and bacterial
communities variation, respectively.

Spartina alterniflora invasion changed mangrove
microbial community assembly
To determine the effect of Spartina alterniflora invasion
on the archaeal and bacterial community assembly, the
neutral community model (NCM) and null model were
also used with the datasets from four different vegetation
zones for archaea and bacteria. The NCM showed that
S. alterniflora invasion changed the relative contribution
of ecological processes controlling microbial community
assembly (Fig. 1a, b). The values of R2 and immigration
rate (m) distribution showed same pattern for archaeal
and bacterial subcommunities: Mudflat (R2 = 0.608 and
m = 0.579 for archaea; R2 = 0.718 and m = 0.617 for bac-
teria) > Ecotone (R2 = 0.585 and m = 0.574 for archaea;
R2 = 0.714 and m = 0.622 for bacteria) > Cordgrass (R2 =
0.559 and m = 0.526 for archaea; R2 = 0.701 and m =
0.638 for bacteria) >Mangrove (R2 = 0.528 and m = 0.413
for archaea; R2 = 0.671 and m = 0.495 for bacteria). All of
the four bacterial subcommunities fitted better to NCM
than four archaeal subcommunities. The null model also
suggested that invasion changed the relative contribution
of microbial community assembly with different degree
for archaea and bacteria. In the archaea, stochastic pro-
cesses explained large subcommunities variation among
four different vegetation zones with the following pat-
tern: mangrove (98%) > ecotone (95%) > cordgrass
(89%) > mudflat (85%). The bacteria showed the follow-
ing pattern: cordgrass (97%) > mangrove (92%) > ecotone
(91%) >mudflat (87%) (Fig. 2). In general, we found that
S. alterniflora invasion increased bacterial and archaeal
drift process.

Overall mangrove ecosystem’ microbial network co-
existence patterns
The correlation-based network consisted of 212 nodes
(OTUs) with 1083 edges (correlations) for the archaea,
and 277 nodes with 3721 edges for the bacteria (Table 1).
Overall, taxa tended to co-occur (positive correlations, yel-
low lines) rather than co-exclude (negative correlations,
blue lines); positive correlations accounted for 93.44 and
77.18% of the potential interactions in archaeal and bac-
terial networks, respectively, whereas negative correlations

Chen and Wen Environmental Microbiome           (2021) 16:10 Page 3 of 18



Fig. 1 (See legend on next page.)
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were 6.56 and 22.82% interactions for archaeal and bacter-
ial co-existence patterns (Fig. 3). When considering all
correlations, the links between bacteria were more com-
plex than those between archaea (Fig. 3, Table 1), indicat-
ing that potential interactions are stronger in bacterial
networks. For the archaeal network, Crenarchaeota
(39.15%), Nanoarchaeaeota (35.85%), Euryarchaeaeota
(8.96%), Thaumarchaeaeota (8.02%), and Asgardaeota
(3.77%) mainly occupied the nodes (Fig. 3a). Nodes in bac-
terial network mainly belonged to Proteobacteria
(55.96%), Chloroflexi (14.08%), Bacteroidetes (9.39%),
Actinobacteria (6.14%), Nitrospirea (3.25%), and Epsilon-
bacteraeota (2.89%) (Fig. 3c). Furthermore, a module is de-
fined as a group of OTUs that are linked more tightly
together. Here, both the entire archaeal and bacterial net-
works were clearly parsed into 6 major modules, of which
modules I, II, and III accounted for 26.42, 24.3, and
20.28% of the whole archaeal network, respectively (Fig.
3b), and modules I and II accounted for 27.8 and 24.55%
of the whole bacterial network, respectively (Fig. 3d).
The integrated network degrees were distributed ac-

cording to a power-law distribution in both archaea and
bacteria, indicating a scale-free distribution and non-
random co-occurrence pattern (Fig. S6). We calculated a

set of network-level topological features, and found that
values of the degree, closeness centrality, and eigenvector
centrality in bacteria were significantly higher than those
in archaea (Fig. 4a, Table 1). Furthermore, the average
clustering coefficients were higher in the bacterial network
than that of archaea (including the overall and four differ-
ent types’ vegetation zones of archaea and bacteria), sug-
gesting that bacterial OTUs were more interconnected
(Table 1). The average path length and diameter were
lower in the bacterial network, revealing closer relation-
ships among bacterial communities (including the overall
and four different types’ vegetation zones of archaea and
bacteria). Random networks were generated with the same
nodes and edges in each compartment to confirm that the
empirical networks were non-random. Details describing
the constructed co-occurrence networks can be found in
Table 1.
Zi-Pi plot showed that Woesearchaeia and Proteobac-

teria phyla were the most prominent keystone taxa for
archaea and bacteria, respectively. In the co-occurrence
networks, 5 archaeal OTUs and 12 bacterial OTUs were
defined as keystone taxa, and Woesearchaeia and Pro-
teobacteria phyla accounted for 80 and 50% of all mod-
ule hubs and connectors (Fig. 4b; Table S2). In archaea,

(See figure on previous page.)
Fig. 1 Fit of the neutral community model (NCM) of community assembly and niche breadth for archaeal and bacterial communities. a, b: Fit of the
neutral community model (NCM) of community assembly. The OTUs that occurred more frequently than predicted by the model are shown in green,
while those occurred less frequently than predicted are shown in orange. Blue dashed lines represent 95% confidence intervals around the model
prediction and the OTUs fall within the confidence intervals were considered as neutrally distributed. m indicates the estimated migration rate and R2

indicates the fit to the neutral model. Neutral processes are the part within 95% confidence interval (red) while non-neutral are the parts including
above and below prediction (dark green). c: Box plots illustrating standardized Levins’ niche breadth of bacteria and archaea at the community level
(Bcom) in overall and four different types of vegetation zones. ***, P < 0.001 (Tukey’s HSD test). “Overall” is the combined data of four different types of
vegetation zones, which represents the overall microorganisms in mangrove ecosystem

Fig. 2 Null model analysis revealing the assembly mechanism of the archaeal and bacterial communities of mangrove sediments. The number
indicate the contributions of different processes
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the keystone species include taxa from the classes
Woesearchaeia (Nanoarchaeaeota, 4 OTUs) and Bathya-
chaeia (Crenarchaeota, 1 OTU). In bacteria, the keystone
taxa include taxa from the classes Gammaproteobacteria
(Proteobacteria, 3 OTUs), Actinobacteria (Actinobac-
teria, 1 OTU), Alphaproteobacteria (Proteobacteria, 3
OTUs), Anaerolineae (Chloroflexi, 2 OTUs), Bacteroidia
(Bacteroidetes, 2 OTUs), and Campylobacteria (Epsilon-
bacteraeota, 1 OTU). Keystone taxa spanned a range of
relative abundances (0.06 to 1.43% for archaea and 0.05
to 0.38% for bacteria). Over half of the keystone taxa (9

of 17 OTUs for both archaea and bacteria) had low rela-
tive abundance (0.05 to 0.10%). All of the 17 OTUs were
conditionally rare taxa (Table S2).

Spartina alterniflora invasion influenced microbial
network complexity and stability
To identify the effect of S. alterniflora invasion on po-
tential microbe-microbe interactions, we constructed
four archaeal and bacterial co-occurrence networks
among four different types of vegetation zones (Fig. 5).
The effects of invasion on the archaeal networks differed

Fig. 3 Overall co-occurrence networks of the archaeal and bacterial communities based on pairwise Spearman’s correlations between OTUs. The
nodes were colored according to different types of phylums (a, c) and modularity classes (b, d), respectively. A connection stands for a strong
(Spearman r > 0.6 or r < −0.6) and significant (P-value < 0.01) correlation. For each panel, the size of each node is proportional to the number of
connections (i.e. degree). The yellow and blue edges indicate negative and positive interactions between two individual nodes, respectively
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profoundly from bacterial networks. Invasion increased
archaeal network complexity and stability, but decreased
the network complexity and stability of bacteria. Mul-
tiple network topological metrics (e.g. links, degree, and
average clustering coefficient) consistently supported the
different effect of invasion on the archaeal and bacterial
co-occurrence patterns (Fig. 5, Table 1). Although the
selected network size (nodes) were similar among dis-
tinct vegetation zones, the connectivity (links) of ar-
chaeal and bacterial networks were different. In the

archaeal networks, the subcommunity in mudflat formed
largest networks’ connections (links), followed by eco-
tone, cordgrass, and mangrove vegetation zones.
Whereas in the bacterial networks, the network com-
plexity showed the following trend: mangrove > ecotone
> mudflat > cordgrass. The complexity of the networks
was also reflected by the degree, which showed the same
trend with links in the archaeal and bacterial networks
(Fig. 5, Table 1). Overall, positive correlations accounted
for 70–80 and 64%–75% of the potential interactions in

Fig. 4 Co-occurrence network of archaeal and bacterial OTUs based on node features of the network (a) and Zi-Pi plot (b). a: Degree (top left); betweenness
(top right); eigenvector centrality (bottom left); and closeness (bottom right). ns: not significant; *** P<0.001. b: Zi-Pi plot showing the distribution of archaeal
and bacterial OTUs based on their topological roles. Each symbol represents an OTU. The topological role of each OTU was determined according to the
scatter plot of within-module connectivity (Zi) and among-module connectivity (Pi). (i) network hubs: nodes with Zi > 2.5 and Pi > 0.62; (ii) module hubs: nodes
with Zi > 2.5 and Pi ≤0.62; (iii) connectors: nodes with Zi≤ 2.5 and Pi > 0.62; and (iv) peripheral nodes: nodes with Zi≤ 2.5 and Pi ≤0.62
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archaeal and bacterial networks among four different
vegetation zones, respectively, which were higher than
negative correlations.
We compared unique node-level topological features

of four subcommunities from the different vegetation
zones. The network topological parameters such as be-
tweenness centrality and closeness centrality did not dif-
fer significantly among four different vegetation zones of
archaeal and bacterial subcommunities (Fig. S7). How-
ever, the degree value in the mudflat was significantly
highest among four archaeal subcommunities. And in
bacterial subcommunities, the ecotone showed the high-
est degree. Furthermore, eigenvector centrality varied
significantly among different vegetations’ sediment
(Tukey’s HSD test, P < 0.001, Fig. S7).

We found that S. alterniflora invasion changed key-
stone taxa of archaeal and bacterial subcommunities
(Fig. S8-S9; Table S3-S4). In the archaeal subcommu-
nities, a total of 82 OTUs were identified as keystone
species, including the members from mangrove (28
OTUs), ecotone (26 OTUs), cordgrass (13 OTUs), and
mudflat (15 OTUs) (Fig. S8; Table S3). Furthermore, in
the bacterial subcommunities, 66 OTUs were considered
as keystone taxa including 11 OTUs in mangrove, 11
OTUs in ecotone, 15 OTUs in cordgrass, and 29 OTUs
in mudflat (Fig. S9; Table S4). Almost all of the keystone
taxa were module hubs and connectors, and only one
network hub was detected in all of the constructed ar-
chaeal and bacterial networks. Among four different
vegetation zones, the most prominent keystone taxa in

Fig. 5 The co-occurrence patterns of mangrove sediments’ archaeal and bacterial subcommunities among four different types of vegetation
zones. The size of nodes is proportional to the link numbers of each nodes. The lines between each pair of nodes represent positive (in yellow)
and negative (in blue) interactions with strong (Spearman r > 0.6 or r < − 0.6) and significant (P-value < 0.01) correlation. Only the 300 main OTUs
were included in the analysis
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the archaeal networks were from the classes Woesearch-
aeia and Bathyarchaeia, and the major keystone taxa in
the bacterial networks were Proteobacteria. Most of the
keystone taxa were conditionally rare taxa and always
rare taxa (Table S3-S4). Interestingly, 5 archaeal OTUs
from Woesearchaeia and Bathyarchaeia (i.e. OTU_20
and OTU_131) and 4 bacterial OTUs from Proteobac-
teria and Gemmatimonadetes (i.e. OTU_18 and OTU_
156) were simultaneously detected in different vegeta-
tion zones, indicating that these OTUs are important in
different vegetations’ ecosystem (Table S3-S4).
To determine the effect of S. alterniflora invasion

on the robustness of the archaeal and bacterial net-
works, a natural connectivity analysis was carried out
among four different types of vegetation zones. In the
archaeal subcommunities, the natural connectivity in
the mudflat network was higher than that of man-
grove, ecotone, and cordgrass vegetation zones,
whereas in the bacterial subcommunities, we found
the greatest natural connectivity in the mangrove
vegetation zone, followed by ecotone, mudflat, and
cordgrass, indicating that S. alterniflora invasion
showed different effects on bacterial and archaeal net-
work stability (Fig. S10).

Discussion
To date, most studies of the mechanisms governing bio-
geographic patterns have focused on bacteria and micro-
eukaryotes in soil [16], reservoirs [26] and river [15]
ecosystems. This study provides a simultaneous analysis
in the community assembly and co-occurrence patterns
of archaea and bacteria in mangrove ecosystem, and pro-
vides novel insights for the effect of S. alterniflora inva-
sion on microbial ecological processes/co-occurrence
patterns.

Similar community assembly mechanisms of overall
mangrove bacteria and archaea
The neutral community model (NCM) and null model
are two valid approaches for inferring community as-
sembly, and have been successfully applied to a wide
range of ecosystems [15–17, 26]. Here, NCM estimated
a major part of the overall archaeal (R2 = 0.775) and bac-
terial (R2 = 0.831) community variation. The null model
explained large archaeal (79%) and bacterial (87%) com-
munity assembly. Both of the two approaches indicated
that stochastic processes (such as stochastic births,
deaths, and immigration) played more important roles
than deterministic processes in community assembly,
and stochasticity were stronger in shaping overall bac-
teria than archaea (Figs. 1–2). Several studies in distinct
ecosystems also revealed similar results to our finding
recently, which including seven-year dynamics of testate
amoeba communities in subtropical reservoirs [26],

global bacterial communities in wastewater treatment
plants [17], and microeukaryotes in river [15].
Previous studies have reported community assembly

mechanisms of bacteria/prokaryotes and protists/micro-
eukaryotes in marine, lake and paddy soil [27–29], how-
ever, the assembly of archaea and bacteria which share
similar cell size and structure, approximately, were not
previously analysed, yet they have potential difference in
altered ecosystems such as invaded mangroves. The de-
gree of stochasticity was also confirmed by the migration
rates (m) values. Here, NCM showed that the archaea
had lower m value compared with bacteria, suggesting
that the archaea may experience more serious dispersal
limitation (Fig. 1a), which caused higher stochasticity in
bacteria. In addition, null model showed that heteroge-
neous dispersal was more important in structuring bac-
terial than archaeal communities (Fig. 2). The potential
reason of the difference is that bacteria can be more dis-
persed, and they exhibit a broader range of physiologies
than that of archaea, thus are easier to be successful col-
onists of sediment environment [30]. Therefore the
more abundant and diverse bacteria are expected to be
distributed more thoroughly than archaea. Indeed, we
detected that bacteria exhibited significantly wider
community-level habitat niche breadths than archaea
(Fig. 1c), indicating that bacteria had stronger environ-
mental tolerance or metabolic plasticity, thus showed
more widely distributed pattern. This finding was in
agreement with previous study which reported that habi-
tat generalists with wider niche breadths were less influ-
enced by environmental factors [31]. Our results also
suggested that the wider niche breadth of bacteria might
imply greater metabolic plasticity and higher community
size than archaea. According to the sequencing results,
the bacterial community showed higher alpha diversity
than archaeal community (Table S1, Fig. S3). Many stud-
ies have reported that bacteria are much more abundant
and diverse than archaea [32, 33]. For example, a study
conducted in Chinese marginal seas surface sediment
found that benthic bacteria were numerically dominant
relative to archaea [33], which supported our finding.
Furthermore, previous study reported that the dynamics
of distinct microbial groups were constrained by differ-
ent environmental variables [34]. For example, Wei and
colleagues compared the archaeal and bacterial commu-
nity features in bulk soils under different vegetation
covers and found that similar edaphic factors showed
nearly opposite effects to the two domains [34]. Their
study also supported that archaea showed more niche
limitation and less widely distributed than bacteria [34].
Null model analysis indicated that drift play larger role

in structuring archaea than bacteria in the mangrove
ecosystem, since drift tends to be more important when
selection is weak and the local community size is small
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[12]. Ecological drift is a central concept in community
ecology, which considered as stochastic changes with re-
spect to species identity in the relative abundances of
different species within a community over time due to
the inherent random processes of birth, death, and
reproduction [8, 14]. One study has showed that random
birth and death were more important in shaping the
communities with smaller population size, thus leading
to increased relative importance of drift [28]. The stron-
ger relative importance of drift in shaping archaea than
bacteria suggested that the lower relative abundance and
diversity might also contribute to the stochasticity of ar-
chaea (Fig. 2, Fig. S3). Another study also found a larger
importance of drift in determining five data-sets of
aquatic bacteria when compared with phytoplankton
from freshwater / brackish habitats [35]. Differential ad-
aptations to environmental condition in distinct domain
of microbial communities (i.e. protists and prokaryotes;
archaea and bacteria) may cause these differences [27].

Differences between overall mangrove archaeal and
bacterial networks
Microbial network analysis can improve our perspectives
on complex interaction webs and ecological processes be-
yond microbial community richness and composition
[36]. In this study, for the first time, we used network ana-
lysis to explore the interactions for bacteria and archaea of
the mangrove ecosystem. Our result showed that the net-
work structure of bacteria was more complex than ar-
chaea (Figs. 4-5, Table 1). The first potential reason was
that bacteria had higher richness/shannon-wiener index
than archaea (Fig. S3) in the studied mangrove ecosystem,
thus caused more complex species’ interaction. A previous
study which focused on the co-occurrence networks in a
mountain ecosystem also found that low bacterial diversity
reduced network complexity, which supported our finding
[37]. It could also be distinct environmental factors has
different effects in archaea and bacteria. Indeed, studies
has showed that eukaryotic plankton co-occurrence net-
works were influenced by distinct environmental factors
(i.e. pH, total nitrogen, and temperature) in reservoirs
[38], and salinity could change bacterial co-occurrence
network complexity in Tibetan Plateau lakes [39]. Santo-
lini and colleagues revealed that complex networks with
greater connectivity are more robust to environmental
perturbations than simple networks with lower connectiv-
ity [40]. In general, a more complex network structure
may indicate more stable co-existence patterns and higher
efficiency of resource transfer. In this sense, our study
confirmed that the bacterial community was more resili-
ent to environmental stresses as different taxa could com-
plement each other.
The network topology can be used to identify import-

ant network nodes and edges, and perform network

comparison. For example, node degree can reflect the
number of direct connections for a specific OTU; the
closeness centrality value reflects how quickly informa-
tion spreads from a given node to other reachable nodes;
betweenness centrality of a node indicates the potential
impacts of one species on the co-occurrences of other
nodes [20, 41]. Our results found that bacteria had
higher degree, eigenvector, and closeness centralities
compared to archaea (Fig. 4a), indicating bacteria was
more inter-connected. This observation might be
because bacteria had higher diversity and ecological
niche (Fig. 1c, Fig. S3), which kept bacteria has stronger
buffer against the environmental disturbance. Further-
more, in this study, the positive associations outnum-
bered mutual exclusions in archaea (93.44% versus
6.56%) and bacteria (77.18% versus 22.82%), revealing
that positive effect (i.e. mutualism and/or syntrophy,
which two species exchange metabolic products to the
benefit of both) exhibited a more important role than
negative effect (i.e. predator-prey relationships, host-
parasite relationships and/or competition between mi-
croorganisms) in studied mangrove ecosystem. Similar
with the global oceanic plankton interactome conducted
by Tara Oceans project, which found the strong role of
positive correlation among viruses, prokaryotes, micro-
bial eukaryotes, phytoplankton and zooplankton [42], in-
dicating that microorganism tend to promote their
growth.
Module which indicates similar ecological characteris-

tics has been studied widely in microbial networks [23,
43]. Modularity in an ecological community may reflect
biotic interaction and phylogenetic clustering of closely
connected species [43]. Here, the modularity of the ar-
chaeal empirical co-occurrence network (0.512–0.549)
showed higher value than that of bacteria (0.382–0.455)
among overall archaeal and bacterial communities and
four different subcommunities of vegetation zones
(Table 1), indicating that the populations within the ar-
chaeal communities may have more similar modular
structure [44].

Potential keystone taxa of mangrove archaea and
bacteria
Keystone taxa have been frequently referred to as “ecosys-
tem engineers” owing to their large influence in the com-
munity, which have been reported before in various
biomes, including terrestrial, aquatic and human micro-
biomes [21] but not in mangrove ecosystem. Here, we
found that all of the 5 archaeal and 12 bacterial keystone
taxa were belonged to conditionally rare taxa (CRT)
(Table S2), suggesting that CRT play an important role in
maintaining the stability of mangrove archaeal and bacter-
ial networks structure [43]. The archaeal keystone OTUs
belonged to the class Woesearchaeia and Bathyarchaeia

Chen and Wen Environmental Microbiome           (2021) 16:10 Page 11 of 18



(Fig. 4b; Table S2), which were discovered universal ar-
chaeal groups and distributed worldwide in anoxic marine
sediments, mangrove sediments and estuarine sediments
[45, 46]. Both of the two groups in mangrove ecosystems
have a potential for sulfate reduction, ammonia oxidation,
and organic matter decomposition [45, 47]. Meanwhile, a
metagenomic survey revealed that Bathyarchaeota had
metabolic capacities for acetogenesis and protein degrad-
ation in estuarine organic-rich regimes [47]. These two
groups can provide new microbial biogeochemical insights
on the carbon and nutrient flow in mangrove ecosystem.
Furthermore, the bacterial phyla Proteobacteria, Actino-
bacteria, Chloroflexi, Bacteroidetes and Epsilonbacteraeota
also play important role in mangrove as keystone taxa. For
example, the metabolic versatility of Chloroflexi could
provide a competitive advantage for surviving in fluctuat-
ing environments like mangrove ecosystem, which located
in a buffer zone connecting land and ocean [48]. Proteo-
bacteria is ubiquitous in marine environments and plays
important roles in the nitrogen fixation and nutrient cyc-
ling [49]. Our study indicates that Proteobacteria as key-
stone taxa might be important in the nitrogen fixation
and/or nutrient cycling in mangrove wetland. Increasing
evidence in different habitats have shown the importance
of rare and less abundant species in microbial networks
[36], and their removal can cause a dramatic shift in
microbiome structure and functioning. Thus conditionally
rare or less abundant species should be paid more atten-
tion in the study of maintaining ecosystem function. The
identification of keystone taxa could provide essential
information for developing strategies to manipulate the
function of microbiome and promote sustainable
development of mangrove ecosystems. Nonetheless, co-
occurrence networks do not always effectively predict
actual classical ecological networks, thus there are still
some limitations to the present approach. The omics-
based profiling and culture-dependent approaches are
needed to further test and understand the potential syner-
gistic/syntrophic relationship [21, 50].

Spartina alterniflora invasion changed bacterial and
archaeal community assembly and network complexity
and stability
S. alterniflora have been aggressive invaders of coastal
habitats worldwide. Whereas most studies focused on S.
alterniflora invasion altered the community abundance
and diversity of related functional microorganisms, and
affected C, N, and S cycles [7, 51]. The impact of inva-
sion on community assembly and network structure was
poorly understood. This study filled in this gap and ob-
served that S. alterniflora changed microbial community
assembly and network complexity and stability.
We speculated that there were several possible path-

ways by which exotic S. alterniflora invasion might have

changed bacterial and archaeal communities assembly
(Figs. 1, 2). First, S. alterniflora invasion could influence
microbial composition and diversity (Fig. S5), because
different archaeal and bacterial taxa had specific ability
for dispersal [25], thus S. alterniflora invasion changed
the contribution of stochasticity in shaping sediment mi-
crobial community. Indeed, Chen et al. (2019) has con-
firmed different dispersal ability for archaea and
bacteria. They observed a significant decay of commu-
nity similarity with the vertical spatial distance for the
archaeal, bacterial and fungal communities in soil habi-
tats. However, the slopes of their vertical spatial decay
curves were steepest for archaea, followed by fungi and
bacteria, indicating that archaea showed strongest
Distance-Decay and weakest dispersal [25]. Our neutral
community model analysis also found that bacteria and
archaea had different migration rate (m) or dispersal
abilities (Fig. 1a). Second, the mangrove sediment micro-
bial communities can be structured by abiotic conditions
such as soil pH, carbon content, etc. Indeed, exotic S.
alterniflora has strong effects on soil conditions. For ex-
ample, they can provide organic matter through leaf-
litter inputs or through the release of root exudates into
the soil environment, the quantity, quality and timing of
litter production also changed after plant invasion [52].
Litter quality is one of the most important factors affect-
ing soil biota, as soil fauna are more abundant when lit-
ter decomposes faster. Study has showed that invasive
plants generally produce more litter than natives [53].
Mangrove sediments’ microbial communities had differ-
ent tolerance to environmental conditions, thus changed
the contribution of determinism. Furthermore, we found
that the effects of S. alterniflora on the assembly pro-
cesses and co-occurrence patterns of microbial commu-
nities varied between different microbial (archaea and
bacteria) types (Figs. 1, 2, 5), which could be attributed
to that bacteria and archaea have different adaptability
to plant types and environmental changes [54]. Third,
our study found that S. alterniflora invasion changed mi-
crobial co-occurrence patterns (Fig. 5, Table 1). Biotic
interactions are crucial trait that influences the relative
importance of determinism and stochasticity, thus the
change of microbial co-occurrence patterns could lead
to the variation of ecological processes.
The S. alterniflora invasion changed microbial network

complexity and robustness (Fig. 5, Figs. S8-S10, Table 1,
Tables S3-S4), indicating that exotic plants invasion af-
fected the stability of the microbial community and eco-
system. The major reason could be attributed to the
influence of root litter identity. S. alterniflora caused
changes of litter identity and soil properties (i.e. organic
matter), thus altered ecological networks [41]. Different
plant types contained specific content of soil litter. Inva-
sive plants could affect soil food webs through various
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resource inputs including belowground resource (living
root-derived and root litter) and aboveground resource
(shoot litter) [55]. The litter provides energy and food
sources for the soil microbial community and the amount
of resources usually determines the complexity and stabil-
ity of the soil detritus-based food web. Litter additions
from invasive plants can increase habitat heterogeneity by
providing more foraging choices and shelter for soil biota,
which may favour some groups of soil organisms [55]. In
particular, both macrobiological and microbiological stud-
ies have shown that resource and food availability are im-
portant drivers of social network structures [56]. For
example, elevated CO2 has been shown to increase the
phylogenetic and functional complexity of microbial net-
works in soil, which was likely due to the increased
amount of C input into soil under elevated CO2 [44].
Therefore, the change of soil microbial food web caused
the variation of biological interactions and co-existence
patterns (e.g., competition, facilitation, mutualisms, and
predation). Furthermore, the network complexity and ro-
bustness analysis (Fig. S10) showed that S. alterniflora had
different effects on archaeal and bacterial co-existence
patterns, indicating that these two groups had distinct re-
sponses to change in soil environmental conditions and
resource/food availability.
The keystone taxa were also varied after S. alterniflora

invasion (Fig. S8-S9, Table S3-S4), suggesting environ-
mental conditions determine keystone taxa. This result
supported the context dependency theory that keystone
taxa play critical roles only under certain conditions [57],
and it also indicated that S. alterniflora affected the stabil-
ity of microbial co-occurrence network, thus influenced
mangrove ecosystem. For example, in the archaea, the
Woesearchaeia occupied a large proportion of keystone
species in native habitat (20 OTUs with 71% percent in
mangrove vegetation type), whereas in the invaded cord-
grass habitat, Bathyarchaeia occupied 9 OTUs with 69%
percent in all keystone taxa (Table S3). As a dominant and
newly proposed archaeal phylum, Bathyarchaeia leads
both autotrophic and heterotrophic lifestyles, including
the Wood-Ljungdahl pathway, acetate production, me-
thane metabolism, and degradation of proteins and aro-
matic compounds [47, 58], and is believed to play an
important role in global carbon cycling. Previous study
showed that total organic carbon (TOC) and nitric oxide
were significantly correlated with the abundance of Bath-
yarchaeia, suggesting that these species preferentially
dwelled in slightly acidic, high TOC, and subsurface envi-
ronments [59]. The S. alterniflora invasion altered key-
stone taxa and would potentially influenced mangrove
ecosystem geochemical cycle. Furthermore, in the bacter-
ial keystone species, the number of Alphaproteobacteria
changed from native species (1 OTU in mangrove vegeta-
tion type) to non-native species (3 OTUs in cordgrass

vegetation type) (Table S4). In subtropical mangrove eco-
systems, soil denitrification has been regarded as the main
source of N2O. Alphaproteobacteria is characterized as
denitrifiers, as they can produce N2O [60]. These results
implied that the denitrifier community was changed after
the S. alterniflora invasion. The change of these taxa may
influence other microorganisms via the network interac-
tions, resulting in variation of microbial community
composition and function. Another study also showed
that the S. alterniflora invasion significantly increased
both the abundance and diversity of denitrifiers [61].
These changes may account for the high level of man-
grove sediment denitrification after the S. alterniflora in-
vasion. Our study considers that the prevention and
control of S. alterniflora invasion is important for man-
grove ecosystem function and service.

Conclusions and implications
This study provides a novel insight of ecological pro-
cesses and co-occurrence relationships of the mangrove
archaeal and bacterial communities under S. alterniflora
invasion. We found that stochastic processes shaped
overall archaeal and bacterial communities, and bacteria
were more controlled by stochasticity than archaea.
Compared to archaea, bacteria had higher dispersal abil-
ity, thus caused wider niche breadth and diversity. Co-
occurrence network analysis revealed that network
structure of bacteria was more complex than that of ar-
chaea. The keystone taxa mainly belonged to condition-
ally rare taxa, indicating they may play central roles in
maintaining the stability of microbial community and
ecological function. Importantly, we found that S. alter-
niflora invasion changed the relative contribution of de-
terminism and stochasticity in shaping microbial
communities assembly. And invasion showed different
effects on the archaeal and bacterial networks since inva-
sion increased archaeal network complexity and stability,
but decreased the network complexity and stability of
bacteria. Our study confirmed S. alterniflora invasion
changed composition and stability of the microbial com-
munity, thus its control is important for mangrove
ecosystem.

Materials
Study area and sediment sampling
This study was carried out in the mangrove area
(117°24′ -119°7′E, 23°55′ -25°05′N) across coastline in
Fujian province, southeast China. Here, 4 representative
mangrove regions invaded by S. alterniflora were
selected along latitude gradients including Zhangjiang
Estuary (5 sites), Jiulong Estuary (3 sites), Quanzhou Bay
(2 sites) and Meizhou Bay (2 sites) from south to north
in July to August 2018. Each site including 4 different
types of vegetation zones: mangrove (native mangrove
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zone), ecotone (ecotone area with S. alterniflora and
mangrove growing mixed together in the same area),
cordgrass (cordgrass invaded zone with S. alterflora),
and mudflat (unvegetated bare mudflat). Finally, we col-
lected 48 sediment samples from 12 sites at 4 mangrove
regions. Since Kandelia candel is the most common
mangrove plant in coast of southeastern China, we col-
lected bulk mangrove sediments of Kandelia candel
plants. All samples were collected from the top 0–10 cm
layer in sediment using a polyvinyl chloride (PVC) pipe
and transported to the laboratory immediately.

DNA extraction, PCR and Illumina sequencing
The total genomic DNA of sediment archaeal and bacter-
ial communities was extracted using a FastDNA spin kit
(MP, Biomedicals, Santa Ana, CA, USA) following the
manufacturer’s instructions. Microbial communities were
profiled by targeting a region of the 16S rRNA gene for ar-
chaea and bacteria. The V3-V4 region of the archaeal 16S
rRNA gene was PCR-amplified using the primers
Arch519F (CAGCCGCCGCGGTAA) / Arch915R (GTGC
TCCCCCGCCAATTCCT). The V4-V5 region of the bac-
terial 16S rRNA gene was amplified by using the primer
pair 515F (5′ -GTG CCA GCM GCC GCG GTA A-3′) /
907R (5′ -CCG TCA ATT CCT TTG AGT TT-3′) [16].
Gene amplification was conducted in a 20-μL reaction sys-
tem containing 4 μL of FastPfu Buffer (5×), 2 μL of dNTP
mix (2.5mM), 0.8 μL of each primer (5 μM), 0.4 μL of Fas-
tpfu polymerase, 10 ng of template DNA, and 0.2 μL of
BSA. The PCR parameters were 95 °C for 3 min, followed
by 35 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for
45 s, with a final extension at 72 °C for 10min. Triplicate
amplifications from each sample were mixed for library
preparation. Asymmetric barcode sequences were ligated
to the PCR primers before amplification. Adapters were
then ligated to the amplicons at both ends during library
preparation with the NEXTflex™ Rapid DNA-Seq Kit. Se-
quencing was performed on the Illumina HiSeq2500 plat-
form (Illumina Inc., San Diego, CA, USA).

Bioinformatics
Paired-end reads were first merged using FLASH soft-
ware and then quality filtered according to the proced-
ure described by Caporaso et al. [62]. Chimera detection
and removal was accomplished using the USEARCH tool
in the UCHIME algorithm. Sequences were clustered
into OTUs using UPARSE [63] with the 97% sequence
similarity cut-off. Representative sequence from each
OTU was aligned against the SILVA (Release 132) refer-
ence alignment using the RDP classifier [64]. Unassigned
OTUs (sequence similarity to a reference sequence is <
80%) and singletons (OTUs with only one sequence)
were discarded prior to further analysis. Finally, to
minimize biases associated with sequencing coverage

and allow for comparison of community pattern among
48 samples, the sequence data were normalized to 43,
372 and 6923 sequences per sample for bacteria and ar-
chaea, respectively.

Definition of abundant and rare taxa
The definition of abundant and rare OTUs is depended
on the relative abundance following the previous study
[65], with the relative abundance thresholds as 0.1% for
rare taxa and 1% for abundant taxa. We classified all
OTUs into six categories: 1) always abundant taxa
(AAT) were defined as the OTUs with relative abun-
dance ≥1% in all samples; 2) always rare taxa (ART)
were defined as the OTUs with relative abundance <
0.1% in all samples; 3) moderate taxa (MT) were defined
as OTUs with relative abundance between 0.1 and 1% in
all samples; 4) conditionally rare taxa (CRT) were de-
fined as with relative abundance below 1% in all samples
and < 0.1% in some samples; 5) conditionally abundant
taxa (CAT) were defined as taxa with relative abundance
≥0.1% in all samples and ≥ 1% in some samples but never
rare (< 0.1%); and 6) conditionally rare and abundant
taxa (CRAT) were defined as OTUs with relative abun-
dance varying from rare (< 0.1%) to abundant (≥ 1%).

Statistical analysis
Alpha-diversity analysis
All alpha-diversity analyses were conducted in the R en-
vironment (version 3.6.1) using “vegan” package [66].
The rarefaction curves were calculated and a truncated
Preston log-normal distribution [67] was fitted to esti-
mate sampling effort. The bacterial and archaeal alpha
diversity indices including OTU richness and Shannon-
Wiener index were calculated and Tukey’s HSD test
were performed to determine their significance of
differences.

Neutral community model
The neutral community model (NCM) was used to deter-
mine the contribution of stochastic processes to microbial
community assembly by predicting the relationship be-
tween the frequency with which taxa occur and their
abundance across the wider metacommunity [11, 68]. In
general, the model predicts that taxa that are abundant in
the metacommunity will be widespread, since they are
more likely to disperse by chance among different sam-
pling sites, whereas rare taxa are more likely to be lost in
different sites due to ecological drift (i.e., the stochastic
loss and replacement of individuals). The estimated migra-
tion rate (m) is a parameter for evaluating the probability
that a random loss of an individual in a local community
would be replaced by dispersal from the metacommunity,
and, therefore, is a measure of dispersal limitation. Higher
m values indicate that microbial communities are less

Chen and Wen Environmental Microbiome           (2021) 16:10 Page 14 of 18



dispersal limited [11, 68]. The parameter R2 repre-
sents the overall fit to the neutral model. Calculation
of 95% confidence intervals around all fitting statistics
were done by bootstrapping with 1000 bootstrap
replicates.

Null model
The framework developed by Stegen et al. [69] that inte-
grates both the phylogenetic and null model analyses, was
used to determine the contribution of different ecological
processes to community assembly. This approach can
infer not only the relative importance of determinism and
stochasticity on microbial community assembly but also
the sub-processes within each category. The null model
expectation was generated using 999 randomizations. The
variation of both phylogenetic diversity and taxonomic di-
versity was measured using null model-based phylogenetic
and taxonomic β-diversity metrics, namely β-nearest
taxon index (βNTI) and Bray–Curtis-based Raup–Crick
(RCBray). A significant deviation (i.e., |βNTI| > 2) indicates
the dominance of deterministic processes. βNTI < − 2 in-
dicates significantly less phylogenetic turnover than ex-
pected (i.e., homogeneous selection) while βNTI > 2
indicates significantly more phylogenetic turnover than
expected (i.e., variable selection). βNTI values falling
within the range of − 2 to 2 indicate stochastic processes
that include homogenizing dispersal, dispersal limitation,
and “undominated fraction”. To discern these three pro-
cesses, RCBray was calculated. The relative influence of
homogenizing dispersal was quantified as the fraction of
pairwise comparisons with |βNTI| < 2 and RCBray < − 0.95.
Dispersal limitation was quantified as the fraction of pair-
wise comparisons with |βNTI| < 2 and RCBray > 0.95. The
fractions of all pairwise comparisons with |βNTI| < 2 and
|RCBray| < 0.95 were used to estimate influence of “undo-
minated” assembly, which mostly consists of drift, weak
selection, weak dispersal and diversification [9, 69]. To
evaluate the relative importance of deterministic pro-
cesses versus stochastic processes in shaping man-
grove archaeal and bacterial communities, the
stochasticity/determinism ratio was calculated. Here,
the percentage of determinism was calculated as the
sum of homogeneous selection and variable selection,
and stochasticity’s percentage was calculated as the
sum of dispersal limitation, homogeneous dispersal,
and undominated fraction.

Niche breadth
To help reveal the patterns of stochasticity/determinism
and their influence on microbial communities, we esti-
mated Levins’ niche breadth (B) index [70] for the mi-
crobial group’s members according to the formula:

Bj ¼ 1=
XN

i¼1
P2
ij

Where Bj is the niche breadth of OTU j in a metacom-
munity (species with high or low B values are referred to
as habitat generalists or specialists, respectively); N is the
total number of communities in each metacommunity;
Pij is the proportion of OTU j in community i [31]. A
high B-value for a given OTU indicates its wide habitat
niche breadth. The community level B-value (Bcom) was
calculated as the average of B values from all taxa occur-
ring in one community. We expect a microbial group
with a wider niche breadth to be more metabolically
flexible at the community level [28, 31]. The analysis
was conducted using the “niche.width” function in
“spaa” package in R [71]. To identify statistical differ-
ences of the overall difference in the Bcom values for
bacteria and archaea, Tukey’s HSD test of archaeal and
bacterial communities were conducted among four dif-
ferent types of vegetation zones.

Network analysis
We analyzed bacterial and archaeal networks for total
communities and four different habitats (mangrove, eco-
tone, cordgrass, and mudflat) subcommunities separ-
ately. To simplify the networks for a better visualization,
we removed OTUs occurring in less than 50% of all
samples and kept the 300 most abundant archaeal and
bacterial OTUs in the analysis. Robust correlations with
Spearman’s correlation coefficients (ρ) > 0.6 and false
discovery rate-corrected (FDR-corrected) p-values < 0.01
were used to construct networks using the “picante” R
package [72]. Each node represents one OTU, and each
edge represents a strong and significant correlation be-
tween two nodes. Node-level topological properties (de-
gree, betweenness centrality, closeness centrality, and
eigenvector centrality) were further calculated in the
“igraph” R package [73]. Modules are sub-units or com-
munities, which are sets of highly inter-connected nodes,
and the rate of intra-module edges is higher than that of
inter-module ones. Degree centrality is the number of
paths that connect the local node to other nodes (e.g.,
connections between taxa); betweenness centrality refers
to the potential influence of a particular node on the
connections of other nodes; closeness centrality is the
average distance of a node to any other node [20]. Statis-
tical differences in measured node-level attributes across
different taxa were determined using Tukey’s HSD test.
Sub-network analyses of archaeal and bacterial commu-
nities were performed separately using the “igraph”
package in R. Networks were visualized using the inter-
active Gephi 0.9.2 platform [74].
The natural connectivity provides sensitive discrimin-

ation of network structural robustness, we estimated

Chen and Wen Environmental Microbiome           (2021) 16:10 Page 15 of 18



network stability by removing nodes in the static net-
work to assess how quickly robustness degraded and
assessed network robustness by natural connectivity
[75]. Further, 1000 Erdös–Réyni random networks,
which had the identical number of nodes and edges as
the real networks, were generated in the “igraph” R
package, with each edge having the same probability of
being assigned to any node [76]. Topology characteris-
tics of both real and random networks were calculated
and compared, including modularity, clustering coeffi-
cient and average path length. By determining the most
interacted microbial taxa, networks can also be used to
identify keystone species. A Zi-Pi plot was used to iden-
tify key populations based on the nodes’ roles in their
own network Zi indicates how well a node connects to
nodes within the same module, while Pi indicates how
well a node connects to other modules. Based on within-
module and among-module connectivity, topological
roles of different nodes were divided into four categories,
(i) network hubs: nodes with Zi > 2.5 and Pi > 0.62; (ii)
module hubs: nodes with Zi > 2.5 and Pi ≤0.62; (iii) con-
nectors: nodes with Zi ≤ 2.5 and Pi > 0.62; and (iv) per-
ipheral nodes: nodes with Zi ≤ 2.5 and Pi ≤0.62. Network
hubs, module hubs, and connectors were regarded key-
stone taxa, which are considered to play important roles
in the microbial community structure and potential
functions [23].
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Additional file 1: Fig. S1. Sketch map of Fujian coastal mangrove
sediments showing the sampling sites. 4 representative mangrove
regions invaded by S. alterniflora were selected along latitude gradients
including Zhangjiang Estuary (5 sites), Jiulong Estuary (3 sites), Quanzhou
Bay (2 sites) and Meizhou Bay (2 sites) from south to north in July to
August 2018. Each site including 4 different types of vegetation zones:
mangrove (native mangrove zone), ecotone (ecotone area with S.
alterniflora and mangrove growing mixed together in the same area),
cordgrass (cordgrass invaded zone with S. alterflora), and mudflat
(unvegetated bare mudflat). Finally, we collected 48 sediment samples
from 12 sites at 4 mangrove regions. The map was performed using
ArcGIS 10.1 (ESRI, Redlands, CA, USA). Fig. S2. Archaeal and bacterial
diversity of mangrove sediment. A: Rarefaction curves of similarity-based
operational taxonomic unit (OTU) at 97% sequence similarity level of 48
samples. B: OTU abundance distribution and fit to the Preston log-
normal model using two approximations: maximized likelihood to log2
abundances (blue line) and Quasi-Poisson fit to octaves (red line). Calcula-
tion of the Preston veil, which infers the number of OTUs that we missed
during our sampling, confirmed that we captured most of the archaeal
and bacteria richness, thus allowing extraction of general patterns of ar-
chaeal and bacteria biodiversity from our data set. Fig. S3. Comparison
of richness and Shannon-Wiener index between overall archaeal and bac-
terial communities. ***, P < 0.01 (Tukey’s HSD test). Fig. S4. Comparison
of richness and Shannon-Wiener index among four different types of
vegetation zones of archaeal and bacterial communities. No significant
differences were found among different vegetation zones of archaeal
and bacterial richness and Shannon-Wiener index based on Tukey’s HSD
test. Fig. S5. Relative abundance of archaeal and bacterial taxa at phylum
level among four different types of vegetation zones. Fig. S6. The

network degree distribution patterns of archaea and bacteria. Fig. S7.
Comparison of node-level topological features among four different types
of vegetation zones of archaeal and bacterial subcommunities. The top
and bottom boundaries of each box indicate the 75th and 25th quartile
values, respectively, and lines within each box represent the median
values. Different letters indicate the significant level at P < 0.01 level de-
termined by Tukey’s HSD test. Fig. S8. Zi-Pi plot showing the distribution
of archaeal OTUs among four different types of vegetation zones based
on their topological roles. Each symbol represents an OTU. The topo-
logical role of each OTU was determined according to the scatter plot of
within-module connectivity (Zi) and among-module connectivity (Pi). Fig.
S9. Zi-Pi plot showing the distribution of bacterial OTUs among four dif-
ferent types of vegetation zones based on their topological roles. Each
symbol represents an OTU. The topological role of each OTU was deter-
mined according to the scatter plot of within-module connectivity (Zi)
and among-module connectivity (Pi). Fig. S10. Network robustness ana-
lysis of archaeal and bacterial communities among four different types of
vegetation zones in the mangrove sediments.

Additional file 2: Supplementary Table S1. The contribution of each
taxa category to the archaea and bacteria community in the 48 samples
at 97% identity level. Supplementary Table S2. Lists of keystone taxa in
co-occurrence network of archaea and bacteria. Supplementary Table
S3. Lists of keystone taxa in co-occurrence network of archaea among
four different types of vegetation zones. Supplementary Table S4. Lists
of keystone taxa in co-occurrence network of bacteria among four differ-
ent types of vegetation zones.
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