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Abstract

Background: Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, 

autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological 

and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling 

in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric 

acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system 

and secretory-motor function, increase intestinal permeability, and visceral hypersensitivity. Brain 

sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the 

hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating 

visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are 

mediated through the autonomic nervous system (decreased gastric vagal and increased sacral 

parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits 

gastric motor function while CRF-R1 stimulates colonic secreto-motor function and induces 

visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates 

colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces 

mast cell degranulation, enhances mucosal permeability and propulsive motor functions and 

induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and 

stress-related gut alterations in rodents while not influencing basal state.

Discussion: These preclinical studies contrast with the limited clinical positive outcome of 

CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel 

syndrome.

Conclusion: The translational potential of CRF-R1 antagonists in gut diseases will require 

additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut 

interactions under chronic stress.

*Address correspondence to this author at the Digestive Diseases Research Center, Building 115, Room 117, VA Greater Los Angeles 
Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA; Tel: 310-312-9275; Fax: 1-310-268-4963; 
ytache@mednet.ucla.edu. 

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.

HHS Public Access
Author manuscript
Curr Mol Pharmacol. Author manuscript; available in PMC 2021 May 03.

Published in final edited form as:
Curr Mol Pharmacol. 2018 ; 11(1): 51–71. doi:10.2174/1874467210666170224095741.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

CRF peptides; CRF receptor antagonists; irritable bowel syndrome; gut secreto-motor function; 
stress; visceral pain

1. INTRODUCTION

R. Guillemin and A. Schally demonstrated independently the existence of a corticotropin-

releasing factor (CRF) stimulating adrenocorticotropic hormone (ACTH) release from the 

pituitary in the mid nineteen fifties [1]. After decades of intensive research, Wylie Vale 

(Guillemin’s former PhD’s student) [2] and his colleagues made a series of milestone 

discoveries. They identified the structure of CRF as a 41 amino acid peptide [3], the related 

peptides, urocortins (Ucns) including, Ucn 1 [4], Ucn 2 [5] or stresscopin-related peptide 

[6], and Ucn 3 [7] or stresscopin [6]. In addition, they cloned the first cognate G-protein 

coupled receptors, CRF receptor subtype 1 (CRF-R1) [8] and almost simultaneously with 

Lovenberg et al. [9], the CRF receptor subtype 2 (CRF-R2) [10]. Both CRF receptors are 

products derived from distinct genes [10] and subject to extensive alternative RNA splicing 

[11–13]. Radioligand binding studies revealed that CRF is a preferential CRF-R1 agonist 

with low affinity to CRF-R2, whereas Ucn 1 displays high affinity to both receptor subtypes 

and Ucn 2 and Ucn 3 are selective ligands for CRF-R2 [14].

The release of CRF from the paraventricular nucleus of the hypothalamus (PVN) into the 

median eminence plays a primary role in mediating the pituitary ACTH secretion induced by 

various stressors. This was established by the use of CRF antibody [15], various peptide 

CRF-R1 and/or CRF-R2 antagonists developed by J. Rivier [16], selective non peptide CRF-

R1 antagonists [17] (Table 1), and genetically modified mice [18]. However, reports that 

CRF ligands and receptors are also expressed outside the hypothalamus [19–21], provided 

neuroanatomical support for their involvement beyond the endocrine component of the stress 

response. Early on, compelling reports demonstrated that CRF acutely injected into the 

lateral brain ventricles of rodents induces behavioral, autonomic and visceral changes 

mimicking the effects of stress [22–26]. Moreover, CRF ligands and receptors are also 

expressed in viscera, prominently in the heart and the gut in experimental animals and 

human subjects [27–31] where they exert biological actions [31–34]. A vast pre-clinical 

literature also indicates that the dysregulation of CRF/CRF-R1 signaling system contributes 

to the etiology or the exacerbation of several stress-sensitive diseases such as anxiety/

depression, relapse to addiction, and functional bowel diseases [35, 36–39].

This review will focus on the biological actions of CRF/Ucns systems in the brain and the 

periphery, namely within the gut, to influence gastrointestinal secreto-motor functions and 

the role of CRF receptor subtypes in stress-related alterations of gut functions and visceral 

pain. We will also address whether inhibition of the CRF-R1 signaling system will hold 

promises to curtail stress-sensitive functional bowel disorders namely the irritable bowel 

syndrome (IBS).
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2. BRAIN CRF AND UROCORTINS: ACTIONS TO INFLUENCE GASTRIC 

FUNCTION

2.1. Brain CRF Peptides Inhibit Gastric Acid Secretion

Two years after the CRF identification, the central action of the peptide to influence gastric 

acid secretion in rats was the first report indicating that CRF can alter visceral function by 

acting in the brain [40]. Thereafter, several reports established that CRF or the amphibian 

CRF-related peptide, sauvagine, injected into the cerebrospinal fluid (CSF) either into the 

lateral brain ventricle (intracerebroventricular, ICV) or the brainstem at the level of the 

cisterna magna (intracisternally, IC) induces a dose-related, rapid in onset, and sustained 

inhibition of gastric acid secretion [40–45]. The inhibitory effect occurred under conditions 

of stimulated gastric acid secretion induced by either vagal activation (central injection of 

thyrotropin releasing hormone, TRH, 2-deoxy-D-glucose, pylorus ligation or gastric 

distention) or peripheral hormone (pentagastrin) while not influencing the acid secretory 

response to histamine in rats [40–45]. Similarly in conscious dogs, the injection of CRF into 

the 3rd ventricle inhibits 2-deoxy-D-glucose-, a peptone meal- and pentagastrin- but not 

histamine-stimulated acid secretion [46, 47] suggesting a conserved mechanism among 

species. CRF’s inhibitory action is mediated through interaction with brain CRF receptor 

and not related to leakage of the peptide into the periphery [40] where CRF or sauvagine can 

also inhibit acid secretion [48]. Further studies showed that Ucn 1 injected ICV reduces 

gastric acid secretion in rats, an effect that is blocked by ICV astressin2-B, a CRF-R2 

antagonist, but not NBI-27914, a CRF-R1 antagonist [49]. This indicates a primary role of 

brain CRF-R2 in mediating the gastric acid inhibitory effect of Ucn 1.

Responsive sites of CRF action are located in the hypothalamus, namely the PVN, 

ventromedial (VMH) and lateral (LH) hypothalamic nuclei where peptide microinjection 

suppresses gastric acid secretion in conscious pylorus-ligated rats [40, 44, 50–51]. By 

contrast, CRF microinjected into the caudate putamen or dorsomedial frontal cortex, under 

the same conditions, did not influence acid secretion, showing selectivity to specific 

hypothalamic nuclei [40, 50, 51]. In the hindbrain, other responsive sites include the locus 

coeruleus/subcoeruleus (LC/SC) where CRF suppresses the acid response to intravenous 

(IV) infusion of pentagastrin in rats while CRF microinjected into sites within the vicinity 

but outside the LC/SC had no effect [52].

The autonomic nervous system (ANS) mediates the inhibitory effect of CRF from the brain 

to the stomach. In rats, central CRF inhibits gastric vagal efferent discharges [53] and 

stimulates sympathetic outflow as shown by the rise in circulating levels of epinephrine and 

norepinephrine in rats and dogs [46, 54]. Ganglionic blockade with chlorisondamine, spinal 

cord transection at the fifth cervical level, noradrenergic blockade with bretylium, α2-

adrenergic blockade with yohimbine and acute adrenalectomy, abolish the inhibitory effect 

of IC, ICV or LC/SC injections of CRF on gastric acid secretion supporting a primary role 

of the sympathetic nervous system in rats [40, 41, 52]. It is to note that vagal-dependent 

mechanisms also contribute to the inhibitory effect of IC but not ICV or LC/SC injections of 

CRF [40, 41, 52]. This is consistent with the direct access of CRF injected IC to influence 

neurons in the dorsal motor nucleus of the vagus, which regulate gastric function through 
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efferent axonal projections from their cell bodies to the gastric enteric nervous system [55]. 

These data combined with the unaltered gastric acid inhibitory response to central injection 

of CRF and sauvagine by hypophysectomy and peripheral injection of naloxone [40–41] 

further ascertain that the central action of CRF is mediated by the ANS and unrelated to the 

activation of the hypothalamic-pituitary-adrenal (HPA) hormones in rats. In dogs, peripheral 

mediators involve arginine vasopressin as shown by the increased plasma levels of peptide 

by ICV CRF and the dampening of ICV CRF inhibitory effect by the peripheral injection of 

a vasopressin receptor antagonist [47, 56]. Although gastrin is a hormone well established to 

regulate gastric acid secretion, the inhibition of gastric acid secretion induced by central 

CRF does not involve gastrin in rats and dogs [40, 51].

Early clinical and experimental observations demonstrated that emotional stimuli inhibit 

gastric acid secretion. Beaumont noticed when his fistulous subject experienced “fear, anger 

or whatever depresses or disturbs the nervous system”, that gastric secretion was inhibited 

[57]. Cannon showed that the flight-or-fight response resulted in decreased gastric acid 

secretion in cats [58]. The involvement of CRF receptor in the brain in acute stress-related 

inhibition of gastric acid secretion has been demonstrated in rats. The CRF-R1/CRF-R2 

antagonist, α-helical CRF9–41 injected IC or ICV prevents brain surgery-and partial 

restraint-induced reduction of gastric acid secretion while the antagonist injected 

peripherally has no effect [54, 59]. Moreover, the activation of central CRF signaling 

pathways is part of the brain mechanisms through which specific anorexic brain peptides 

inhibit gastric acid secretion. In particular, CSF injection of cocaine- and amphetamine-

regulated transcript (CART) or neuromedin U-induced inhibition of gastric acid secretion in 

pylorus-ligated rats is completely blocked by the pretreatment into the CSF with α-helical 

CRF9–41 or anti-CRF immunoglobulin G while the inhibitory effect of gastrin-releasing 

peptide, and interleukin-1ß are not altered [54, 60, 61]. Lastly, the activation of cell bodies 

into the hypothalamic arcuate nucleus (ARC) by microinjection of kainic acid inhibits 

pentagastrin-stimulated acid secretion, a response that the peptide CRF-R1/R2 antagonist, 

astressin microinjected into the PVN prevented [62]. These data indicate that the activation 

of CRF receptors by endogenous CRF in the PVN reduces gastric acid secretion consistent 

with the effect of exogenous injection of the peptide at this site [50]. Of importance is the 

lack of change in basal gastric secretion in rats injected with CRF receptor antagonists into 

the CSF. This indicates that brain CRF signaling is not involved in the basal regulation of 

gastric acid secretion [54, 59].

2.2. Brain CRF Stimulates Gastric Bicarbonate Secretion

The first evidence that the CRF in the brain can influence gastric bicarbonate secretion came 

from observations that the peptide microinjected into hypothalamic nuclei (PVN, LH and 

VMH) increases the volume of gastric secretion while inhibiting total acid output and acid 

concentration in conscious rats [50]. Such a response was established to be peptide- and site-

specific. Bombesin, calcitonin gene-related peptide, or calcitonin microinjected into these 

hypothalamic sites have no effect, and CRF and sauvagine injected IC inhibits both gastric 

secretory volume and acid concentration in rats [40, 43]. Subsequent reports established that 

CRF microinjected into the VMH stimulated gastric bicarbonate concentration and output 

and potassium secretion in conscious pylorus-ligated rats [51].
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2.3. Brain CRF Peptides Inhibit Gastric Transit and Motility

The central action of CRF to suppress gastric motor function is well established in various 

experimental conditions. All mammalian CRF ligands (CRF, Ucn 1, Ucn 2, and Ucn 3) and 

amphibian/fish CRF-related peptides (sauvagine and urotensin I) injected into the CSF at the 

level of the lateral or 4th ventricle, cisterna magna or L5-L6 spinal cord segments, induce a 

rapid in onset and long-lasting inhibition of gastric transit of non-caloric or caloric liquid or 

solid meal in several non-primate mammal species [63–74].

CRF and Ucn 1 alter gastric contractility pattern and the propagation of motor events in 

various species including rats, dogs and sheep [70, 75–80]. In fed rats, CRF injected ICV 

induces a long-lasting inhibition of postprandial antral motility [81]. Other studies in fasted 

rats showed that CRF or Ucn 1 injected IC suppresses vagally stimulated high amplitude 

gastric contractions evoked by IC TRH agonist or 2-deoxy-D-glucose [82, 83]. In fasted 

dogs, ICV CRF induces an immediate and sustained disruption of the interdigestive pattern 

of gastric motility with abolition of the cyclic activity front in the antrum and the occurrence 

of irregular contractions of small amplitude [84, 85]. Several lines of evidence established 

that the activation of brain CRF-R2 signaling mediates CRF and Ucns action to impair 

gastric propagative motor function. The selective CRF-R2 ligand, Ucn 2 injected into the 

brain ventricle mimicked CRF inhibitory action. In addition, the ICV or IC injection of non-

selective peptide, CRF-R1/CRF-R2 antagonists, α-helical CRF9–41, D-Phe12CRF12–41, 

astressin, or astressin-B and the selective CRF-R2, astressin2-B, blocked ICV or IC injection 

of CRF-, Ucn 1- and Ucn 2-induced delayed gastric emptying and motility while 

administration of selective CRF-R1 antagonists, NBI-35965 or NBI-27914 have no effect in 

rats, mice or dogs [49, 64, 66, 68–71, 73, 77, 81, 86–91].

The PVN and dorsal vagal complex (DVC) are brain responsive sites to microinjection of 

CRF to inhibit basal gastric emptying or vagally-stimulated gastric contractility while 

delivering the peptide into the LH, other medial hypothalamic sites, central amygdala (CeA) 

or LC/SC, had no effect [80, 83, 92–95]. These sites of action express CRF-R2 mRNA [20] 

and regulate gastric motor function through parasympathetic pathways [55]. In particular, 

the dorsal and ventral caps of the parvocellular division of the PVN contain neurons that 

send direct projections to the DVC and spinal cord intermedio-lateral column [96]. 

Consistent with these neuroanatomical connections, the majority of studies using combined 

pharmacologic, surgical or electrophysiological approaches to assess the pathways involved 

in CRF inhibitory action have established the primary involvement of the vagus. 

Subdiaphragmatic vagotomy prevents ICV or IC CRF and Ucn 1-induced delayed gastric 

emptying in mice, rats and dogs [64–66, 70, 73, 81, 85, 92, 95, 97] and the alterations of 

gastric motility in rats or dogs [70, 81, 85, 95]. Electrophysiological recording of efferent 

activity in the gastric branch of the vagus also shows that CRF, and more prominently 

sauvagine, injected IC decreases vagal efferent outflow in anesthetizes rats [53]. However, a 

few reports also indicate the role of the sympathetic nervous system in mediating ICV or IC 

CRF-induced delayed emptying and the inhibition of postprandial antral and pyloric 

contractions [65, 72, 78]. In our studies, only IC Ucn 2-induced delayed gastric emptying is 

mediated by sympathetic pathway and peripheral alpha-adrenergic receptors while the 

inhibitory action of IC CRF and Ucn 1 is vagal-dependent in rats [73]. CRF injected into the 
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PVN or CSF increases sympathetic outflow to the viscera [54, 98]. It may be speculated that 

the discrepancies in neuronal pathways are related to differences in peptides (CRF or 

urocortins) and doses used along with brains sites of injection that may differentially 

influence sympathetic activity and thereby the modulation of peripheral cholinergic 

transmission to the stomach.

The end effectors through which alterations of autonomic outflow suppress gastric motor 

function may involve gut peptides. A few data suggest the contribution of peripheral 

somatostatin in ICV CRF-induced delayed gastric emptying in rats [99] but not in dogs [76]. 

The suppression of the circulating prokinetic hormones, motilin in dogs and acyl ghrelin in 

rats in response to ICV CRF may contribute in the inhibition of gastric propulsive motor 

function [49, 76]. However, this needs to be ascertained using peripheral injection of motilin 

and ghrelin antagonists. Other studies clearly established that the effects of centrally injected 

CRF are not secondary to the stimulation of pituitary-adrenal hormones as shown by the 

unaltered delayed emptying induced by ICV or IC CRF in hypophysectomized or acute 

adrenalectomized rodents [64–66, 97].

Support for a role of brain CRF receptor activation in stress-induced inhibition of gastric 

propulsive motor function comes from consistent reports using pharmacological CRF 

receptor blockade. The IC, ICV or PVN injection of CRF-R1/CRF-R2 antagonists, α-helical 

CRF9–41, D-Phe12 CRF12–41, astressin, or astressin-B, abrogate the gastric stasis induced by 

various stressors [25]. These encompass psychological/physical (swim stress, wrap 

restraint), visceral (trephination, abdominal surgery, peritoneal irritation induced by 

intraperitoneal, IP injection of 0.6% acetic acid), immunological (IV or ICV injection of 

interleukin-1ß), or chemical (ether) [54, 63, 69, 87, 90, 100–102]. All these stressors, 

including abdominal surgery and immune challenge activate CRF neurons and upregulate 

CRF mRNA in the PVN [21, 90, 103–110]. However, the respective involvement of CRF 

and/or Ucns to activate CRF receptors leading to stress-related inhibition of gastric motor 

function is still largely unexplored and may vary with the type of stressors. A recent study 

points to a primary role of hypothalamic Ucn 3 in the inhibition of antral contractions in the 

stomach induced by chronic psychological stress of a communication box paradigm 

whereby rats receive visual, auditory and olfactory stimuli from rats subjected to foot shock 

for 1-h/day for 5 days. Under these conditions, there is an upregulation of Ucn 3 gene 

expression in the hypothalamus, unlike that of Ucn 1 or Ucn 2, and the ICV injection of Ucn 

3 antiserum prevented the inhibition of antral motility (although the selectivity of the 

antiserum to Ucn 3 vs. Ucn 1 or 2 was not mentioned) [79].

Investigations of brain CRF receptor subtype(s) involved in various stressors-induced 

inhibition of gastric motor function point to the implication of either CRF-R1 or CRF-R2, 

depending upon their interoceptive or exteroceptive nature. For instance, the gastric ileus 

occurring immediately post-surgical stress (abdominal surgery and cecal palpation), is 

mediated by CRF-R1 as shown by the use of genetically modified CRF-R1 or CRF-R2 

knockout mice or ICV injection of CRF-R1 antagonist in rats [111] (unpublished 

observations). In contrast, acute restraint stress-induced gastric ileus involves CRF-R2 in rats 

[72]. Additional studies are needed to identify the CRF receptor subtypes involved in other 

stress models. In particular, it will be important to dissect whether the activation of 
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differential brain circuitries by physical vs. psychological stressors [112] recruits different 

CRF ligands and receptor subtypes within these pathways and thereby their primary role.

Of interest, is also the evidence that CRF receptors in the brain serve as downstream 

mechanisms for specific brain peptides known to activate CRF neurons in the PVN. Those 

include CART, nociceptin/orphanin FQ (N/OFQ), glucagon-like peptide 1 (GLP-1) and des-

acyl ghrelin that act in the brain to inhibit gastric motor function and appetite [113–116]. 

Studies have shown that the injection of α-helical CRF9–41 into the 4th or lateral ventricle or 

astressin IC prevents respectively the delayed gastric emptying in rats induced by CART 

injected into the 4th ventricle, ICV N/OFQ and IC GLP-1 [113–115]. The ICV pretreatment 

with CRF-R1/CRF-R2 antagonist, astressin and the selective CRF-R2 antagonist, anti-

sauvagine-30 abolishes ICV injection of des-acyl ghrelin-induced reduction of antral 

contractions in fasted rats while the CRF-R1 antagonist, NBI-27914 had no effect [116]. 

However, IC α-helical CRF9–41 and ICV astressin2-B do not alter IC adrenomedullin or ICV 

nesfatin-1-induced delayed gastric emptying in rats [117, 118] showing peptide specificity.

By contrast, CRF receptor antagonists injected into the CSF do alter neither basal gastric 

emptying of a liquid non-nutrient or solid nutrient meal nor motility in rats, mice or dogs in 

the large majority of studies [25, 64, 66, 70]. This indicates that brain CRF signaling is not 

involved in basal and postprandial regulation of gastric motor function.

3. CENTRAL ACTIONS OF CRF PEPTIDES TO INFLUENCE SMALL 

INTESTINAL SECRETORY MOTOR FUNCTION

3.1. Central CRF Stimulates Duodenal Bicarbonate Secretion

When injected ICV, CRF is one of the most potent peptides to stimulate duodenal 

bicarbonate secretion in rats compared with other known stimulants while a number of 

peptides (ICV bombesin, urotensin, calcitonin, vasoactive intestinal peptide, gastrin, growth 

hormone-releasing factor, gonadotropin-releasing hormone and β-endorphin) and 

norepinephrine tested under the same conditions in conscious or anesthetized rats are 

inactive [119–121]. The ICV injection of α-helical CRF9–41 abolishes both ICV CRF and 

partial restraint stress-induced three-fold increase in duodenal bicarbonate secretion in rats 

[120, 122]. These data suggest that the activation of brain CRF receptors during stress 

promotes duodenal secretory function and may enhance the resistance of the duodenal 

mucosa similar to what reported in the gastric mucosa [51].

Peripheral mechanisms through which central CRF stimulates duodenal bicarbonate 

secretion are not mediated by the ANS as shown by the unaltered response by 

chlorisondamine, vagotomy, blockade of sympathetic nervous system with bretylium and 

adrenalectomy in rats [120]. Evidence indicates the involvement of the pituitary axis 

releasing β-endorphin, as hypophysectomy and naloxone prevent the duodenal bicarbonate 

response. In addition, β-endorphin, unlike ACTH, injected IV at doses reproducing the 

circulating levels induced by ICV CRF, stimulates duodenal bicarbonate secretion [120]. 

Lastly, ICV or IV injection of CRF shows similar potency to stimulate duodenal bicarbonate 
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secretion consistent with the activation of the HPA axis by CRF injected centrally or 

peripherally [120].

3.2. Central CRF Stimulates Ileal Water Absorption

CRF injected ICV stimulates water, chloride and sodium absorption in the ileum of 

conscious rats [122]. The enhanced ileal water transport is not altered by hypophysectomy, 

adrenalectomy, vagotomy and naloxone, is blocked by chlorisondamine, bretylium and 

phentolamine, and mimicked by peripheral injection of norepinephrine [122]. This is 

consistent with the known action of brain CRF to stimulate the sympathetic noradrenergic 

outflow to the gut [123]. So far, only one study indicates that brain CRF receptors are 

involved in restraint-induced increased ileal water absorption in rats as shown by the use of 

ICV α-helical CRF9–41 before acute restraint stress [122].

3.3. Central CRF Inhibits Small Intestinal Motor Function

The influence of brain CRF on small intestine has been less investigated compared to the 

proximal (stomach) and distal (colon) segments of the gut. However, existing literature 

indicates that ICV injection of CRF also inhibits small intestinal transit in rats [54, 65–66]. 

Further studies to investigate the underlying alterations of small intestinal motility indicate 

that CRF injected into the brain alters the pattern of contractions that varies in function of 

the fed or fasted state and species. Under fed conditions, CRF injected ICV after a nutrient 

meal increases the frequency of proximal duodenal contractions in dogs, while not altering 

their amplitude and durations [70]. In fed rats, ICV Ucn 1 increases the amplitude of 

pressure waves in the duodenum [81], while in fed sheep, ICV CRF induces a long-lasting 

inhibition of duodenal motor activity [75]. In fasted dogs, ICV CRF inhibits the occurrence 

of migrating motor complex in the duodenum and proximal jejunum [84, 85]. Likewise, in 

rats the ICV injection of Ucn 1 acts through CRF-R2 to disrupt the fasted pattern of 

duodenal motor activity and replaces it with a fed pattern resulting in non-propagative 

irregular spike burst activity monitored in the duodenum and jejunum [81, 124].

In rats and dogs, peripheral mechanisms of actions of ICV CRF and Ucn 1 to inhibit small 

intestinal transit and disrupt fasted motility involve vagal cholinergic pathway and are 

independent from the activation of the HPA axis [65, 72, 81, 84, 124]. Collectively, these 

studies indicate that central CRF induces a vagally mediated suppression of small intestinal 

transit associated with alterations of coordinated propagative motor activity.

Studies on the implication of CRF receptors in stress-related inhibition of intestinal transit 

have been limited and yield discrepant results with ICV α-helical CRF9–41 having no effect 

or reversing acute partial restraint stress-induced slowing of small intestinal transit [54, 63]. 

Collectively, existing evidence so far is scant to ascertain a role of brain CRF signaling in 

the alterations of small intestinal motor function by stress.
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4. CENTRAL ACTIONS OF CRF PEPTIDES TO INFLUENCE COLONIC 

FUNCTION

4.1. Activation of Brain CRF-R1 Stimulates Colonic Secreto-Motor Function

A vast literature shows that, opposite to the upper gut, the ICV or IC injection of CRF or 

Ucn 1 evokes a rapid onset increased motility in the cecum, triggers spike burst activity and 

pressure wave in the proximal and distal colon, accelerates whole and distal colonic transit, 

decreases colonic fluid absorption, and induces defecation and diarrhea in freely moving 

rats, mice or gerbils [63, 65, 71, 87, 93, 125–131]. By contrast, ICV injection of the selective 

CRF-R2 agonist, Ucn 3 has no effect in mice [71]. The colonic changes induced by ICV 

CRF or Ucn 1 are blocked by the ICV injection of CRF-R1/CRF-R2 antagonists, α-helical 

CRF9–41, D-Phe12CRF12–41, and astressin or by selective CRF-R1 antagonists, NBI-35965, 

NBI-27914, NGD 98–2, and NGD 9002. In contrast, selective CRF-R2 antagonists, 

astressin2-B or anti-sauvagine, injected ICV are inefficient to block the central effects of 

CRF or Ucn 1 in rodents [65, 71, 87, 91, 130–133]. Other studies also showed increased 

release of mucin, prostaglandin E2 (PGE2) and mast cell protease II from the colonic 

mucosal explants of rats 30 min after ICV injection of CRF, mimicking the effects of 

immobilization stress [133]. These convergent findings establish that the activation of brain 

CRF-R1 signaling by CRF or Ucn 1 in the brain stimulates colonic secretory motor function 

in experimental animals.

4.2. Brain Sites of Action and Peripheral Mechanisms

The PVN and pontine areas, namely the LC/Barrington nucleus complex in rats have been 

identified as brain nuclei responsive to CRF to induce increased tonic and phasic colonic 

motility, stimulation of colonic transit and induction of watery fecal output [92, 93, 134–

136]. By contrast, microinjection of CRF into the LH and other medial hypothalamic sites, 

the CeA, and pontine sites adjacent but outside of the boundaries of the LC/SC, have no 

effect on colonic transit or fecal pellet output [92, 93, 134–136]. Of significance is the 

demonstration that these hypothalamic and pontine sites are also brain nuclei involved in 

central CRF-induced CRF-R1 mediated anxiety and depression [137, 138] providing 

anatomical and biochemical substrata for the early use of defecation in rodents as an index 

of emotionality [139, 140].

CRF-R1 is the main receptor subtype mediating the pituitary release of ACTH and 

downstream glucocorticoids [15]. However, peripheral mechanisms involved in the 

stimulation of colonic secreto-motor function in response to central injection of CRF are not 

secondary to the activation of the HPA axis and implicate the ANS [65]. Tracing studies 

identified a proportion of CRF immunoreactive neurons in the Barrington’s nucleus and 

PVN transynaptically linked to the colon [141, 142]. This provides neuroanatomical support 

for CRF signaling in the PVN and pontine sites to influence colonic motor functions through 

the activation of sacral parasympathetic cholinergic outflow. In addition, peripheral 

ganglionic blockade using chlorisondamine and atropine prevents, and subdiaphragmatic 

vagotomy reduces, the stimulation of colonic transit, phasic and tonic contractions, and 

defecation induced by CRF injected IC-, ICV- or into the PVN, while the noradrenergic 

blockade by bretylium has no effect [65, 92, 135, 143].
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Within the colon, effector mechanisms recruited by central CRF relate to the release of 

serotonin (5-HT) interacting with serotonin receptor type 3 (5-HT3) and type 4 (5-HT4). 

There is evidence that IC injection of CRF, like restraint stress, increases 5-HT content in the 

feces harvested in the proximal colon [144]. In addition, convergent pharmacological studies 

show that several 5-HT3 antagonists such as granisetron, ramosetron, ondansetron and 

azasetron, or the 5-HT4 antagonist, SB-204070, given orally or into the lumen of the 

proximal colon, block the stimulation of colonic transit and defecation induced by ICV or IC 

injection of CRF [127, 131, 144, 145]. Additional mechanisms of ICV CRF-induced 

defecation may involve the activation of colonic myenteric cholinergic and substance Pergic 

neurons interacting with neurokinin 1 receptor located on colonic smooth muscles [146].

4.3. Role of Brain CRF-R1 Signaling

CRF-R1 signaling in the brain plays a role in stress-related stimulation of colonic propulsive 

motor function while not being involved in basal or postprandial regulation of colonic 

secreto-motor function under non-stress conditions [39, 147]. First, the ICV injection CRF 

and the high affinity CRF-R1 ligand, Ucn 1 [14] recapitulate the colonic secreto-motor 

responses to stressors while that of selective CRF-R2 agonists, Ucn 2 and Ucn 3 either have 

no effect on basal colonic transit or inhibit stimulated colonic contractions in rats [63, 65, 

87, 127, 129, 130, 143, 148–150]. However the ICV, IC or PVN injection of α-helical 

CRF9–41, D-Phe12 CRF12–41, or astressin prevents the reduction of colonic transit time or 

defecation evoked by acute restraint, water avoidance stress and the increased frequency of 

colonic spike-bursts induced by conditioned fear in rats [54, 63, 87, 91, 126, 127, 129, 135, 

142, 143, 151]. Lastly, several brain penetrant non-peptide CRF-R1 antagonists such as 

antalarmin, CP-154,526, CRA1000, JTC-017, NBI-27914, NBI-35965, NGD 98–2 and 

NGD 9002 [17, 130, 152] injected either centrally or peripherally (subcutaneous, IP and for 

some compounds, orally) dampen various acute stressors-(restraint, water avoidance stress, 

elevated plus maze, social intruder, morphine withdrawal) or 5 days exposure to heterotypic 

stressors-induced stimulation of defecation, colonic transit, motility and luminal 5-HT 

release in rodents [63, 71, 87, 91, 130–132, 153–157]. Likewise, in primates, antalarmin 

attenuates the defecation occurring in animals exposed to a social intruder [23]. By contrast, 

the selective CRF-R2 antagonist, astressin2-B injected centrally at doses that block CRF-R2-

mediated inhibition of gastric emptying, does not alter restraint stress-related defecation in 

mice [71]. In addition, CRF-R1 deficient mice display significantly lower defecation in an 

open field test than their wild-type littermates [158]. Conversely, CRF-overexpressing mice 

show enhanced defecation to a novel environment [159]. Microinjection of CRF receptor 

antagonist or CRF oligonucleotide antisense before water avoidance stress into specific brain 

nuclei point to the PVN and LC/SC nuclei as main sites of CRF/CRF-R1 pathway to 

stimulate colonic motor function induced by stress while CRF receptors in the CeA are not 

involved [92, 126, 160–162]. Further supporting the key role of these brain nuclei, ICV 

injection of CRF-R1/CRF-R2 antagonist, α-helical CRF9–41 before exposure to water 

avoidance stress curtails the activation of neurons selectively in the PVN and LC neurons in 

correlation with the decrease in fecal output [126]. In addition, studies used strains of rats 

with different susceptibility to stress, namely the stress resilient Lewis which has a defective 

CRF synthesis/release compared to Fischer rats [163]. The Lewis and Fischer rats showed 

respectively low and high activation of neurons in the PVN and intermediolateral columns of 
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the lumbosacral segment of the spinal cord correlated with the magnitude of defecation 

[142].

A number of brain peptides influencing food intake and activating CRF neurons in the PVN, 

such as neuropeptide Y, GLP-1, CART, and ghrelin, also stimulate colonic motor function 

through activation of brain CRF receptor [164–168]. Other studies showed that CRF 

receptor located in the PVN mediated the activation of neurons in the ARC-induced 

stimulation of colonic motor function [144]. Therefore, CRF/CRF-R1 signaling in the PVN 

induced by various stressors and specific brain peptides is an important convergent signaling 

pathway that leads to the stimulation of colonic secretory motor function.

5. CENTRAL ACTIONS OF CRF PEPTIDES TO INFLUENCE VISCERAL 

SENSITIVITY

Recurrent abdominal pain in the absence of detectable organic diseases is the hallmark of 

irritable bowel syndrome (IBS) [169]. Clinical evidence indicates that IBS is a stress-

sensitive disease as various stressors of psychosocial, physical or immune origin and early 

adverse life events can contribute to the development and/or exacerbation of IBS symptoms 

[170–172]. Several stress-related animal models developed to reproduce some common 

features of IBS [173, 174] provided valuable tools to examine the implication of CRF 

signaling in stress-related visceral hypersensitivity.

5.1. Role of Brain CRF-R1 in Stress-Related Visceral Hypersensitivity

Earlier studies demonstrated that the ICV injection of CRF in rats enhances the pain 

response to colorectal distension (CRD) mimicking the effects of restraint stress [175]. CRF 

action is blocked by the ICV injection of α-helical CRF9–41, or the CRF-R1 antagonist, 

antalarmin given intraperitonerally [175, 176] pointing to brain CRF-R1 activation in the 

induction of visceral hypersensitivity. The role of this signaling pathway was further 

established to mediate the hypersensitivity to CRD induced by various stressors in rodents 

using pharmacological or genetic approach [39]. The selective CRF-R1 antagonists (Table 1) 

including NBI-35965 [130], CP-154,526 [177–180], NBI-27914 [181], antalarmin [176, 

182–184], JTC-017 [155], NBI-30775 [185], DMP696 [186], NGD 98–2 and NGD 9002 

[132], inhibit the visceral hyperalgesia-induced by a variety of conditions such as early life 

adverse events, repeated water avoidance stress [130, 178, 186], chronic high anxiety in the 

Wistar Kyoto rats [176, 183], colonic inflammation [180], repeated nociceptive activation of 

colonic mechanoreceptors [132, 155, 176, 178, 182, 183] or post-natal intracolonic injection 

of acetic acid [181]. Likewise, CRF-R1 knockout mice show a reduction of visceral response 

to phasic CRD compared to wild type littermate [185]. Collectively these pre-clinical studies 

support a pivotal role of brain CRF-R1 signaling in the visceral hyperalgesia resulting from 

different stress context: early life adverse events, repeated psychological stress in adulthood, 

chronic high anxiety as well as peripherally initiated mechanisms associated with colonic 

inflammatory event or repeated CRD at nociceptive range.
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5.2. Brain Sites of Action

The CeA, bed nucleus stria terminalis, LC and hippocampus are brain sites through which 

the activation of CRF/CRF-R1 signaling results in visceral hypersensitivity [39, 155, 162, 

187, 188]. A few reports showed that α-helical CRF9–41 microinjected directly into the 

hippocampus decreases the frequency of abdominal contractions evoked by tonic 

nociceptive CRD [155]. Other study showed that the CRF-R1 antagonist, CP-376,395 

microinjected into the anterolateral bed nucleus stria terminalis reduces the hypersensitivity 

to CRD induced by repeated water avoidance stress [188]. Additionally, several convergent 

studies support a role CRF/CRF-R1 in the CeA [162,187]. CRF microinjected into the CeA 

increased sensitivity to CRD in Wistar rats that was blocked by the intra-CeA microinjection 

of CP-154,526 [189]. Moreover, the CRF-R1 antagonist, CP-376,395 microinjected into the 

CeA reduced visceral hyperalgesia to CRD in a high anxiety strain of rats [187]. 

Neuroanatomical studies further support the role of CRF-R1 signaling in the CeA to 

modulate visceral pain. CRF is densely expressed in cell bodies of CeA that send axonal 

projections to basal forebrain and pontine/brainstem including the LC [190, 191]. There is 

also evidence of upregulation of CRF and CRF-R1 gene expression at these brain sites in rat 

models of anxiety associated with altered visceral pain [192]. Likewise, CRF gene and 

peptide expression are upregulated in the CeA by CRD, repeated exposure to water 

avoidance and other conditions inducing visceral pain or hyperalgesia in rats [193–199].

With regard to the influence of brain CRF-R2 activation on visceral pain, still little is known 

and further studies are required to establish its role. One report indicates that the CRF-R2 

antagonist, astressin2-B microinjected into the anterolateral bed nucleus stria terminalis 

reduced visceral pain induced at low CRD pressure in rats but had no effect at higher CRD 

pressure or even enhanced visceral pain in rats submitted to water avoidance stress [188].

5.3. Central and Peripheral Mechanisms of Action

Several possible mechanisms are involved in the prevention of stress- or 

mechanosensitization-related visceral hyperalgesia induced by CRF-R1 antagonist 

pretreatment. Previous studies on somatic pain provided molecular, electrophysiological and 

biochemical evidence that endogenous CRF/CRF-R1 signaling within the CeA participates 

to the mechanisms of pain sensitization [196, 200, 201]. The laterocapsular division of the 

CeA known as the “nociceptive amygdala” is the recipient of nociceptive-specific inputs 

originating from the parabrachial area as part of the spinal-parabrachial-amyloidal pathway 

[202]. In the CeA, CRF/CRF-R1 facilitates synaptic transmission of pain by switching on 

silent N-methyl-D-aspartate receptors through protein kinase A-dependent signaling [201, 

203–205]. Further studies in genetically modified mice with deletion of CRF-R1 selectively 

on glutamatergic CeA neurons clearly ascertained that CRF facilitates the excitatory 

transmission by a CRF-R1-mediated direct action on glutamatergic neurons [205]. Whether 

similar cellular mechanisms in the CeA are involved in CRF/CRF-R1 mediated visceral 

hyperalgesia need to be explored. Additional components may involve the inhibition of 

noradrenergic output from the LC [189, 206–208], the largest of all noradrenergic nuclei 

[138]. Electrophysiological studies showed that CRF-R1/CRF-R2 antagonist, D-

Phe12CRF12–41 or astressin injected ICV or directly into the LC and the selective CRF-R1 

antagonist, NBI-35965, injected peripherally, blocked the activation of LC neurons 
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responsive to central injection of CRF and CRD in rats [206–208]. Additionally, the CRF-R1 

antagonist, JTC-017 or CP-154,526 reduced CRD-induced noradrenaline release in the 

hippocampus and CeA, which are sites of rostral efferent projections from the LC [155, 189, 

209]. The cortical and limbic rostral noradrenergic efferent projections from the LC are 

known to induce arousal and anxiogenic responses along with hypervigilance to visceral 

input that is a common feature in IBS patients [172, 210, 211]. It is to note that the brain 

sites (CeA, hippocampus, LC, hypothalamus) involved in CRF-R1-induced visceral 

hypersensitivity are also those implicated in anxiety disorders [212] and may have relevance 

in the co-morbidity of IBS with anxiety disorder [172, 213].

Among peripheral mechanisms, there is evidence of an important role of intestinal mucosal 

mast cells. Rats exhibiting visceral hypersensitivity after exposure to crowding stress display 

an increased number of mast cells in the colon mucosa [214, 215]. The ICV injection of 

CRF or restraint stress activates colonic mast cells monitored by the increase in colonic 

release of mast cell protease II, PGE2 and histamine [133, 216]. Additionally, the mast cell 

stabilizer doxantrazole blocked the visceral hyperalgesia to CRD induced by ICV CRF or 

restraint [175] and ICV injection of α-helical CRF9–41, abolished acute restraint stress–

induced increase of colonic histamine content [216].

6. PERIPHERAL CRF SIGNALING: INFLUENCE ON COLONIC SECRETORY 

MOTOR FUNCTION

Early on, there was an enormous stride made in the biology of the CRF system to assess its 

actions and role in the brain due to the widely held consensus that the stress response is 

coordinated exclusively within the central nervous system [102]. The past few years, the 

CRF signaling systems within the gut are now emerging as important components of the 

stress response [27, 33, 217]. In vitro as well as whole animal and human studies indicate 

that the peripheral CRF signaling systems can modulate gut motility, secretion and barrier 

functions as well as visceral pain [33, 217]. Moreover, CRF-R1 and CRF-R2 and their 

ligands are localized throughout the gastrointestinal tract in various cell types including 

neuronal (the enteric nervous system), endocrine (enterochromaffin cells) and immune (mast 

cells, eosinophils, T-helper lymphocytes in the lamina propria) in experimental animals and 

human subjects [28, 218–225]. This provides support for a local role of the CRF systems 

within the gut as established in other viscera such as the cardiovascular system [226]. In 

addition, stressors modulate the expression of CRF peptides and CRF receptors within the 

gastrointestinal tract [28, 220, 227, 228].

6.1. Activation of Peripheral CRF-R1 Stimulates Secreto-Motor Function

Peripheral injections (IP, IV or subcutaneous) of CRF and Ucn 1 are equipotent to central 

injections to stimulate whole and distal colonic transit, defecation and to induce prominent 

diarrhea in rats, mice or dogs [63, 65, 127, 130, 133, 154, 222, 229–237]. These functional 

alterations are associated with an increase of clustered spike-burst propagative activity in the 

cecum, proximal and distal colon in rodents [154, 233, 235]. In addition, CRF injected IV 

induces the release of mucin, PGE2 and mast cell protease II in colonic mucosal explants in 

rats indicative of the stimulation of goblet and mast cells [133].
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Peripheral administration of CRF- or Ucn 1-induced the activation of CRF-R1 signaling 

mediates the acceleration of colonic transit and induction of watery diarrhea as shown by the 

use of selective CRF agonists and receptor antagonists. The selective CRF-R1 peptide 

agonists, cortagine, or stressin1 [238, 239] injected IP stimulate colonic contractions distal 

colonic transit, defecation with a peak response within 30 min post injection, and a rapid 

onset diarrhea in rodents [154, 219, 222, 229, 231, 235, 238, 240]. Contrasting, the IP or IV 

injection of Ucn 2 or Ucn 3 has no effect on basal distal colonic transit, colonic contractions 

and defecation [222, 229, 235, 241]. In addition, astressin or selective CRF-R1 antagonists, 

NBI-35965, NBI-27914, CP-154,526 given peripherally (IP, SC or orally) block IP CRF, 

Ucn 1-or cortagine-induced accelerated colonic contractions and distal transit, defecation 

and diarrhea while the CRF-R2 antagonist given IP has not effect in rats and mice [130, 154, 

229, 231, 232, 235, 240].

Peripheral vs. central injections of CRF-induced CRF-R1-mediated stimulation of colonic 

motor function involve distinct target sites of action. First, the CRF receptor antagonists 

given centrally (IC astressin or ICV α-helical CRF9–41) do not alter IP or IV CRF-induced 

stimulation of fecal pellet output and colonic transit in rats [54,154]. Second, IP CRF-

induced acceleration of colonic transit is not abolished by ganglion blockade or truncal 

vagotomy that contrasts with the role of the ANS in centrally injected CRF-induced 

stimulation of colonic propulsive motor function [65,134]. Further support for direct action 

within the colon comes from in vitro studies in isolated colonic rat preparations or isolated 

rat colonic muscle strips where CRF and Ucn 1 increase basal myoelectrical peristaltic 

activity, phasic contractions and electric field stimulation off-contractions while Ucn 2 has 

no effect on basal activity [154, 221, 235, 242].

Convergent evidence substantiates that the stimulatory action of peripherally injected CRF, 

Ucn 1 or cortagine involves the activation of cholinergic and nitrergic neurons in colonic 

myenteric ganglia promoting peristaltic through interaction with CRF-R1 in rats or guinea 

pigs [143, 219, 221, 222, 240, 243, 244]. The use of laser-capture microdissection combined 

with reverse transcriptase polymerase chain reaction or immunohistochemical detection in 

myenteric whole-mount preparation of the colon reveals that CRF-R1 are primarily 

expressed at the gene and protein levels on myenteric neurons compared with other layers of 

the rat or guinea colon [219, 221–222, 243]. In addition, the use of a neuronal blocker, 

tetrodotoxin, abolishes Ucn 1-evoked phasic contractions in rat colonic smooth muscle strips 

further supporting the role of enteric nervous system [221]. Other evidence shows that IP 

CRF or IP cortagine in rats or partial restraint in mice induces Fos expression in CRF-R1 

expressing cholinergic and nitrergic myenteric neurons in the colon while Ucn 2 under the 

same conditions has no effect [219, 222, 240, 245, 246]. Of note, atropine, a muscarinic 

blocker, does not influence IP CRF-induced neuronal activation in colonic myenteric 

ganglia, indicating that the Fos response is not secondary to the activation of muscarinic 

receptors either on the myenteric ganglia (which possess both nicotinic and muscarinic 

receptors) or on colonic muscles [245]. Electrophysiological recording demonstrated that the 

administration of CRF or Ucn 1 onto colonic myenteric and submucosal plexus preparations 

of guinea pig directly excites myenteric and submucosal neurons through CRF-R1 [243, 

244, 247].
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The colonic CRF/CRF-R1 signaling may have relevance as local effector of the acute stress 

response. There is evidence that stressors that stimulate colonic secreto-motor function 

upregulate CRF and CRF-R1 in the colonic mucosa and submucosa plus muscle layers [28, 

227]. Pharmacological studies show that peripherally restricted peptide CRF antagonists, α-

helical CRF9–41, astressin or astressin-B injected IP or IV abolish or dampen the stimulation 

of propulsive colonic motor function (distal colonic transit, high amplitude high frequency 

contractions and defecation) and the colonic release of mucin, PGE2 and mast cell protease 

II evoked by acute exposure to restraint, water avoidance stress and novel environment in 

rats or mice [63, 127, 130, 133, 154, 234, 248].

6.2. Peripheral CRF-R2 Inhibits CRF-R1 Stimulatory Action

The inhibitory effect of CRF-R2 was suspected initially by the demonstration that IP CRF 

(CRF-R1>CRF-R2 agonist) was more potent to stimulate defecation in rats than IP Ucn 1 

which has not only high affinity to CRF-R1 but also higher affinity than CRF on CRF-R2 

[154]. Subsequent studies showed that the IP injection of the selective CRF-R2 agonist, Ucn 

2 induces a CRF-R2-mediated inhibition of colonic contractility and defecation stimulated 

by IP injection of CRF or Ucn 1 (Ucn 1), restraint stress in rats or CRF overexpression in 

genetically-modified mice [154, 159, 222, 235]. Likewise, in vitro studies on colonic muscle 

strips showed that Ucn 2 blocks the amplitude of contractions elevated by CRF [235]. 

Conversely, rats injected IP with astressin2-B or CRF-R2 knockout mice showed enhanced 

colonic motility, defecation and diarrhea responses to IP CRF- and Ucn 1- or restraint [159, 

222, 235]. These results are consistent with CRF and Ucn 1 activating both CRF receptor 

subtypes [14], and under conditions of CRF-R2 blockade, only the CRF-R1-mediated 

stimulatory effect is maintained without the dampening action of CRF-R2. These findings 

open new insight into the dual mechanisms through which acute stress influences colonic 

function, engaging not only the colonic CRF-R1-mediated enteric stimulatory pathway, but 

also CRF-R2 to dampen the response suggestive of an adaptive counter-regulatory role of 

CRF-R2 in the colonic response to stress [222, 235]. However, in the absence of stress, 

peripheral CRF-R2 agonists or antagonists do not influence basal colonic motor function 

[222, 235]. The opposite effects of CRF-R1 and CRF-R2 are also observed at the level of 

intestinal mucosal barrier function altered by stress. Pigs exposed to early-weaning stress 

display intestinal barrier dysfunction and hypersecretion that involve CRF-R1 activation 

whereas activation of peripheral CRF-R2 prevents the intestinal barrier dysfunction induced 

by early life stress [249].

One target of Ucn 2 inhibitory action involved the colonic myenteric neurons where both 

CRF-R1 and CRF-R2 are localized [222, 228]. The IP injection of Ucn 2 reduces the 

neuronal activation evoked by IP CRF and the phosphorylation of extracellular signal 

regulated kinase (ERK) ½ [222]. The localization of CRF-R2 on nitrergic inhibitory 

myenteric neurons may also play a role [222].
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7. PERIPHERAL ACTIONS OF CRF PEPTIDES TO INFLUENCE VISCERAL 

SENSITIVITY IN EXPERIMENTAL ANIMALS

7.1. Peripheral CRF-R1 Induces Visceral Hyperalgesia

Recent reports suggest that the activation of CRF/CRF-R1 in the colon is involved in the 

development of visceral hyperalgesia. Peripheral administration of CRF or CRF-R1 peptide 

selective agonist, cortagine, induces visceral hypersensitivity to CRD in naïve rats and mice 

[235, 240, 250] that is abolished by IP, but not ICV, injection of the CRF-R/CRF-R2 

antagonist, astressin [235, 240]. The role of endogenous peripheral CRF-R1 signaling is 

further supported by the demonstration that IP pretreatment with peripherally restricted CRF 

antagonists, astressin, or α-helical CRF9–41 prevents visceral hyperalgesia induced by 

repeated water avoidance stress, tonic CRD, 4% acetic acid or maternal separation in rats 

[179, 235, 250, 251]. In addition, chronic psychosocial stress-induced visceral hyperalgesia 

in rats up-regulates CRF-R1 gene expression in the colon while not influencing CRF-R2 

[215]. Collectively these data support the participation of a peripheral CRF-R1 component 

in the development of visceral hyperalgesia in rats.

Several mechanisms contribute the visceral hypersensitivity induced by the activation of 

CRF-R1 in the colon [215, 248]. Alteration of intestinal permeability appears to be a 

prerequisite for the development of visceral hypersensitivity and nociceptor sensitization in 

rodents [252, 253]. Consistent evidence showed that peripheral CRF-R1 activation is 

involved in various stressors-induced mast cell dependent disruption of the intestinal 

epithelial barrier function [217]. Namely acute or chronic exposure to water avoidance 

stress, early life adverse event, or sustained overcrowding increased the paracellular and 

transcellular permeability in the intestine which is mimicked by peripheral injection of CRF 

in vivo and in vitro [26, 217, 248, 254–257]. The alterations of intestinal permeability 

evoked by various stressors or IP CRF do not occur under conditions of pretreatment with 

peripheral injection of peptide CRF receptor antagonists [26, 240, 248, 254, 256–259] and 

selective CRF-R1 antagonists [26]. The beneficial effect of peptide CRF receptor antagonist 

is associated with increases in the protein expression of the tight junction protein, occludin, 

in the distal colon [251]. Additional insights into mechanisms come from the strong link 

between peripheral CRF receptor activation and colonic mucosal mast cell degranulation. 

This is supported by the localization of CRF receptors on mucosal mast cells [248, 260], the 

degranulation of mast cells by peripheral injection of CRF and the blockade of acute 

stressors-evoked mucosal mast cell degranulation by peripheral injection of peptide CRF 

receptor antagonists in rats and pigs [26, 133, 216, 217, 248, 251, 253, 254, 261]. The 

content of mast cells can in turn lead to the release of several preformed (histamine, 5-HT, 

protease) or newly synthesized compounds (PGE2, cytokines, nerve growth factor, tumor 

necrosis factor-α) [261] known to influence permeability and also to activate or sensitize 

sensory afferents [262, 263]. Lastly CRF-R1 are localized on enterochromaffin cells and 

CRF or Ucn 1 through CRF-R1 activation stimulates 5-HT release [11] which is known to 

active spinal afferents [264].
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7.2. Peripheral CRF-R2 Dampens Visceral Hyperalgesia

Opposite to the visceral hyperalgesia to CRD induced by peripheral injection of selective or 

preferential CRF-R1 agonist, sauvagine and of the selective CRF-R2 agonist, Ucn 2, inhibit 

visceral sensitization induced by repeated CRD [182, 235, 241]. Conversely, IP injection of 

CRF-R2 antagonist, astressin2-B, enhances the visceral response to CRD induced by IP CRF 

[235]. Ucn 2 inhibitory effect is associated with the reduction of ERK 1/2 activation in the 

L6/S1 segment of the spinal cord in rats [241]. In addition, in vitro studies showed that Ucn 

2 reduces CRD-induced increase in the activity of inferior splanchnic afferent fibers [241] 

indicating the modulation of the nociceptive visceral input by Ucn 2. However, additional 

mechanisms may be involved. CRF-R2 is expressed on colonic enterochromaffin and 

mucosal mast cells, and myenteric cell bodies and fibers [27, 222, 265–267]. Ucns-CRF-R2 

activation can modulate transmitter release from entechromaffin cells, mast cells and 

myenteric neurons stimulated by CRF-R1.

8. CRF PEPTIDES INFLUENCE ON GUT FUNCTION AND VISCERAL 

SENSITIVITY IN HUMAN SUBJECTS

8.1. Biological Actions of CRF in Healthy Subjects

Similar to rodent reports, CRF/Ucns and CRF receptors are localized in human colonic 

enteric nervous system, mast cells, macrophages and enterochromaffin cells [29, 30, 267–

272]. Functional studies also demonstrated that peripherally injected CRF in healthy human 

subjects largely reproduces the biological actions observed in experimental animals, namely 

the increased colonic motility, intestinal permeability, mast cell activation and visceral 

hypersensitivity [273, 274].

In healthy human volunteers, CRF applied intranasally, a route established to maximize the 

delivery of peptides or drugs into the brain [275, 276] results in a rise in gastric pH 

associated with a change in mood while circulating cortisol levels are not altered indicating 

the recruitment of CRF central pathways to inhibit acid secretion [277]. Other functional 

studies showed that systemic injection of CRF increases the motility index in the descending 

colon in both healthy volunteers and more so in IBS patients [274]. Recent investigations 

also indicate that systemic injection of CRF constricts the small intestine, increases volume 

in the ascending colon, and induces a sense of distention and bloating in healthy volunteers 

[278]. There are also convergent reports that systemic bolus injection of CRF lowers pain 

threshold to repetitive rectal distensions and enhances the intensity of discomfort sensation 

in healthy human subjects [274, 279, 280]. Also consistent with preclinical data, systemic 

injection of CRF increases intestinal permeability in a mast cell-dependent fashion as shown 

by the blockade of CRF action by the mast cell stabilizer disodium cromoglycate [273]. In 
vitro studies in sigmoid colon biopsies of healthy subjects further established that CRF 

increases transcellular permeability and uptake of protein antigens through direct activation 

of subepithelial mast cells where CRF receptors are located [267]. The human 

enterochromaffin-like cells, the BON subclone 1 cells express CRF-R1, and CRF, unlike 

Ucn 2, stimulates 5-HT release and up-regulates the expression of tryptophan hydroxylase, 

the 5-HT synthesizing enzyme, through interaction with CRF-R1 [11]. In view of the 

prominent role of 5-HT in the pathophysiology of IBS [281], this may represent an 
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important site of action of CRF to increase colonic motility and visceral pain in human 

subjects in addition of mast cell activation and permeability changes.

8.2. Therapeutic future of CRF Receptor Antagonists in Stress-sensitive Functional 
Diseases

Irritable bowel syndrome is a functional bowel disease that involves alterations in the 

bidirectional communication between the brain and the gut and is commonly associated with 

psychosocial and psychiatric comorbidity [170, 282]. Both experimental and clinical studies 

in healthy subjects highlight that the activation of central/peripheral CRF-R1 recapitulates 

important features occurring in IBS patients (anxiogenic/hypervigilance behavior, colonic 

mast cell activation and serotonin release, stimulation of colonic propulsive motor function, 

increased intestinal permeability and mucus secretion, watery diarrhea and visceral 

hypersensitivity) [36]. Compelling preclinical studies also established the pivotal actions of 

CRF-R1 antagonists in the brain and/or the gut to abolish or reduce the functional gut 

alterations induced by exogenous administration of CRF /Ucn 1 and endogenously released 

by stress [39]. These lines of evidence supported the conceptual framework that sustained 

activation of the CRF-R1 system at central and/or peripheral sites may be part of underlying 

mechanisms triggering IBS symptoms [36, 39]. Therefore, it raised high expectation 

regarding the potential translational applications of CRF-R1 antagonists for treating IBS 

[283–285].

A large number of small molecules CRF-R1 antagonists have been developed and tested in a 

preclinical setting [17], however, only a few compounds so far have progressed to clinical 

trials [286]. This setback may be related to the formation of reactive metabolites, suboptimal 

pharmacokinetics with prominent tissue accumulation due to lipophilicity, long elimination 

half-life, or high affinity to protein binding [17, 286, 287]. Efforts are still ongoing to 

overcome these issues as shown by recent disclosure of new compounds [132, 288, 289]. 

Among those, NBI-30545, NBI-35965, NGD 98–2 and NGD 9002 have the distinct 

advantage to be orally active and water-soluble [17, 132, 290, 291].

Several double-blind, placebo-controlled clinical studies provided preliminary proof-of-

concept that oral administration of CRF-R1 antagonists dampened stress-related biological 

responses in healthy human subjects. For instance, in a clinical model of generalized anxiety 

evoked by inhaling 7.5% CO2 for 20 min, the CRF-R1 antagonist R317573 (40 mg once 

daily) given for 7 days significantly dampened panic symptom score and generalized anxiety 

compared to placebo [292]. Positron emission tomography studies indicate that the acute 

administration of R317573 at 30 and 200 mg results in dose-related changes in brain activity 

in regions (putamen, amygdala, orbital frontal cortex) behaviorally relevant to anxiety and 

mood regulation [293]. Of relevance, a recent functional magnetic resonance imaging study 

showed that oral administration of the CRF-R1 antagonist, GW876008 (single dose of 20 or 

200 mg) reduced the amygdala activation in response to the anticipation of visceral pain in 

IBS female patients compared to placebo [294]. Consistent reports established that CRF/

CRF-R1 signaling in the CeA is a key component of the neuronal circuitry contributing to 

anxiety-like behavior providing neuroanatomical and biochemical substrata on mechanisms 

that drive the existing reciprocal relationship between visceral pain and affective mood 
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[196]. It may be speculated that the overactivity of the CRF/CRF-R1 in the CeA underlies 

the comorbidity of subset of IBS patients who display hypersensitivity to CRD [295] and 

mood disorders [296].

A few studies using systemic injection of peripherally restricted, -helical CRF9–41 showed 

also beneficial effects to reduce electrical rectal stimulation-induced higher colonic motility 

index, abdominal pain and anxiety in IBS patients compared with healthy subjects [297]. 

The peptide CRF-R1/CRF-R2 antagonist also normalizes the altered EEG activities in IBS 

patients under basal and in response to CRD [298].

However, so far these clinical data have not translated yet in therapeutic use of CRF-R1 

antagonists. Whether the existing or newly developed CRF-R1 antagonists [17, 132] will 

progress to show therapeutic benefits in subsets of IBS patients is still to be established. A 

placebo-controlled, double-blind clinical trial in IBS-diarrhea predominant patients was 

performed using the CRF-R1 antagonist pexacerfont (BMS-562086). Results showed only a 

dose-related trend to reduce visceral pain [299]. The suboptimal treatment (changes in 

ACTH plasma levels under pexacerfont treatment were not assessed), lack of information on 

the central and peripheral CRF-R1 occupancy by CRF antagonist treatment in the absence of 

positron emission tomography ligands and potential role of CRF-R1 splice variants (some of 

which are functional) [11, 300] may be contributing factors. Importantly CRF-R1 

antagonists may improve symptoms mainly under conditions of altered brain/gut CRF/CRF-

R1 signaling that cannot be identified in the heterogeneous populations of IBS patients 

enrolled in clinical studies performed so far. Therefore, whether the existing or newly 

developed CRF-R1 antagonists will provide therapeutic benefits for stress-sensitive diseases 

including IBS [147] or cyclic vomiting syndrome [301] for a subset of patients is still a work 

in progress.

CONCLUDING REMARKS

CRF, urocortins and CRF receptors are expressed in both the brain and gut where they exert 

profound alterations of gastrointestinal functions (Figs. 1, 2). Increasing knowledge has been 

gained during the past decades to localize CRF sites of action in the brain and the gut and to 

characterize the CRF receptor subtypes involved in mediating CRF/urocortins actions (Figs. 

1, 2 & Table 2). Additionally, changes in the ANS activity induced by brain CRF receptor 

activation have been delineated and shown to be largely responsible for the alterations of gut 

function in rodents (Figs. 1, 2). By contrast, the peripheral effects are conveyed by direct 

actions on enteric nervous system, immune and/or endocrine cells within the gut wall in 

experimental animals (Figs. 1, 2) and healthy human subjects. Consistent reports established 

that the activation of central or peripheral CRF signaling during stress plays a key role in 

stress-related alterations with CRF-R1 driving the stimulation of colonic secretory-motor 

function and the development of visceral hyperalgesia (Fig. 2 & Table 2). However, CRF-R1 

antagonists have not yet hold the promise of therapeutic benefits in clinical setting of stress-

sensitive functional bowel disease such as irritable bowel syndrome, in part because of lack 

of adequate knowledge on the biology of the more than 10 variants of CRF-R1 and brain 

CRF receptor occupancy of the antagonists used.
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LIST OF ABBREVIATIONS

ACTH Adrenocorticotropic Hormone

ANS Autonomic Nervous System

ARC Arcuate

CART Cocaine- and Amphetamine-Regulated Transcript

CeA Central Amygdala

CRD Colorectal Distension

CRF Corticotropin Releasing Factor

CRF-R1 Corticotropin Releasing Factor Receptor Subtype 1

CRF-R2 Corticotropin Releasing Factor Receptor Subtype 2

CSF Cerebrospinal Fluid

DVC Dorsal Vagal Complex

ERK Extracellular Signal Regulated Kinase

GLP-1 Glucagon-like Peptide

HPA Hypothalamic-Pituitary Axis

5-HT Serotonin

5-HT3 Serotonin Receptor Type 3

5-HT4 Serotonin Receptor Type 4

IBS Irritable Bowel Disease

IC Intracisternal(ly)

ICV Intracerebroventricular (ly)

IgG Immunoglobulin G

IP Intraperitoneal

IV Intravenous

LH Lateral Hypothalamus
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LC/SC Locus Coeruleus/Subcoeruleus

NE Norepinephrine

N/OFQ Nociceptin/Orphanin FQ

PGE2 Prostaglandin E2

PVN Paraventricular Nucleus of the Hypothalamus

TRH Thyrotropin Releasing Hormone

Ucns Urocortin 1, 2 and 3

VMH Ventromedial Hypothalamus
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Fig. (1). 
Summary of known influence of CRF and related peptides injected into the brain on gastric 

and small intestinal functions: CRF receptor mediating the effects, brain sites of action, and 

neural/hormonal pathways involved.
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Fig. (2). 
Summary of known influence of CRF and related peptides injected into the brain (central) or 

peripherally on colonic functions: CRF receptors mediating the effects, sites of action in the 

brain and the colon and the pathways involved.
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