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ABSTRACT
Glioblastoma, a grade IV astrocytoma, has a poor survival rate in part due to
ineffective treatment options available. These tumours are heterogeneous with areas
of low oxygen levels, termed hypoxic regions. Many intra-cellular signalling
pathways, including DNA repair, can be altered by hypoxia. Since DNA damage
induction and subsequent activation of DNA repair mechanisms is the cornerstone
of glioblastoma treatment, alterations to DNA repair mechanisms could have a direct
influence on treatment success. Our aim was to elucidate the impact of chronic
hypoxia on DNA repair gene expression in a range of glioblastoma cell lines.
We adopted a NanoString transcriptomic approach to examine the expression of 180
DNA repair-related genes in four classical glioblastoma cell lines (U87-MG, U251-
MG, D566-MG, T98G) exposed to 5 days of normoxia (21% O2), moderate (1% O2)
or severe (0.1% O2) hypoxia. We observed altered gene expression in several
DNA repair pathways including homologous recombination repair, non-
homologous end-joining and mismatch repair, with hypoxia primarily resulting in
downregulation of gene expression. The extent of gene expression changes was
dependent on hypoxic severity. Some, but not all, of these downregulations were
directly under the control of HIF activity. For example, the downregulation of LIG4, a
key component of non-homologous end-joining, was reversed upon inhibition of the
hypoxia-inducible factor (HIF). In contrast, the downregulation of the mismatch
repair gene, PMS2, was not affected by HIF inhibition. This suggests that
numerous molecular mechanisms lead to hypoxia-induced reprogramming of the
transcriptional landscape of DNA repair. Whilst the global impact of hypoxia on
DNA repair gene expression is likely to lead to genomic instability, tumorigenesis
and reduced sensitivity to anti-cancer treatment, treatment re-sensitising might
require additional approaches to a simple HIF inhibition.
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INTRODUCTION
Glioblastoma (GBM) is a highly aggressive and infiltrative grade IV astrocytoma, the most
common malignant brain tumour in adults (Dolecek et al., 2012). Survival rates remain
low partly due to the limited treatment options available. Standard protocols involve
initial resection of the tumour mass, which is challenging due to the undefinable tumour
border. Therefore, post-surgery radiotherapy and chemotherapy are essential for disease
control. Radiotherapy is typically delivered as multiple fractions with a 60 Gy total
dose (Chang et al., 1983; Omuro & DeAngelis, 2013). Temozolomide an alkylating agent, is
the sole chemotherapeutic agent used for GBM in the U.K. Using temozolomide as an
adjuvant increases mean survival rate compared to radiotherapy alone (Athanassiou et al.,
2005). However, in order for temozolomide to be effective, the O6-methylguanine-DNA
methyltransferase (MGMT) gene must be silenced, leaving non-silenced patients with
even fewer treatment options (Brada et al., 1999; Glassner et al., 1999; Esteller, Garcia-
Foncillas & Andion, 2000; Hegi et al., 2005). Alternative therapies currently under
investigation include PARP inhibitors, and vaccine-based therapies (Zhang et al., 2004;
Cheng et al., 2005; Liau et al., 2018). Despite many attempts to improve GBM outcome,
survival over five years is close to zero, with numerous barriers to successful GBM
treatment still remaining. One such barrier is tumour hypoxia, which can negatively
influence the effectiveness of both radiotherapy and temozolomide treatment and is
associated with poor patient survival for GBM and for many other solid tumours
(Marampon et al., 2014; Ge et al., 2018).

Spatial and temporal heterogeneity of oxygen availability arises due to the formation of
aberrant vasculature, prone to leaks and bursts, and large diffusion distances between
oxygen rich vessels and tumour cells (Vaupel, Rallinoâ & Okunieff, 1989; Vaupel &
Harrison, 2004). In the brain, healthy oxygen levels range from 5–8%, yet in GBM,
cells are exposed to as little as 0.5% to 3% O2 (Rampling et al., 1994), defined as
pathophysiological hypoxia. In terms of reducing anti-cancer therapy effectiveness,
hypoxia can alter DNA repair mechanism through epigenetic modifications, transcription
and translation alterations, and post-translational modifications of DNA repair proteins
(reviewed in Scanlon & Glazer, 2015). DNA damage response is the cornerstone of
GBM therapy: both radiotherapy and temozolomide target DNA, causing high levels of
DNA damage which overwhelms repair mechanisms leading to the induction of apoptosis
via p53 activation (Banin et al., 1998; Canman et al., 1998; Epstein et al., 2001; Turenne
et al., 2001; Saito et al., 2002).

Hypoxia has been shown to transcriptionally downregulate homologous recombination
repair (HRR) components leading to reduced HRR capacity (Bindra et al., 2004, 2005;
Meng et al., 2005; Bindra & Glazer, 2007; Bindra, Crosby & Glazer, 2007; Chan et al., 2008).
Also, components of nucleotide excision repair are downregulated by hypoxia even
after periods of reoxygenation (Dudás et al., 2014). In addition, we previously showed that
NBN and MRE11, members of a DNA double strand break recognition complex are
downregulated by chronic but not acute hypoxia (Cowman et al., 2019). These studies
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exemplify the fact that hypoxia can influence DNA repair, however, there has been
little exploration of the global impact of long-term hypoxia on DNA repair gene expression
in glioblastoma.

We adopted a NanoString transcriptomic approach to assess the impact of chronic
hypoxia on DNA repair genes in glioblastoma cell lines. We found that hypoxia specifically
affects mismatch repair (MMR), non-homologous end-joining (NHEJ) and homologous
recombination repair (HRR). Additionally, we provide evidence that the hypoxia
inducible factor (HIF) play a role in downregulation of some, but not all, key DNA repair
genes. Downregulation of DNA repair genes by hypoxia will have significant clinical
impact for cancer management and should be considered when designing new treatment
methods and protocols.

MATERIALS AND METHODS
Reagents
Cell culture reagents were from Gibco Life Technologies and Foetal Calf Serum from
Harlam Seralab (UK). Acriflavin was purchased from Sigma Aldrich. β-Actin (Ab8226),
PMS2 (Ab110638) and anti-mouse HRP (Ab6808) antibodies were from abcam. HIF-1a
(20960-1-AP) and HIF-2a (A700-003) were from Bethyl. Anti-rabbit HRP (7074S)
antibody was from Cell Signalling.

Cell culture
U87-MG (p53 wild type, MGMT methylated) and T98G (p53 mutant, MGMT
unmethylated) were purchased from ATCC. U251-MG (p53 mutant, MGMT methylated)
were purchased from CLS. D566-MG cells (p53 mutant, MGMT unknown) were a
kind gift from Prof. DD Bigner (Duke University, USA). U87-MG and T98G were
cultured in modified Eagle’s Medium (EMEM) with 10% FCS, 1% Sodium pyruvate.
D566-MG and U251-MG were cultured using EMEM, 10% FCS, 1% sodium pyruvate and
1% non-essential amino acids. Cells were maintained at 37 �C in 5% CO2. For hypoxic
experiments, cells were incubated in a Don Whitley H35 Hypoxystation for 1% O2 or a
New Brunswick Galaxy 48R incubator for 0.1% O2. Cells were routinely tested for
mycoplasma infection.

NanoString assay
Cells were cultured in 6 cm dishes for 5 days at 21%, 1% or 0.1% O2. RNA was extracted
using High Pure RNA Extraction kit (Roche, Basel, Switzerland). A total of 100 ng of
total RNA was used in the NanoString assay. The expression of 180 DNA repair genes, plus
12 housekeeping genes, were assessed using the NanoString nCounter VantageTM RNA
Panel for DNA Damage and Repair (LBL-10250-03) following the manufacturer’s
protocol. Analysis of the NanoString data was conducted using nSolverTM Analysis
Software (3.0) with nCounter� Advanced Analysis plug-in (2.0.115). Data are available
at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139250 and in Supplemental
Dataset 1.
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Real time PCR
RNA was extracted using High Pure RNA Extraction kit (Roche, Basel, Switzerland).
Reverse transcription was conducted using SuperScript� VILO (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s guidelines. RT-PCR experiments were performed and
analysed as described in Cowman et al. (2019). Primer sequences used were as follows:
LIG4 Forward: TCCCGTTTTTGACTCCCTGG Reverse: GGCAAGCTCCGTTACC
TCTG, ABL Forward: TGGGGCATGTCCTTTCCATC Reverse: GATGTCGGCAGTGA
CAGTGA, ERCC4 Forward: CTCCCTCGCCGTGTAACAAA Reverse: ACACCAA
GATGCCAGTAATTAAATC, FEN1 Forward: GTTCCTGATTGCTGTTCGCC Reverse:
ATGCGAATGGTGCGGTAGAA, MSH5 Forward: GTTTGCGAAGGTGTTGCGAA
Reverse: GTCTGAGACCTCCTTGCCAC, PARP1 Forward: GCCCTAAAGGCT
CAGAACGA Reverse: CTACTCGGTCCAAGATCGCC, UBE2T Forward: ATGTT
AGCCACAGAGCCACC Reverse: ACCTAATATTTGAGCTCGCAGGT,WRN Forward:
TCACGCTCATTGCTGTGGAT Reverse: CAACGATTGGAACCATTGGCA, PMS2
Forward: AGCACTGCGGTAAAGGAGTT Reverse: CAACCTGAGTTAGGTCGGCA,
CYCLOA Forward: GCTTTGGGTCCAGGAATGG Reverse: GTTGTCCACAGTCAG
CAATGGT. Cyclophillin A was used as a housekeeping gene.

Identification of hypoxia response elements
The DNA sequence for LIG4 (NM_001352604.1) and PMS2 (NM_000535.7) was obtained
through the UCSC Genome Browser using human genome assembly h38 (Kent et al.,
2002). The DNA sequence upstream of the first exon for each gene was examined for the
consensus hypoxic response element, RCGTG, where R is A or G.

Western blotting
Western blotting was performed as described in Cowman et al. (2019). Briefly, 30–40
µg of protein were separated on 10% SDS–PAGE gels. Proteins were transferred
onto nitrocellulose membrane (0.2 µm), followed by primary and secondary antibody
incubation. Signal was developed using Amersham ECL PrimeWestern blotting Detection
reagent (GE Healthcare, Chicago, IL, USA), and images taken using a G:BOX gel imaging
system (Syngene, Cambridge, UK).

Statistical Analyses
Student T-tests were performed using GraphPad Prism 6, for comparisons of means.

RESULTS
HRR, NHEJ and MMR are strongly regulated by hypoxia in a range of
hypoxic GBM cell lines
To explore the global impact of tumour hypoxia on the expression of DNA repair genes
in GBM cells, we used a NanoString assay. The NanoString nCounter gene expression
system is a multiplexed assay, deemed more sensitive that RT-PCR and microarrays with
less computationally heavy analysis than microarrays (Geiss et al., 2008). Four classical
GBM cell lines (U87-MG, U251-MG, D566-MG and T98G), selected for their varied p53,
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MGMT status, and hypoxia sensitivity were cultured in three different oxygen tensions
(21%, 1% and 0.1% O2), and GLUT1 or VEGFA levels assessed by RT-PCR to confirm
hypoxia had indeed resulted in hypoxia-induced gene expression changes (Fig. S1).
Our previous work determined that hypoxia does not impact cell death, doubling time, or
cell proliferation of these cell lines (Richards et al., 2016). The DNA repair genes assessed
by the NanoString assay, were pre-assigned to annotation groups representing cell
signalling and DNA repair pathways. Directed global significance scores (DGS), which
measure overall differential regulation and direction, were calculated for each cell
line in 1% and 0.1% O2 (Fig. 1). Across all four cell lines, a number of pathways were
downregulated, including apoptosis, mismatch repair (MMR), non-homologous

Figure 1 Apoptosis, NHEJ, HRR and MMR are downregulated in multiple hypoxic GBM cell lines.
(A) U87-MG, (B) U251-MG, (C) D566-MG and (D) T98G cells were incubated in 21%, 1% or 0.1% O2

for 5 days before gene expression analysis. Directed global significance scores were calculated for each
defined annotation group and cell line, in 1% and 0.1% O2, using the NanoString nSolver Advanced
Analysis Software (see methods). Scores are represented in a heat map, where red and blue represent up
and downregulation respectively. Data is representative of three independent experiments.

Full-size DOI: 10.7717/peerj.11275/fig-1
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end-joining (NHEJ) and homologous recombination repair (HRR) (Fig. 1). MMR, NHEJ
and HRR, are the core repair pathways involved in repairing temozolomide and
radiation-induced DNA damage in GBM (D’Atri et al., 1998; Cahill et al., 2007; Kondo
et al., 2009;McFaline-Figueroa et al., 2015). Whilst previous reports show conflicted results
on hypoxia-induced changes to NHEJ, with both up and down-regulation of genes
(Scanlon & Glazer, 2015), we here observed predominantly a downregulation of this
pathway. In addition, the observed downregulation of the HRR pathway in hypoxia is in
line with previous findings, and the impact of hypoxia on HRR efficiency has already been
well characterised (Bindra et al., 2004, 2005; Meng et al., 2005; Bindra & Glazer, 2007;
Bindra, Crosby & Glazer, 2007; Chan et al., 2008).

Interestingly, increasing hypoxic severity from 1% to 0.1% O2 drastically enhanced the
regulation of each annotation group, especially in D566-MG cells (Fig. 1), and also
increased the number of significantly regulated genes in this cell line (Fig. 2C). This
correlates with the increase in GLUT1 mRNA levels, a classical hypoxia marker, in 1%
compared to 0.1% O2 for D566-MG (Fig. S1). Beyond the specific D566-MG cells, more
genes reached statistical significance at 0.1% O2 in all cell lines, except for U251-MG
(Fig. 2B), which had no dose-dependent response of VEGFA expression in hypoxia
(Fig. S1). In U87-MG, 20 genes reached the strictest significance threshold of p < 0.001 in
0.1% O2 compared to 10 genes in 1% O2 (Fig. 2A). In contrast, T98G displayed strong
fold changes yet few genes reached statistical significance (Fig. 2D). To validate the
NanoString results and determine the robustness of the data, several gene candidates,
which showed strong regulation in more than one cell line, were measured by RT-PCR
and showed good consistency (Fig. S2). The NanoString assay therefore enabled us to
successfully assess the extent of DNA repair gene expression alteration in GBM cell lines
exposed to chronic hypoxia.

Essential components of NHEJ and MMR are downregulated by
hypoxia
The mismatch repair pathway removes incorrectly inserted nucleotides added during
DNA replication, or removes modified bases generated by a DNA damaging agent.
A sliding clamp composed of MutSa (MSH2, MSH6) and MutLa (MLH1, PMS2) actively
translocates along the DNA in search of discontinuity (Gradia, Acharya & Fishel, 1997;
Blackwell et al., 1999; Gradia et al., 1999; Iaccarino et al., 2000). EXO1 is responsible
for nucleotide excision, and DNA polymerases replace excised nucleotides (Longley, Pierce
& Modrich, 1997; Zhang et al., 2005). The MMR pathway is essential for effective
temozolomide activity (D’Atri et al., 1998; Cahill et al., 2007; McFaline-Figueroa et al.,
2015). The expression of 13 components of MMR were assessed in the NanoString
assay (Figs. 3A and 3B). Whilst MSH6, part of the MutSa complex, was unaffected by
hypoxia, MSH2 was strongly downregulated 2.3-fold in D566-MG and 2.0-fold in
T98G incubated in 0.1% O2 (Fig. 3B), yet little change was observed at 1% O2. PMS2, a
central component of the MutLa complex and a key player in temozolomide resistance
(D’Atri et al., 1998), was also downregulated in 1% O2 and 0.1% O2 for T98G (0.1% =
2.0-fold), D566-MG (0.1% = 2.6-fold) and U87-MG (0.1% = 1.6-fold) (Figs. 3A and 3B),
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Figure 2 DNA repair gene regulation by hypoxia is observed across all GBM cell lines. Gene
expression data for (A–B) U87-MG, (C–D) U251-MG, (E–F) D566-MG and (G–H) T98G in 1% or 0.1%
O2 is represented as log2 fold change with respect to 21% O2 for each gene, plotted with log10 p-value.
Each point represents the average of three experimental replicates. Green filled circles signify genes that
have a p-value below the p < 0.01 threshold (dotted line). Dashed line is at p = 0.001. Grey hollow circles
represent non-statistically significant genes. The top five statistically significant genes are identified with
the gene name. Full-size DOI: 10.7717/peerj.11275/fig-2
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Figure 3 PMS2 and LIG4, essential components of MMR and NHEJ are downregulated in multiple
cell lines. Differential gene expression was calculated for each gene as log2 fold change for (A) MMR
genes in 1% O2, (B) MMR genes in 0.1% O2, (C) NHEJ genes in 1% O2, and (D) NHEJ in 0.1% O2, with
respect to the expression level at 21% O2. Red shaded area denotes fold change values below the
+/−0.58log2fold (+/−1.5-fold) threshold of change. Blue area denotes fold change values above the
designated threshold. Filled shapes represent data which is statistically significant (p < 0.01), whereas
hollow shapes show no statistical significance. Data are represented as the mean of three independent
experiments. Full-size DOI: 10.7717/peerj.11275/fig-3
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and was additionally a top hit in D566-MG (Fig. 2C). However, there was no change to
MLH1, the binding partner of PMS2, in line with previous studies (Koshiji et al., 2005).
Other changes include the downregulation ofMSH5 in a number of cell lines in 1% O2 and
0.1% O2, with particularly strong downregulation in D566-MG (4.1-fold) at 0.1% O2

(Fig. 3B). MSH5 is primarily involved in meiosis (Bocker et al., 1999; Snowden et al., 2004),
therefore the impact of these hypoxia-induced changes in brain tumour cell lines is
debatable. However, activation of meiotic genes has been shown to aid in the initiation and
maintenance of oncogenesis (McFarlane &Wakeman, 2017), potentially underlying a new
unknown role of the hypoxia-induced changes in MSH5.

NHEJ is a highly error-prone process, yet is the primary pathway for DSB repair.
A DNA-PK and Ku (Ku70/Ku80) complex recognises the DSB (Gottlieb & Jackson, 1993;
Kurimasa et al., 1999). The ends of DNA are processed by various enzymes including
Artemis, PNK, WRN and DNA polymerases (Mahaney, Meek & Lees-Miller, 2009),
followed by re-joining by DNA Ligase IV complexed with XRCC4. Little consensus has
been achieved as to the impact of hypoxia on NHEJ. Components of the damage
recognition complex (Ku70-XRCC6, Ku80-XRCC5, DNA-PK-PRKDC) remain largely
unaffected by hypoxia. However, in all cell lines tested, LIG4 (DNA Ligase IV) was
downregulated at least 1.5-fold in hypoxia (1% and 0.1% O2.), although, this was only
statistically significant in U87-MG (Figs. 3C and 3D). Interestingly, the extent of
downregulation appears to strengthen with increasing hypoxia severity. In contrast, the
expression level of XRCC4, the binding partner of DNA Ligase IV, was not impacted by
hypoxia (Figs. 3C and 3D). Although, XRCC4 and DNA Ligase IV are both essential
for effective NHEJ, there is no evidence to suggest their transcription is co-regulated.
Therefore, it is feasible that hypoxia can impact the expression of each gene in different
ways. Work by Meng et al. (2005), observed similar hypoxia-induced gene expression
changes for LIG4, with no change in XRCC4 (Meng et al., 2005).

Overall, gene expression for components of both MMR and NHEJ were significantly
impacted by hypoxia. Primarily, downregulation was observed, which could lead to
reduced functionality of the repair pathways if the accessible pool of DNA repair proteins
has been depleted. PMS2 and LIG4, essential components of their respective repair
pathways, are involved in chemoresistance (D’Atri et al., 1998; Adachi et al., 2002; Kondo
et al., 2010), and were downregulated in at least two cell lines in both 1% and 0.1% O2.
Therefore, the mechanisms of regulation of these two genes was further examined.

Chronic and acute hypoxic exposure leads to PMS2 and LIG4
downregulation
Despite the fact that hypoxic exposure in tumours is long-term, alterations to DNA repair
gene expression by hypoxia are commonly explored upon acute hypoxic exposure.
To determine the duration of hypoxia necessary to trigger downregulation of PMS2 and
LIG4, their level of expression in 1% O2 was assessed over-time in D566-MG cells, the
cell line in which the strongest regulation for these target genes was observed (Fig. 4A).
Both PMS2 and LIG4 were downregulated after only one day of hypoxic exposure and
remained downregulated over the 5-day period (Fig. 4A). Besides the transcriptional
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regulation, PMS2 protein levels were also downregulated by chronic hypoxia in D566-MG,
and U87-MG (Fig. 4B), suggesting that the gene expression changes translate to the protein
level. LIG4 protein levels could not be measured due to the lack of availability of a
good quality antibody.

Previous studies demonstrated the involvement of HIF in the alteration of DNA
repair gene expression. For example, downregulation of NBN, a component of HRR, arises
due to the displacement of MYC by HIF at the NBN promoter (To et al., 2006).
Examination of DNA sequence upstream of the initiating codon revealed that both PMS2
and LIG4 contained the consensus core hypoxia response element sequence RCGTG,
where R is G or A. This suggests that HIF may be responsible for the hypoxia-induced
regulation of PMS2 and LIG4. The HIF pathway forms a negative feedback loop with
the prolyl hydroxylase domain-containing protein 2 (PHD2) (Stiehl et al., 2006; Bagnall
et al., 2014), resulting in a transient accumulation of HIF and lower levels after extended

Figure 4 PMS2 and LIG4 are downregulated after acute and chronic hypoxic exposure. (A) D566-MG
cells were incubated in 1% O2 for 1-5 days, as well as 21% O2. After incubation, RNA was extracted and
converted to cDNA for RT-PCR experiments, probing for LIG4 and PMS2. Data is represented as log2
fold change in mRNA levels with respect to level for the 21% O2 samples. Data are the mean of at least
three independent experiments, with error bars showing S.E.M. � Denotes significant data where p < 0.05
indicated by one-way student t-test. (B) Western blot of PMS2 in D566-MG and U87-MG cells, incu-
bated in 21%, 1% or 0.1% O2 for 5 days. β actin was used as a loading control. Experiments were per-
formed in triplicate, a representative blot is shown. Full-size DOI: 10.7717/peerj.11275/fig-4
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periods of hypoxia, typically after 12 h. However, in D566-MG and U87-MG cells, after
5 days of hypoxic exposure, HIF-1a remained high, with similar levels at 6 h and 24 h, and
HIF-2a remained relatively consistent through the time course (Fig. 5A). To test the
involvement of HIF in the expression levels of LIG4 and PMS2, we initially aimed to use a
silencing strategy. However, both D566-MG and U87-MG were highly sensitive to siRNA
transfection performed to knockdown HIF, therefore a pharmacological approach was
adopted. Acriflavin can inhibit HIF-1 and HIF-2 through binding to the PAS-B subdomain
in the a subunit, preventing dimerisation of the a and β subunits, and reducing HIFs
transcriptional activity (Lee et al., 2009). Treatment with acriflavin was sufficient to reduce
hypoxia-induced GLUT1 expression, a typical HIF target gene (Fig. S3A). In both
D566-MG and U87-MG cell lines, acriflavin opposed hypoxia-induced LIG4 mRNA
regulation, although this was not statistically significant (Fig. 5B). In contrast, the level of
PMS2 was not altered by acriflavin treatment (Fig. S3B), suggesting different mechanisms
of regulation for both genes, and that HIF is not the only player in hypoxia-induced
regulation of DNA repair genes.

Figure 5 HIF inhibition by Acriflavin restored LIG4 downregulation. (A) HIF-1a and HIF-2a are
upregulated in chronic hypoxia. U87-MG and D566-MG cells were incubated in 1% O2 and 21% O2 for
0–120 h. Protein was extracted and the levels of HIF-1a and HIF-2a determined by western blotting in
two independent experiments. A representative blot is shown with quantification of the bands, nor-
malised to T0 (B) D566‑MG and U87-MG cells were incubated in 21% and 1% O2 for 24 h with and
without 5 µMAcriflavin. LIG4mRNA levels were measured by RT-PCR. Data are represented as log2 fold
change in mRNA levels with respect to 21% O2 samples. Data are the mean of at least three independent
experiments, with error bars showing S.E.M. Full-size DOI: 10.7717/peerj.11275/fig-5
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DISCUSSION
Tumour hypoxia plays an essential role in tumour progression, metastasis and drug
resistance, leading to poor patient outcome, particularly for GBM patients. Hypoxia has
been shown to impact numerous signalling pathways including the cell cycle, metabolism
and apoptosis, yet additionally, hypoxia can have a significant impact on DNA repair
mechanisms. We have shown here that several key DNA repair pathways were
downregulated by hypoxia, including MMR and NHEJ, both essential pathways for the
repair of modified/mismatch bases and double strand breaks respectively. Further
analysis determined that PMS2 (MMR) and LIG4 (NHEJ), essential components of
their respective pathways, were downregulated across multiple cell lines after chronic and
acute hypoxic exposure, providing potential targets for re-sensitisation of hypoxic tumour
cells to DNA damaging therapies.

Mismatch repair an essential repair pathway for temozolomide efficacy
We observed hypoxia-induced downregulation of PMS2 (Figs. 3A and 3B), a vital
component of MMR, involved in the search for discontinuity in DNA. MMR is required
for repair of mismatched bases resulting from replication errors or DNA damaging agents.
Defects in any of the critical MMR repair proteins (PMS2, MLH1, MSH2, MSH6), can
lead to hypermutation and microsatellite instability, due to the increased number of point
mutations (Kim et al., 1999). These point mutations drive tumorigenesis and cancer
progression, which will directly contribute to poor patient outcome. In multicellular brain
tumour spheroids, downregulation of PMS2 andMLH1 promoted the initiation of tumour
cell formation and growth (Collins et al., 2011). In addition, in 1996, the link between
MMR and cisplatin resistance was established, when cisplatin-resistant human ovarian
adenocarcinoma cells were found to have reduced MLH1 protein (Aebi et al., 1996). In the
same year, the downregulation of both MLH1 and MLH2 was found to induce cisplatin
and carboplatin resistance (Fink, Aebi & Howell, 1998), although this was only a
low-level resistance. We see little change in the gene expression of MLH1 and MLH2,
however, previously, we have reported that indeed, hypoxia causes low-level resistance to
cisplatin in GBM cells (Cowman et al., 2019), which could be due to PMS2 downregulation.
MMR contribution to cisplatin toxicity has been well described, yet other DNA repair
pathways may also play a role (Pani et al., 2007). More importantly for GBM, MMR
is essential for temozolomide-induced apoptosis. The O6-methylguanine lesions
inappropriately paired with thymine, are recognised and repaired by MMR. This results in
thymine excision creating a long gap in the DNA which is filled and sealed. However,
during this process thymine is matched again with the O6-methylguanine resulting in a
futile repair cycle. This leads to the formation of a double-strand breaks during replication,
which triggers cell death via apoptosis (Klapacz et al., 2009; Karran & Bignami, 1994;
Kaina & Christmann, 2019; D’Atri et al., 1998). Thus, MMR is required for TMZ efficacy.
Conversely, loss of double-strand break repair systems such as homologous recombination
repair can enhance TMZ effectiveness as these newly formed breaks go unrepaired.
Loss of the MMR component, MSH6, has been associated with increased tumour
progression during temozolomide treatment in GBM (Cahill et al., 2007), and alterations
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of MSH2 expression can predict patient response to temozolomide therapy, with reduced
expression correlating with decreased overall patient survival (McFaline-Figueroa et al.,
2015). Downregulation of PMS2 in hypoxia could have a significant clinical impact for
GBM by contributing to increased mutation rate driving tumorigenesis and reduced
sensitivity to temozolomide.

DNA Ligase IV is crucial for NHEJ fidelity
NHEJ is essential for effective induction of apoptosis by temozolomide treatment
(Kondo et al., 2009). Among the key components of NHEJ, we observed a significant
hypoxia-induced downregulation of LIG4 in multiple GBM cell lines, in line with previous
observations (Meng et al., 2005). DNA Ligase IV is essential for re-joining broken DNA
ends, yet is also required to prevent degradation of the ends of DNA, thus promoting
accurate re-joining (Smith et al., 2003). Cell lines with hypermorphic mutations in LIG4,
resulting in residual DNA Ligase IV function, are able to perform end-joining yet with
reduced fidelity. In mice, loss of a single allele of LIG4 results in the formation of soft tissue
sarcomas, as a result of increased genomic instability (Sharpless et al., 2001). Therefore,
downregulation of LIG4 may reduce the effectiveness of NHEJ, thereby promoting
genomic instability and further fuel tumorigenesis. However, in contrast, LIG4 deficient
cell lines have been shown to be more sensitive to ionising radiation (Adachi et al.,
2002). Additionally, work by Kondo et al found that LIG4 deficient cells were also more
sensitive to temozolomide and Nimustine (ACNU), and siRNA of LIG4 enhanced cell
lethality of both chemotherapeutics (Kondo et al., 2009, 2010). Although an increased
genetic instability potentially arising due to LIG4 downregulation may drive development
and progression of GBM, the potential positive impact of increased temozolomide
sensitivity may outweigh this negative implication. This highlights the double-edged sword
of hypoxia, where both pro- and anti-cancer adaptations arise, which can be complex and
difficult to untangle. Discovery of targeted therapies, which can exploit the anti-cancer
components of tumour hypoxia would be advantageous, yet for this to occur further
understanding of the molecular mechanism of hypoxia-induced changes needs to be
gained.

The role of HIF in hypoxia-induced DNA repair gene regulation
Long term hypoxia-induced changes in DNA repair gene expression can be orchestrated
by a range of mechanisms, including epigenetic modifications. For example, alterations to
histone methylation and acetylation at the promoters of BRCA1 and RAD51 leads to
reduced gene expression (Lu et al., 2011). However, short-term transient changes to DNA
repair gene expression are more commonly studied, with mechanisms both dependent and
independent of HIF being described. Using an inhibitor of HIF, we showed that HIF is
involved in the downregulation of LIG4 but not PMS2 in hypoxic GBM cells (Fig. 5B).
HIF can directly modulate the transcription of genes through binding at the hypoxic
response elements within promoters of DNA repair genes. However, the presence of
hypoxic response elements does not guarantee direct HIF regulation. For example, in the
MLH1 promoter, hypoxia response elements have been identified (Mihaylova et al., 2003)
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suggesting direct HIF regulation, yet a mechanism of MLH1 downregulation independent
of HIF have also been discovered (Mihaylova et al., 2003; Koshiji et al., 2005;
Rodríguez-Jiménez et al., 2008).

On the other hand, other genes are altered in a HIF-independent way, such as for
example, via the E2F transcription factor binding in hypoxia. Indeed, in normoxia, the
expression of BRCA1 is mediated through the binding of the activating factor E2F1 as
well as the E2F4/P130 suppressor. However, under hypoxic conditions, p130 binding to
E2F4 is enhanced, due to alterations to p130 post-translational modifications. This results
in an increase in E2F4/p130 transcriptional suppressor binding at the BRAC1 promoter,
reducing the rate of transcription (Bindra et al., 2005). Regulation of RAD51 and
FANCD2 is thought to also occur by an E2F related mechanism (Bindra & Glazer, 2007;
Scanlon & Glazer, 2014). The regulation of PMS2 may be through a similar mechanism.

CONCLUSIONS
We have shown that chronic hypoxia results in the downregulation of multiple DNA
repair pathways in GBM including essential components of MMR and NHEJ pathways.
These alterations will likely not only impact chemotherapeutic treatment efficiency but
also enhance the tumour genomic instability, hence further fuelling its development.
The development of HIF inhibitors for cancer treatment is currently a popular area of
research (reviewed in Fallah & Rini, 2019), and will undoubtedly be of great benefit for
reducing the undesirable pro-tumorigenic impact of hypoxia. However, HIF is not the sole
regulator of the hypoxia-induced reprogramming of the transcriptional landscape of DNA
repair, as we have shown here with PMS2 regulation. Whether HIF inhibition could be
sufficient to re-sensitise hypoxic brain tumour cells to radio- and chemotherapy will
require further investigation.
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