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ABSTRACT We characterized a multidrug-resistant (MDR) Enterobacter spp. isolate
highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter
spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a
patient admitted to a Brazilian tertiary hospital and submitted to further microbiological
and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp.
xiangfangensis strain ST451, showing an MDR profile and the presence of genes codify-
ing the new b-lactamase variants BKC-2 and ACT-84 and the mobile colistin resistance
gene mcr-9.1.
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In the past decade, the dramatic increase in the prevalence and clinical impact of
infections caused by carbapenemase-producing bacteria became a global health con-

cern. Carbapenemase production is especially problematic when encountered in
Enterobacterales members because of their great ability to spread in healthcare set-
tings, resulting in health and economic burdens (1). Brazilian Klebsiella carbapenemase
(BKC) is a serine carbapenemase identified for the first time in 2015 from clinical isolates
of Klebsiella pneumoniae collected in 2008 (2). BKC-1 is able to hydrolyze penicillins,
cephalosporins, monobactams, and carbapenems but not cephamycins and has oxacil-
lin as preferential hydrolytic substrate (2). blaBKC-1 is usually carried by a 10-kb IncQ plas-
mid and associated with aph(3)-VI and ISKpn23, an insertion sequence belonging to the
IS1380 family; however, this resistance gene has been characterized in only a few strains
(2–5).

A mobile colistin resistance gene, mcr, which mediates the addition of phosphoe-
thanolamine (pEtN) on bacterial lipopolysaccharide, has been a cause of great concern
worldwide (6). So far, 10 variants of mcr genes have been deposited in GenBank. The
coproduction of carbapenem and colistin resistance drastically hinders therapeutic
options in hospital settings because these mechanisms are frequently associated with
non-b-lactam antimicrobial resistance (7).

Herein, we report a new allele of BKC, BKC-2, in MCR-9.1-producing Enterobacter
spp., recovered in a Brazilian hospital in São José do Rio Preto, São Paulo, Brazil. The
microbiological and molecular properties of BKC-2 have been assessed to evaluate the
spectrum of resistance conferred by BKC-2 and the capability of blaBKC-2 to be mobilized
and/or transferred.

During a surveillance study conducted from January 2013 to December 2017, a mul-
tidrug-resistant (MDR) isolate belonging to the Enterobacter cloacae complex (Ec61)
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was obtained from a transtracheal aspirate culture that was collected in 2014 from a
patient admitted to the general intensive care unit. Due to the MDR phenotype, the iso-
late was screened for the presence of carbapenemases and other antimicrobial resist-
ance genes (ARGs) by PCR (see Text S1 in the supplemental material). Antimicrobial sus-
ceptibility testing was performed by broth microdilution (BMD) and interpreted
according to EUCAST v.10.0 clinical breakpoints (8). PCR assay of ARG showed the pres-
ence of blaBKC, blaSHV, aac(69)-Ib, and aph(39)-IV genes on the Ec61 isolate. Interestingly,
to date, only a single isolate of non-Klebsiella pneumoniae carrying blaBKC-1 has been
reported (5). Susceptibility profile results confirmed the MDR profile with resistance to
most tested antimicrobials (Table 1).

Molecular techniques were used to better characterize Ec61. Initially, the plasmid
was characterized by using S1-pulsed-field gel electrophoresis (S1-PFGE) followed by
hybridization to blaBKC (9). Conjugation experiments were performed by using the az-
ide-resistant Escherichia coli strain J53 as the recipient cell at room temperature, 37°C,
and 42°C in biological triplicate. Transconjugants were selected on UTI ChromoSelect
agar (Merck, NJ, USA) containing 200mg/liter of ampicillin or 0.5mg/liter of colistin to
screen for blaBKC and mcr, respectively. The S1-PFGE pattern suggested the presence of
three plasmids in Ec61, with blaBKC located on an ;10-kb plasmid (data not shown)
according to the hybridization results. The same results were previously observed for
BKC-1-producing K. pneumoniae and Citrobacter freundii (2, 3). Despite several attempts,
conjugation experiments failed to transfer the plasmid carrying blaBKC.

Whole-genome sequencing (WGS) was performed by the Illumina MiSeq platform
(MiSeq reagent V3 kit/2� 300 cycles) and MinION (Oxford Nanopore, UK). Hybrid de
novo assembly was performed using Unicycler (v0.4.0) (10), and the automatic annota-
tion was performed using RAST version 2.0 (https://rast.nmpdr.org/). Average nucleo-
tide identity (ANI) was performed to identify the Ec61 bacterial species, using an ANI
value of .95% as a threshold for species and .98% for subspecies definition (Text S1)
(11). ResFinder v.3.2, MLSTfinder v.2.0.4 based on an E. cloacae scheme, and
PlasmidFinder v.2.1 were used for initial characterization of the ARG, MLST, and plasmid
replicons present on the Ec61 isolate. ANI analysis confirmed Ec61 to be Enterobacter
hormaechei subsp. xiangfangensis, with 99.28% nucleotide identity to the reference

TABLE 1 Susceptibility profile of Enterobacter hormaechei subsp. xiangfangensis isolates carrying blaBKC-2 (Ec61), transformants, and clones
carrying blaBKC-1 and blaBKC-2

Antimicrobial agent

MIC (mg/liter)

Ec61
(wild type)

TfBKC-1 (E. coli
Top10+p60136
[blaBKC-1])

TfBKC-2 (E. coli
Top10+pEc61C
[blaBKC-2])

Top 10
(E. coli
top 10)

Cl_BKC-1
(E. coli BL21+
pET-26::blaBKC-1)a

Cl_BKC-2
(E. coli BL21+
pET-26::blaBKC-2)a

BL21+ pET26
(E. coli BL21+
pET-26)

Ertapenem 16 0.5 0.125 #0.03 0.12 0.015 0.015
Meropenem 2 0.25 0.125 #0.03 0.12 0.06 0.06
Imipenem 4 0.5 0.125 #0.03 0.5 0.5 0.25
Cefepime 256 16 8 #0.03 4 0.03 0.03
Ceftazidime .256 128 64 0.25 8 0.125 0.06
Aztreonam .256 256 64 0.06 8 0.03 #0.015
Amoxicillin .512 .512 256 2 .256 64 2
Ampicillin .512 .512 .512 1 .256 32 1
Cefotaxime 256 256 64 0.06 16 0.12 #0.015
Piperacillin-tazobactam .256/4 NTb NT NT NT NT NT
Ceftazidime-avibactam 2/4 NT NT NT NT NT NT
Amikacin 256 NT NT NT NT NT NT
Gentamicin 64 NT NT NT NT NT NT
Tobramycin 64 NT NT NT NT NT NT
Kanamycin .256 NT NT NT NT NT NT
Levofloxacin 2 NT NT NT NT NT NT
Ciprofloxacin 2 NT NT NT NT NT NT
Colistin 1 NT NT NT NT NT NT
aBMD was performed in the presence of isopropyl-b-D-thiogalactopyranoside 0.2mM.
bNT, not tested.
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sequence NZ_CP017183.1 (see Table S1 in the supplemental material). General genome
features revealed the presence of a 4.8-Mb chromosome with 55.3% GC content and
three plasmids, i.e., pEc61A (149.8 kb), pEc61B (77.6 kb), and pEc61C (8.3 kb) (Fig. 1A).
Ec61 belongs to ST451, a sequence type previously associated with blaKPC-3 in the
United States (12).

Point mutations related to antimicrobial resistance, i.e., gyrA, gyrB, parC, parE, ampD,

FIG 1 (A) Graphic map of the three plasmids detected in E. hormaechei subsp. xiangfangensis carrying blaBKC-2 and mcr-9.1. (B) Colinear analysis of the two
different plasmids harboring blaBKC. Arrows, transcription direction of genes and ORFs. Genes were grouped according to their predictive functions,
indicated by color.
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ampR, ompF, and ompC, were investigated by BLASTN using E. hormaechei ATCC 49162
as a reference strain (accession no. MKEQ01000001 to MKEQ01000004), a well-known
Ser83Phe substitution in GyrA sequence, causing an increase in the MICs for quino-
lones. No additional amino acid substitutions were detected in the quinolone resist-
ance-determining region (QRDR) region of GyrB, ParC, and ParE. Analysis of the genes
encoding the main outer membrane proteins OmpC and OmpF revealed the presence
of mutations on the amino acid chain in the OmpC of the Ec61 isolate and the disrup-
tion of the ompF nucleotide sequence by insertion of a new sequence called ISEcl11.

The ARG analysis initially revealed the presence of blaACT-16*, blaBKC-1*, blaSHV-5, sul1,
sul2, mcr-9.1, fosA2, aac(69)-Ib3, aadA1, aph(39)-VIa, aac(69)-Ib-cr, and tetD (see Fig. S1 in
the supplemental material). However, due to the 97% similarity between genes blaACT-16*
and blaBKC-1*, the ResFinder database suggested the presence of new gene variants. The
cephalosporinase ACT-16 was aligned with all ACT alleles available in the NCBI database,
revealing the presence of a new variant of this chromosomal cephalosporinase named
ACT-84 (GenBank accession no. MT136764). ACT-84 differs from ACT-83 by a single amino
acid substitution (Pro58Ser). Alignment of the BKC-1 nucleotide sequence (GenBank
accession no. NG_048710.1) with that of blaBKC detected on Ec61 showed 20 mismatches
leading to 11 amino acid modifications (Fig. S2). Thus, we named the new BKC variant as
BKC-2. Like BKC-1, the coding sequence of BKC-2 was located in a small plasmid of the
IncQ1 group (pEc61C); however, the plasmid was 1.3 kb smaller than p60136 (GenBank
accession no. NG_048710.1). Nucleotide comparison of plasmid-encoding blaBKC-1 with
blaBKC-2 revealed that ISKpn23 was absent upstream to blaBKC-2 (Fig. 1B). It has been specu-
lated that the association of ISKpn23 with blaBKC-1 would be responsible for the mobiliza-
tion and expression of blaBKC-1 (2, 4). Although absent, a nucleotide region of almost
250bp of ISKpn23 was detected upstream to blaBKC-2, suggesting the exit of ISKpn23 from
pEc61C. Nucleotide alignment showed that these 250 nucleotides matched the begin-
ning and the end of the ISKpn23 encoding sequence, where the insertion sequence's pro-
moter is located (see Fig. S3 in the supplemental material) (13).

To verify differences in the susceptibility profile conferred by BKC-1 and BKC-2, plas-
mids p60136 (carrying blaBKC-1) and pEc61C (carrying blaBKC-2) were transformed into E.
coli Top10 by chemical transformation and selected on LB agar plates containing
100mg/liter of ampicillin, respectively. Additionally, blaBKC-2 was amplified using
Phusion high-fidelity DNA polymerase (Thermo Fisher Scientific) and cloned into pET-
26b1 as previously described (2). Transformant BKC-1 and BKC-2 clones were subjected
to antimicrobial susceptibility testing by BMD against b-lactam agents. In general, MICs
of the BKC-1 transformant were higher than those presented by the BKC-2 transform-
ant. MICs of ertapenem, meropenem, and imipenem were 4, 2, and 2 times higher,
respectively, for the BKC-1 transformant than the BKC-2 transformant. Taking into
account the BKC clones, MICs of BKC-1 for b-lactams were higher than those of BKC-2,
suggesting better activity of BKC-1 against b-lactams. However, although BKC-2 was
weaker than BKC-1, in its natural genetic background, BKC-2 showed activities against
b-lactam agents similar to those of BKC-1, as suggested by transformant MICs (TfBKC-1
and TfBKC-2) (Table 1). These MIC variations could be explained by differences in the
promoter regions between these two carbapenemase-encoding genes. Interestingly, a
newly published article suggested that the origin of carbapenemases BKC-1 and GPC-1
related to the Shinella genus (14). Besides, a putative BKC-1 ancestral protein was syn-
thesized in laboratory to antimicrobial susceptibility analysis and named BKC-b (14).
BKC-b resulted from a deletion in the duplication segment of amino acids (Ala12 to
Ser27) and shares 94% amino acid identity with BKC-2. Our data have been supported
by the finding that BKC-b (as well as BKC-2) has weaker hydrolytic activity against the
b-lactam agents than BKC-1 (14). Although BKC-2 shows duplication of the peptide
Leu24-Arg39, the duplication segment Ala12-Ser27 (present in BKC-1 and responsible for
the increase in b-lactamase activity) is absent, explaining the low activity of this new
BKC variant.

Ec61 harbored colistin resistance gene mcr-9.1, in addition to novel gene blaBKC-2;
however, the isolate showed susceptibility to colistin similar to the previously described
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mcr-9-positive strains (15). mcr-9.1 was carried on a different plasmid, pEc61A (149.8
kb), belonging to IncFIB without other antimicrobial resistance genes; although genes
encoding metal resistance, such as arsenic, tellurium, mercuric, and nickel/cobalt resist-
ance, were detected in the plasmid. Since the initial description of mcr-9, its dissemina-
tion has been strongly related to IncHI2 plasmids, as supported by our in silico analysis
of the GenBank database (16). Only a single plasmid, non-IncHI2, was detected carrying
mcr-9.1 (Fig. 2). The mcr-9.1 genetic backbone related to pEc61A contained IS903B::mcr-
9.1::wubC::qseC-like::qseB-like::ATPase::integrase::IS26 as previously described in IncHI
plasmids (15). Although the mechanism responsible for mcr-9.1 mobilization has not
been elucidated, different insertion sequences (IS903-like, IS903B, IS26, and IS1) have
been associated with this gene (15, 17).

IncFIB plasmids are well recognized as conjugative plasmids (18); however, the con-
jugation assay for the transfer of IncFIB with mcr-9.1 was not successful. The transfer of
IncFIB was only found at 42°C, with a low frequency of 1028, by using a low colistin con-
centration as the selective agent. Because the MIC for colistin of isolate Ec61 was 1mg/
liter, subinhibitory concentrations (0.25 and 0.5mg/liter) were used in all attempts and
did not provide an ideal selection using the E. coli J53 AziR strain. The findings sug-
gested the limited dissemination of mcr-9.1 by IncFIB. In contrast, IncHI2 plasmids carry-
ing mcr-9.1 have been widely demonstrated disseminating among Enterobacterales and
carrying different antimicrobial resistance genes along with mcr-9.1 (15–17).

We need to pay attention to BKC-2 due to its acquisition on distinct bacterial gen-
era, Enterobacter spp., which naturally tend to be microorganisms with high levels of re-
sistance to antimicrobials. Also, the coproduction of a new cephalosporinase, ACT-84,
and MCR-9.1 coupled with chromosomal mechanisms revealed a large arsenal of anti-
microbial resistance mechanisms in/on Ec61 isolate. Although BKC-2 confers lower
b-lactam resistance than BKC-1, its association with chromosomal or other plasmid-
acquired mechanisms can lead to carbapenem resistance.

Accession number(s). The nucleotide sequences have been submitted to the
GenBank database under accession no. MT427610 for blaBKC-2, MT136764 for blaACT-84,
and CP053103 to CP053106 for the Ec61 genome and its respective plasmids.

FIG 2 (A) Circular comparison between pEc61A and 13 plasmids carrying mcr-9.1 belonging to IncH2 and IncH2a. Pink arrows, conserved regions, including
mer operon, nickel resistance module, and tellurium resistance operon. (B) Circular comparison of the six best hit plasmids related to pEc61A on BLASTN
analysis of NCBI database. Five of six analyzed plasmids belonged to the IncFIB group, and only p1_045523 also harbored mcr-9. GenBank accession
numbers for each plasmid are included in Table S2 in the supplemental material.
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