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ABSTRACT Malassezia spp. are emerging fungal pathogens causing opportunistic
skin and severe systemic infection. Nosocomial outbreaks are associated with azole
resistance, and understanding of the underlying mechanisms is limited to knowledge
of other fungal species. Here, we identified distinct antifungal susceptibility patterns
in 26 Malassezia furfur isolates derived from healthy and diseased individuals. A Y67F
CYP51 mutation was identified in five isolates of M. furfur. However, this mutation
alone was insufficient to induce reductions in azole susceptibility in the wild-type
strain. RNA sequencing (RNA-seq) and differential gene analysis of strains derived
from individuals with healthy or disease backgrounds exposed to clotrimazole in
vitro identified several key metabolic pathways and transporter proteins which are
involved in reducing azole susceptibility. The pleiotropic drug transporter gene
PDR10 was the single most highly upregulated transporter gene in multiple strains
of M. furfur after azole treatment, and increased expression of PDR10 is associated
with reduced azole susceptibility in some systemic-disease isolates of M. furfur.
Deletion of PDR10 in a pathogenic M. furfur strain with reduced susceptibility
reduced MICs to those of susceptible isolates. In light of the current dearth of anti-
fungal technologies, globally emerging multiazole resistance, and broad use of
azoles in agriculture and consumer care, an improved understanding of the mecha-
nisms underlying intrinsic and acquired azole resistance in Malassezia is crucial for
development of antibiotic stewardship and antifungal treatment strategies.
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alassezia, the lipid-dependent skin commensal, has also been shown to be an

emerging pathogen not just in neonatal intensive care wards but also in Crohn’s o
disease and pancreatic cancers (1-4). Malassezia-associated superficial mycoses (dan- ggstﬁ; ;e;TE%CDiaasZivva fgg\ft\igeﬂ'
druff, pityriasis versicolor, and folliculitis) affect up to 50% of the global population (5) resistance mechanisms in pathogenic
and have the potential to cause severe systemic and invasive infection in immunocom- Malassezia furfur. Antimicrob Agents
promised individuals (6-9). Outbreaks in neonatal and intensive care wards have been Chemother 65:¢01975-20. httpsy/doi.org/10
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increasingly reported (6). Azole antifungals are the primary antifungal treatment for Qoo @209 e el Thias 2 eEei-

Malassezia-associated diseases due to their intrinsic resistance to some antifungals, access article distributed under the terms of
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be an indicator of clinical failure (11), there is a need to profile the susceptibility of
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and may be a result of altered gene expression, point mutations, or allelic variations
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(13). Both may be attributed to an increase in (i) the prophylactic use of azole drugs, (ii)
prolonged treatment regimens, (iii) agricultural use of azole fungicides for crop protec-
tion (14), or (iv) the broad-spectrum, long-term, and low-dose use of azoles in con-
sumer care. Azole treatment efficacy is variable, depending on the involved species,
and resistant strains are being documented with increasing frequency (10, 15). Among
human commensal Malassezia species, Malassezia furfur and Malassezia pachydermatis
are the species most commonly encountered in systemic infection of neonates and
immunocompromised persons (15). An increasing number of ketoconazole-resistant M.
pachydermatis strains have been reported to have been found on pet dogs in Korea
and can be attributed to the use of antifungal shampoo (16). The prevalence of the
normally zoophilic species M. pachydermatis in infection is worrying evidence of ani-
mal-to-human transmission (6).

Sterol 14a-demethylase (encoded by CYP51 [ERG1T]) is a key cytochrome P450
enzyme involved in fungal cell wall ergosterol synthesis (17). Malassezia azole re-
sistance is largely associated with mutations in the ERG11/CYP51 gene, identified
from clinical isolates (15, 18, 19). In clinical isolates derived from subjects with
severe dandruff, the CYP5T mutations Y127F, A169S, and K176 were identified in
Malassezia globosa (15). Highly multiazole-resistant strains of M. pachydermatis
have also been extensively documented and found to be associated with missense
mutations in CYP57 (20, 21). A further genomic tandem quadruplication in the
ERG5/ERG11 gene region has been described in a ketoconazole-resistant isolate of
M. pachydermatis (18).

Fungal multidrug resistance is also associated with overexpression of transporters
of the ATP-binding cassette (ABC) superfamily and major facilitator superfamily (MFS)
(22-25). These transporters utilize ATP hydrolysis or electrochemical gradients to carry
out efflux of antifungals, thus reducing susceptibility (22). Yeast ABC transporters are
classified into six subfamilies of up to 30 unique proteins, such as CDRT and MDR,
which confer drug resistance in human pathogens, including Candida albicans. In M.
furfur and M. pachydermatis, the role of efflux pumps has also been implicated through
the synergistic use of efflux pump modulators together with azoles to inhibit growth
(26). Pleiotropic drug resistance protein 10 (encoded by PDR10) is involved in flucona-
zole resistance and has been identified in M. furfur (27). Genomic multiplications in
ATM1 and ERGT1, encoding iron-sulfur transporters, have also been found to confer
ketoconazole resistance in Malassezia restricta (16).

In this study, we analyzed antifungal susceptibility profiles of 26 strains of M. furfur
derived from individuals with healthy or disease backgrounds and performed RNA
sequencing (RNA-seq) to identify candidate genes driving intrinsic and acquired resist-
ance. Although mutations in CYP51 were originally postulated to be the main driver of
elevated MICs in M. furfur, differential gene analysis via RNA-seq and subsequent gene
validation has identified genes from the ABC transporter protein family, particularly
PDR10, to be key drivers of intrinsic and acquired resistance in the M. furfur strains CBS
7982 and CBS 14141. Knowledge of the functional mechanisms underlying antifungal
susceptibility in Malassezia will be beneficial in identifying new therapeutic targets,
understanding the emergence of new resistant strains, and developing global antifun-
gal drug stewardship strategies.

RESULTS

Diseased-derived isolates of M. furfur have elevated terbinafine, clotrimazole,
and miconazole MICs. Antifungal susceptibility testing was performed on 26 strains of
M. furfur comprising isolates from healthy human skin (referred to here as “healthy iso-
lates”) and those from skin disease or systemic infection (“disease isolates”) (Table 1)
using a panel of eight antifungals: amphotericin B (AMB), terbinafine (TRB), clotrim-
azole (CTZ), miconazole (MCZ), fluconazole (FLZ), voriconazole (VRZ), ketoconazole
(KTZ) and itraconazole (ITZ) (Fig. 1). The MIC of each antifungal presented in Fig. 1 was
normalized from 0 to 1, with 1 being the highest MIC (red) for each individual
compound.
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TABLE 1 Healthy and disease M. furfur isolates used in this study

Isolate Source
Healthy-skin isolates

CBS 7982 Ear

020#01 Nose

041#01 Nose

039#01 Nose

035#03 Nose

CBS 9372 Back

CBS 9374 Chest

CBS 8735 Bronchial wash

047 SC1 Scalp

003 SC2 Scalp

CBS 7710 Skin of man

043#01 Nose

001#01 Nose
Diseased-skin isolates

CBS 5334 Infected skin

CBS 6000 Dandruff

CBS 6001 Pityriasis versicolor

CBS 1878 Dandruff

CBS 7019 Pityriasis versicolor
Systemic-disease isolates

CBS 14141 Blood

JLPK13 Urine

Mal18 Blood

Mal24 Blood

Mal25 Skin catheter insertion

Mal26 Blood
Mal32 Skin catheter insertion
PM315 Anal swab of neonate

The isolates further clustered into 2 groups, with disease isolates in cluster 2 (Fig.
1A, green) having elevated MICs for almost all azole antifungals and disease isolates in
cluster 1 (Fig. 1A, yellow) having high MICs specifically for TRB, CTZ, and MCZ
(P<0.001) (Fig. 1B; also, see Table S1 in the supplemental material). ITZ had the lowest
MICs of all antifungals tested (Fig. 1B), although disease isolates of M. furfur still had
significantly higher MICs for KTZ (P < 0.05) (Fig. 1B). FLZ and VRZ MICs were higher for
disease isolates in cluster 2 (Fig. 1A, green), although these values were not significant.

CYP51A1 Y67F mutants have elevated fluconazole and voriconazole MICs. The
gene sequence of CYP5TAT in M. furfur was identified by a whole-genome-sequencing
(WGS) BLAST search (BioProject ID 286710) of a known M. globosa CYP51A1 sequence
(15) against M. furfur genomes and validated by the identification of the presence of
the highly conserved heme-binding site (FGFGRHRCIG), EXXR motif (ERLR), and con-
served threonine of the | helix involved in proton delivery (Fig. S1).

A tyrosine-to-phenylalanine mutation in residue 67 (Y67F) of CYP51AT was identi-
fied in the blood isolate CBS 14141 (Fig. 1C; Fig. S2). The mutation was also identified
in four other isolates, i.e., the systemic-disease isolates Mal24, Mal26, and JLPK13 and
the healthy-skin isolate 003 SC2. The three systemic-disease isolates showed elevated
MICs (Fig. 1B and C; Table S1) specifically for FLZ (P < 0.001), consistent with literature
indicating the role of the tyrosine residue in drug binding (28). Healthy skin isolate 003
SC2 also showed slightly elevated MICs for MCZ and FLZ. This mutation is synonymous
with the Y132F mutation in Candida albicans and is well known to affect binding to flu-
conazole due to the residue being 7 A away from a key binding motif (29). It has been
identified as a Y127F mutation in disease isolates of M. globosa (15).

Y67F knock-in and F67Y rescue mutants show no changes in azole susceptibility.
The single CYP51 nucleotide change coding for the Y67F mutation was inserted into
the wild-type, low-MIC strain CBS 7982 via Agrobacterium tumefaciens-mediated
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JLPK13 HDPYKFFFDCRKKYGDYF TFKLLGRNITYALGTKGSNL YFNGRLNQVSREEAYTSLTTPYFGKKYVEDVPNI
Mal18 HDPYKFFFDCRKKYGDVF TFKLLGRNITVALGTKGSNLYFNGRLNQVSAEERYTSLTTPYFGKKYVYDVP IWL
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Mal24 HDPYKFFFDCRKKYGDVF TFKLLGRNITVALGTKGSNLYFNGRLNQVSAEERYTSLTTPYFGKKYVYDVPHAVLH
001#4 HDPYKF FFDCRKKYGDVF TFKLLGRNITYALGTKGSNLYFNGRLNQVSAEEAYTSLTTPYFGKKYYYDVPNAVLH
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003sC2HDPYKFFFDCRKKYGDVF TFKLLGRNITYALGTKGSNLYFNGRLNQVSAEERYTSLTTPYFGKKYVEDVPNAVLH

FIG 1 The 26 strains of M. furfur used, including 13 healthy and 13 disease isolates. (A) Heat map of the MICs of 8 antifungals. MICs were normalized from
0 to 1, with 1 being the highest MIC (red) for each individual compound. Strains isolated from healthy individuals are highlighted in blue, and strains from
individuals with disease are highlighted in red. A paired two-tailed t test (*, P <0.05; ***, P<0.005) was performed for median MICs between healthy and
disease isolates. (B) Median MICs and standard deviations (SD) for healthy and disease wild-type and Y67F mutant strains. A one-way ANOVA was used

with Dunnett’s test (***, P<<0.005). (C) CYP5T amino acid sequence showing the Y67F mutation in 5 isolates.

transformation (ATMT) using a nourseothricin (NAT) expression vector (Fig. 2A to D).
Similarly, a rescue F67Y CYP51 mutation was generated in the CYP57 mutant strain CBS
14141 (Fig. 2A to D). Colonies were screened for the presence of the correct 1.5-kb
flanking arms and insert (Fig. 2E). Sanger sequencing of the CYP57 mutation regions
and internal transcribed spacer regions (ITS) was performed to validate the presence of
the correct single nucleotide mutation and strain background of the respective trans-

formants (Fig. 2F and G).

Insertion of the Y67F CYP51 mutation into the CBS 7982 strain did not yield any
change in azole susceptibility (Fig. 2H; Table 2). Similarly, an F67Y rescue mutant gener-
ated from the CBS 14141 CYP51 mutant strain did not show any reduction in azole
MICs when tested against our panel of antifungals. The F67Y rescue mutation restored
amphotericin B MICs to wild-type levels in CBS 14141, although introduction into wild-
type CBS 7982 increased AMB MICs only slightly.

These observations suggest that reduced azole susceptibility may be mediated by
factors other than CYP57 in M. furfur and that the Y67F mutation mainly impacts AMB
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FIG 2 Agrobacterium tumefaciens-mediated transformation (ATMT) of CYP57 mutation into wild-type CBS 7982 and mutant CBS
14141 M. furfur. (A and B) Phenotypes and genotypes of the M. furfur wild-type strain CBS 7982 (A) and the mutant strain CBS
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TABLE 2 MICs for CYP51 transformants
MIC (ug/ml) of:

Strain AMB TRB CTZ MCZ FLZ VRZ KTZ ITZ
CBS 7982 4 2 4 4 1 0.03 0.03 0.03
Y67F_4 8 2 4 16 1 0.008 0.06 0.125
Y67F_8 4 2 4 4 2 0.015 0.06 0.125
Y67F_10 8 2 8 4 1 0.015 0.06 0.03
CBS 14141 >32 32 >256 >256 >256 4 0.06 0.06
F67Y_1 4 >32 256 >256 >256 4 0.25 0.125
F67Y_3 4 >32 >256 >256 >256 4 0.5 2
F67Y_4 4 >32 >256 >256 >256 16 0.5 0.25

aAMB, amphotericin B; TRB, terbinafine; CTZ, clotrimazole; MCZ, miconazole; FLZ, fluconazole; VRZ, voriconazole;
KTZ, ketoconazole; ITZ, itraconazole.

susceptibility in our selected strains. This is supported by the observation that the
healthy-skin isolate 003 SC2 contains the Y67F CYP51 mutation but does not show the
level of reduced azole susceptibility observed in disease isolate cluster 2.

Genes involved in metabolism and secondary metabolite production are
upregulated in disease strains of M. furfur. To further elucidate the pathways poten-
tially involved in M. furfur azole susceptibility, we performed RNA-seq in regular modi-
fied Dixon (mDixon) medium for representative candidate strains from each cluster
(healthy isolates, disease isolate cluster 1, and disease isolate cluster 2) based on their
antifungal susceptibility testing (AFST) profiles (Fig. 1). They were defined as the wild
type, susceptible strain CBS 7982 (healthy isolate cluster), the disease CYP5T mutant
strain CBS 14141 (disease isolate cluster 2), and the intermediate disease strain CBS
7019 (disease isolate cluster 1).

A list of the top 20 upregulated genes commonly expressed in disease isolates CBS
7019 and CBS 14141 is presented in Table S2. Genes involved in metabolism, biological
process, catalytic activity, and extracellular activity were the key genes upregulated in
the disease strains (Fig. 3b). Statistically enriched KEGG pathways include secondary
metabolite production (Fig. 3¢). Upregulation of some exons coding for ABC and MFS
transporter proteins, such as YBT1, ITR1, and OPT1, was also observed.

Healthy and disease isolates have different gene expression profiles following
long-term exposure to clotrimazole in vitro. Long-term (up to 4 weeks) treatment of
the wild-type healthy isolate CBS 7982 with clotrimazole (8 wg/ml) (Fig. 4a; Table S3)
induced up to an 8-fold increase in clotrimazole MICs (Fig. 4b). After treatment removal
at 4 weeks, MICs were observed to fall back to close to starting values. This suggests
that elevated MICs may be induced in vitro via a transient mechanism. For the strains
CBS 7019 and CBS 14141, long-term clotrimazole treatment in vitro did not produce
any meaningful change in MIC readings, as their starting MICs were already high.

Differential gene expression analysis was performed on RNA-seq of isolates exposed
to the above-mentioned MICs of clotrimazole for the three M. furfur strains (CBS 7982,
CBS 7019 and CBS 14141). Of 1,238 differentially expressed genes between 4-week clo-
trimazole-treated and nontreated CBS 7982, 689 were upregulated (Fig. 4c and d).
Examples of genes commonly upregulated by clotrimazole treatment include DNM1T,
encoding the dynamin protein, and RBP1P, encoding the yeast RNA-binding protein,
(Table S4), which have been reported to affect antifungal susceptibility and calci-
neurin-dependent azole tolerance in C. albicans, respectively (30, 31). Metabolic path-
ways were commonly upregulated in 4-week clotrimazole-treated and nontreated
groups for CBS 7982 and CBS 7019 (Fig. 4e1 and e2). KEGG pathways upregulated in

FIG 2 Legend (Continued)
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14141 (B). (C and D) Vector maps for CBS 7982 (C) and CBS 14141 (D) ATMT. (E) Screening and selection of CBS 7982
transformant colonies with the correct CYP51 insert (~700 bp) and 1.5-kb upstream/downstream flanking arms. (F and G) Sanger
sequencing validation of the correct single nucleotide mutation and ITS sequences in CBS 7982 (F) and CBS 14141 (G). (H) Heat
map of the MICs for CBS 7982 Y67F and CBS 14141 F67Y mutants. MICs were normalized from 0 to 1, with 1 being the highest

MIC (red).
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FIG 3 RNA-seq of CBS 7982, CBS 7019, and CBS 14141. (a) Venn diagram showing genes which are differentially expressed in CBS 7982, CBS 7019, and CBS
14141. (b) GO enrichment bar chart of differentially expressed terms. Asterisks indicate terms which are significantly enriched. (c) Scatterplot for KEGG

enrichment results in CBS 7982 versus CBS 14141.

clotrimazole-treated CBS 14141 were distinct from those in CBS 7982 and CBS 7019
and included the ubiquitin-mediated proteasome pathway and cell cycle (Fig. 4e3).
A reverse trend was observed for KEGG pathways downregulated in the three
strains, with metabolic pathways being downregulated in CBS7019 and CBS 14141
and the ubiquitin-mediated proteasome pathway being downregulated in CBS7982
(Fig. 4f1 to f3).

The ABC transporter encoded by PDR10 is upregulated after long-term
exposure to clotrimazole in vitro. Narrowing RNA-seq gene identifications (IDs) to
transporter pump proteins identified multiple reads matching exons mapping to
“Similar to S. cerevisiae protein, SNQ2.” These reads were consistently the single most
highly upregulated transporter gene in all three M. furfur strains (Fig. 5). Further, multi-
ple-sequence alignment matched the exon sequence to that of the multidrug trans-
porter encoded by PDR10, as described by laniri et al. (27). Further analysis of PDR10
gene expression via reverse transcription-quantitative PCR (RT-qPCR) at baseline and at
3-, 4-, and 6-week time points showed that PDR10 expression increased over the 4-
week clotrimazole treatment period and dropped at 6 weeks, 2 weeks after treatment
was withdrawn (Fig. 5b).

RNA-seq analysis also revealed that nine other transporter genes were upregulated
in the clotrimazole-treated disease isolates CBS 7019 and CBS 14141 but not CBS 7982,
including the previously reported mitochondrial ABC transporter, encoded by ATM1
(Fig. 5a; Table S5). Other highly upregulated transporter genes in clotrimazole-treated
CBS 7982 and CBS 7019 include the oligopeptide protein transporter gene OPTT, the
multidrug transporter gene FLR1, and the caffeine resistance protein gene CRP5 (Fig.
5¢), which have not yet been sequence validated in all isolates of the divergent M. fur-
fur strains. These findings suggest that differential expression of transporter genes
between different isolates may also affect antifungal susceptibility.

Deletion of PDR10 abrogates elevated MICs in disease isolate CBS 14141. The
pleiotropic drug transporter gene PDR10 was identified to be significantly upregulated
in clotrimazole-treated M. furfur strain CBS 7982 as described above. It was also found
to play a role in Malassezia fluconazole resistance by laniri et al. (27), for which the CBS
14141 insertional mutants 7D9 and 2H11 and the CRISPR (clustered regularly inter-
spaced palindromic repeats)/Cas9 pdr10A deletion mutant were constructed using the
high-MIC mutant strain CBS 14141. 7D9 has a T-DNA insertion in the putative promoter

region of PDR10, whereas 2H11 was previously described to have a chromosomal rear-
rangement mutant involving the gene ERG5 (27). We confirmed that the PDR10 gene
was absent in the pdr10A mutant genome and that the pdr10A mutant showed null
PDR10 expression (Fig. S3).

AFST was performed on the insertional mutants 7D9, 2H11, and the CRISPR/Cas9
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FIG 4 Differentially expressed genes with long-term in vitro clotrimazole treatment. (a) Schematic of the 4-week treatment regimen with clotrimazole,
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versus clotrimazole treatment (CT) groups.

pdr10A mutant alongside wild-type CBS 7982 and mutant CBS 14141 M. furfur strains
(Fig. 5d; Table 3). Deletion of PDR10 in CBS 14141 completely reversed the elevated
MIC phenotype. The pdr10A strain showed an AFST profile close to that of the wild
type (i.e., CBS 7982) (Fig. 5d). The 7D9 mutant exhibited intermediate susceptibility to
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TABLE 3 MICs for PDR10 transformants
MIC (eg/ml) of:

Strain AMB TRB CTZ MCZ FLZ VRZ KTZ ITZ
CBS 7982 4 2 4 4 1 0.03 0.03 0.03
PDR10A 2 0.25 1 2 2 0.03 0.125 0.125
7D9 1 2 8 32 4 0.5 0.25 0.06
CBS 14141 >32 32 >256 >256 >256 4 0.06 0.06
2H11 4 1 8 >256 128 8 0.25 0.125

9AMB, amphotericin B; TRB, terbinafine; CTZ, clotrimazole; MCZ, miconazole; FLZ, fluconazole; VRZ, voriconazole;
KTZ, ketoconazole; ITZ, itraconazole.

the tested azoles, with amphotericin B, terbinafine, and clotrimazole having lower
MICs, whereas 2H11 had elevated MICs comparable to those of CBS 14141. Treatment
with ABC transport inhibitors (verapamil, carbamazepine, and trifluoperazine) did not
reduce antifungal susceptibility in M. furfur (data not shown).

These observations are primarily relevant to M. furfur strains from the CBS 14141
genomic background (the pdr10A mutant, 7D9, and 2H11). Analysis of PDR10 gene
expression in other healthy and disease isolates did not show correlation between
PDR10 expression and MIC phenotype (Fig. S3B), suggesting that baseline PDR10 gene
expression may not be an indicator of reduced azole susceptibility in all M. furfur
strains.

Wild-type and mutant strains show differences in rhodamine 6G efflux. The flu-
orescent small-molecule dye rhodamine 6G is commonly used to assess the efflux ac-
tivity of ABC transporters (32). The pdr10A mutant and 7D9 were observed to have a
higher uptake of rhodamine 6G (Fig. 6a) than CBS 7982 and CBS 14141 (Fig. 6a). This is
consistent with literature which has reported that rhodamine 6G efflux is correlated
with CDRT expression (33). CBS 14141 was observed to have the highest rhodamine 6G
efflux of the four strains, and CBS 7982 had the lowest (Fig. 6b). Surprisingly, the
pdr10A mutant had rhodamine 6G efflux levels close to those of CBS 7982, suggesting
that PDR10 is a key effector of rhodamine 6G efflux. The insertional mutant 7D9
showed intermediate rhodamine 6G efflux levels between those of CBS 7982 and CBS
14141.

DISCUSSION

In this study, we profiled the antifungal susceptibility of multiple M. furfur isolates
collected from healthy and disease states and elucidated mechanisms underlying their
antifungal susceptibility. Strains isolated from individuals with skin or systemic disease
had elevated antifungal MICs relative to strains isolated from healthy individuals.
Isolates of M. furfur from healthy and disease individuals cluster into groups which
reflect their health/disease origin based on their antifungal susceptibility profiles.
Isolates from individuals with systemic disease (e.g., blood, urine, and catheter isolates)
were the most likely to have elevated MICs. However, exceptions include CBS 9374,
which is from a healthy individual but still shows elevated MICs of terbinafine and
miconazole. It is likely that the patterns of antifungal susceptibility observed in our dis-
ease isolates are stable, given that many of the disease strains have been maintained
in culture and passaged repeatedly in fungal banks without antifungal exposure.
However, a lack of information on the clinical background of many disease isolates
(i.e., antifungal treatment prior to culture isolation and treatment dosage/duration)

FIG 5 Legend (Continued)

during and after clotrimazole treatment. Values are means and SD. A one-way ANOVA was used to compare each time point
against the no-treatment time point, followed by Dunnett’s test (****, P<0.001). (c) Mean log, fold change of key transporter
pump genes upregulated after 4-week exposure to clotrimazole in CBS 7982, CBS 7019, and CBS 14141. (d) Heat map of MICs for
CBS 7982, CBS 14141, the pdr10A mutant, and transformants 7D9 and 2H11. MICs were normalized from 0 to 1, with 1 being the

highest MIC (red).
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FIG 6 Rhodamine 6G efflux in PDR10 mutant strains. (a) Percent normalized rhodamine uptake (mean and SD).
A one-way ANOVA was used to compare each time point against the no-treatment time point, followed by
Dunnett’s test (***, P<0.005). (b) Mean normalized rhodamine 6G efflux (RFU, relative fluorescence units) of
wild-type (CBS 7982), mutant (CBS 14141), and transformant (pdr10A and 7D9) strains over 20 min.

hampers further interpretation regarding how reduced azole susceptibility could have
arisen and whether it is intrinsic or acquired.

Although mutations in CYP571 are well documented to result in reduced azole sus-
ceptibility in fungi (17), this has not been functionally established for Malassezia. For
Malassezia, only M. globosa (MGL_2415), Malassezia sympodialis (MSYG_3973), and M.
pachydermatis (Malapachy_4010) have annotated CYP51 genes available, with limited

literature on the functional role of CYP57 mutations. Kim et al. described three CYP57
mutations in an azole-resistant isolate of M. globosa, Y127F, A169, and K176N (15),
although the extent to which they confer azole resistance was not reported. The large-
scale construction of transformants from different strain backgrounds is currently lim-
ited by the need for strain-specific sequence data (preferably whole-genome sequenc-
ing data) for the design of 1.5-kb flanking arms for homologous recombination
required in Agrobacterium tumefaciens-mediated transformation.

The presence of the Y67F mutation in the healthy-scalp isolate 003 SC2 suggests
that the mutation alone is insufficient to confer reduced azole susceptibility. A synony-
mous Y134F mutation in the plant rust fungus Puccinia triticina was documented to
have limited impact on its susceptibility to epoxiconazole (34). Our F67Y mutation in
CBS 14141 was observed to result in increased amphotericin B susceptibility. This is
consistent with observations in Leishmania mexicana, in which a single nucleotide
mutation in CYP51 was also reported to induce amphotericin B resistance (35), and
suggests a role for this gene in amphotericin B susceptibility.

Rapid transient increases in the mRNA expression of CDR efflux pump genes in C.
albicans after exposure to fluconazole have been reported (36, 37). Transporter pump
genes such as PDR10 were observed to be upregulated after exposure to clotrimazole
based on RNA-seq data. These genes were validated based on known homology to simi-
lar proteins in Saccharomyces cerevisiae or based on existing literature. While the trans-
porter genes PDR10 (27), FLR1 (38), and ITRT (39) have been reported to be associated
with azole resistance, there is little information on the role of other transporter genes,
such as OPT1 and CRP5, in multidrug resistance. A putative paralog of PDR10 was identi-
fied immediately adjacent and 3’ to PDR10 and was identified as PDR10_2 by laniri et al.
(27). This warranted further gene validation to ensure that the pdr10A mutant did not
include a knockout of PDR10_2 (Fig. S3). However, we confirmed that a single knockout
of the PDR10 gene (i.e., pdr10A) was sufficient to reduce MICs to wild-type levels.

While we demonstrated an increase in clotrimazole MICs after 4 weeks of successive
treatment, the effect was dose dependent, and the phenomenon is best observed at
antifungal concentrations two to four steps higher than the known MIC for the specific
strain. While higher treatment doses may promote higher fold changes in MICs, they
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are less well tolerated, and the subsequent low viable inoculum impedes susceptibility
testing.

At present, PDR10 expression in CBS 7982 appears to be strongly inducible by the
presence of clotrimazole and likely azoles and other stress factors such as chemicals,
UV exposure, elevated temperature and nutrient-limiting conditions (27). As described
previously, a deletion in PDR10 for CBS 14141 resulted in increased sensitivity to fluco-
nazole and benomyl, which are antifungal drugs that have different mechanisms of
action (27). This suggests a critical role of PDR10 in nonspecific (or pleiotropic) cellular
detoxification in M. furfur CBS 14141, most likely through active efflux of xenobiotics,
including antifungal drugs, in line with the known function of ABC transporters.
Further transcriptional analysis and deletion models in more strains and species of
Malassezia are required to validate the role of ABC transporters in Malassezia azole re-
sistance. This current progress is limited by the poor practical efficiency of generating
ATMT plasmid constructs and the need for strain-specific knowledge of genome
regions upstream and downstream of the gene of interest. While this has been
improved by the development of a CRISPR/Cas9 system (27), challenges remain in the
targeting of specific genes (versus unknown homologs) and the role of random inser-
tions as confounding factors.

While rhodamine 6G assays have been useful in giving us an approximation of the
relative ABC transporter efflux activity in strains from the same background (i.e., mainly
CBS 14141), many transporter pumps are pleiotropic, and more specific binding assays
are likely required to narrow down the role of specific pumps across multiple M. furfur
strains. For the same reasons, the use of generic ABC transport inhibitors, such as vera-
pamil and carbamazepine, was not useful for comparison across different strains.

In summary, we identified differences in azole antifungal susceptibility patterns of
26 isolates of M. furfur (13 from healthy subjects and 13 from those with disease).
While a Y67F mutation was identified as a contributor to intrinsic resistance in some
systemic-disease isolates, its impact on antifungal susceptibility must be interpreted
on a strain-by-strain basis in context with other physiological factors. In CBS 7982 and
CBS 14141, acquired resistance to clotrimazole and likely other azoles appear to be
largely associated with differential activity of ABC transporters, particularly that
encoded by PDR10. This has been validated by gene expression and functional deletion
studies. There are likely additional factors contributing to interstrain differences, which
are a result of multiple environmental stresses and other selection pressures.
Understanding the functional mechanisms underlying azole resistance in Malassezia
across a spectrum of strains, sources, and genetic backgrounds will be useful for the
identification of new therapeutic targets to prepare for the emergence of new resistant
strains.

MATERIALS AND METHODS

Strains and culture conditions. No active primary culture isolation was performed in this study. All
26 isolates used in this study were either obtained from the Westerdijik Fungal Diversity Institute or
obtained from previously published studies (40-42). Based on data available in fungal bank records and
from previous publications, (13 of the strains were isolated from healthy individuals and 13 from
patients with preexisting skin or medical conditions) (Table 1). Strains CBS 14141, JLPK13, Mal18, Mal24,
Mal25, Mal26, Mal32, and PM315 were a kind contribution from Bart Theelen and Claudia Cafarchia. All
Malassezia furfur strains were maintained on modified Dixon agar or broth at 32°C as described previ-
ously (10, 40).

Antifungal susceptibility testing. Antifungal susceptibility testing was performed using a broth
microdilution method as described by Leong et al. (10). Briefly, 200x drug stock dilutions were prepared
at a 2x concentration in fresh OptiMAL medium. Amphotericin B, terbinafine, clotrimazole, miconazole,
itraconazole, fluconazole, voriconazole, and ketoconazole were purchased from Sigma-Aldrich,
Singapore. Stock and drug plate dilutions were prepared in accordance with CLSI and EUCAST guide-
lines. Yeast inocula were obtained from 4- to 7-day-old strains of Malassezia spp. A 50-ul yeast inoculum
was added to 50 ul of 2x concentrated antifungals to achieve a final cell density of 5 x 10° to 5 x 10*
CFU/ml. A 10-ul portion of 2x yeast inoculum that had been diluted 10 times was also plated onto a
modified Leeming-Notman agar plate and incubated for 4 to 7 days at 35°C for postverification of the
CFU inoculum (10 to 100 colonies per 10 ul). Each assay was performed in triplicate plates for a single
culture at every individual time point or reading.
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Long-term in vitro treatment with clotrimazole. CBS 7982 was maintained in triplicate cultures of
mDixon broth containing 8 wg/ml of clotrimazole for 4 weeks at 32°C, with fresh medium and antifungal
supplied every alternate day. After 4 weeks, medium was replaced with fresh medium only (i.e., no anti-
fungal) every alternate day for another 2 weeks. A 100-ul portion of culture was removed every 7 days
for antifungal susceptibility testing as described above. For CBS 7019 and CBS 14141, clotrimazole con-
centrations were both 256 wg/ml. RNA extraction was performed on aliquots of each triplicate samples
at log phase in week 0 (before addition of clotrimazole) and week 4 (after 4-week clotrimazole treat-
ment) for RNA-seq analysis.

Gene analysis. All primer sequences used in this study are listed in Table S5. Unannotated gene
sequences for CYP51 and PDR10 were derived from a nucleotide BLAST of the whole-genome sequenc-
ing (WGS) data (NCBI BioProject database no. PRINA286710 [43]) or by sequencing the specific gene
using the self-designed primers (Table S5). PCR was performed using Platinum Tag DNA polymerase
(Thermo Fisher, Singapore), TaKaRa HS DNA polymerase (TaKaRa Bio USA Inc.) for 1.5-kb flanking arms,
and LongAmp (New England Biolabs [NEB], Singapore). Gel extraction of the PCR product was performed
with a QIAquick gel extraction kit per the manufacturer’s instructions (Qiagen, Singapore). Sanger
sequencing was performed on the purified PCR product using BigDye (Thermo Fisher, Singapore) per
the manufacturer’s instructions. RT-gPCR was performed using the GoTaq one-step RT-qPCR system
(Promega, Singapore) or a Superscript transcriptase Il kit (Thermo Fisher, Singapore) with the respective
gene-specific primers using the Malassezia actin gene ACT1 as the housekeeping gene. PCR with
reverse-transcribed cDNA for actin was used to detect genomic-DNA contamination. Relative gene
expression was analyzed using the Q-Gene module as described by Muller et al. (44).

Gene sequences derived from Sanger sequencing were translated into protein sequences using the
ExPASy translate tool (https://web.expasy.org/translate/) and analyzed using multiple-sequence align-
ment (http://multalin.toulouse.inra.fr/multalin/multalin.html) (45).

Agrobacterium tumefaciens-mediated transformation. For ATMT, 1.5-kb upstream and downstream
flanking arms of CYP51 were derived from PCR (TaKaRa Bio USA Inc.) of CBS 7982 or CBS 14141 genomic
DNA and assembled with CBS 7982 CYP51 gene blocks (TTC/TAC) (Integrated DNA Technologies, Singapore)
in the binary vector, pGI3, and the nourseothricin (NAT) and neomycin (NEO) plasmid cassettes pAIM2 and
PAIM6 under the control of the M. sympodialis ACT1 promoter and terminator. Insertional mutagenesis was
performed using the A. tumefaciens strain EHA105 as described previously (46).

RNA-seq. Total RNA was extracted and purified from log-phase cultures of CBS 7982, CBS 7019, and
CBS 14141. Three biological replicates of each sample were analyzed. Briefly, cell pellets were washed
three times in sterile phosphate-buffered saline (PBS) before resuspension in TRIzol and frozen at —80°C
overnight. On thawing, samples were subjected to bead beating followed by use of the Direct-zol RNA
miniprep kit (Zymo Research, USA), following the manufacturer's instructions. An additional DNase step
was performed with the Turbo DNase kit (Thermo Fisher, Singapore) per the manufacturer’s instructions.
RNA sequencing and differential analysis services were provided by Novogene AIT, Singapore. One
microgram of RNA was used for library preparation using a NEBNext Ultra RNA library prep kit for
Illumina (NEB, USA) per the manufacturer’s instructions. Next, 125-bp/150-bp paired-end reads were
generated from an lllumina-based sequencing platform and processed with the appropriate quality con-
trols. Differential expression analysis (untreated versus clotrimazole treated, healthy versus disease iso-
late) was performed using the DESeq R package (1.18.0).

Data and statistical analysis. All assays were performed as three independent experiments, each
with triplicate readings unless otherwise stated. For pairwise comparisons, a paired two-tailed Student's
t test was performed with Microsoft Excel. For grouped comparisons, a one-way analysis of variance
(ANOVA) with Dunnett’s test was performed with GraphPad Prism 8 (GraphPad Software, CA, USA). For
heat map plotting of MICs, all MICs were normalized across the different antifungal concentrations such
that the highest values were set at 1 and the lowest value were calculated as 1/total number of concen-
trations. Heat maps and Venn diagrams were plotted using the gplots package in R (version 3.03).

Rhodamine 6G assay. The rhodamine 6G efflux assay was performed as described previously (30).
Briefly, equal volumes of cells were normalized to an optical density at 600 nm (ODg,,) of 0.2 and incu-
bated with 10 uM rhodamine 6G (Tee Hai Chem, Singapore) in PBS for 30 min at 32°C. Next, cells were
transferred to 4°C and spun down to collect the supernatant. Pellets were washed twice with PBS and
resuspended in equal volumes of PBS containing 2% glucose and incubated at 32°C. An aliquot of solu-
tion was removed at 0-, 5-, 10-, 15-, and 20-min intervals and spun down to collect the supernatant.
Each sample was plated in triplicate.
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