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ABSTRACT The ability of HIV to integrate into the host genome and establish latent
reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule inte-
grase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that
substantially contributes to HIV integration site selection. They are potent antivirals that
inhibit HIV integration and maturation. In addition, they retarget residual integrants away
from transcription units and toward a more repressive chromatin environment. As a result,
treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent
and more refractory to reactivation, supporting the use of LEDGINs as research tools to
study HIV latency and a functional cure strategy. In this study, we compared GS-9822, a
potent, preclinical lead compound, with CX14442 with respect to antiviral potency, inte-
gration site selection, latency, and reactivation. GS-9822 was more potent than CX14442
in most assays. For the first time, the combined effects on viral replication, integrase-
LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency, and
latency reversal were demonstrated at nanomolar concentrations achievable in the
clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.
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Present day combination antiretroviral therapy (cART) for HIV-1 infection is mainly
based on four classes of antivirals targeting the HIV enzymes, nucleoside/nucleo-

tide reverse transcriptase inhibitors (NRTIs), nonnucleotide reverse transcriptase inhibi-
tors (NNRTIs), protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs),
though entry and fusion inhibitors have been developed as well (1). INSTIs such as
dolutegravir and bictegravir are now part of preferred first-line cART cocktails (2–4).
cART has been refined to once-daily regimens, and the extent of adverse effects has
been greatly reduced. Still, there is no cure for the 37.9 million people living with HIV
(5), as current antiretroviral treatments cannot clear HIV from the body. HIV integrates
a provirus into the genome of the cells it infects, which can either lead to productive
replication or remain in a latent state (6). Therefore, HIV can persist for decades in long-
living memory cells, and this HIV persistence is a major focus in HIV research today.

In an attempt to eradicate HIV reservoirs, researchers have proposed the “shock and
kill” or “kick and kill” strategy (7). Briefly, the goal is to reactivate latently infected cells
so they are killed off by either viral cytopathic effects or the host immune system.
Unfortunately, reactivating a sufficient fraction of latently infected cells and thus achieving
a significant reduction of the latent reservoirs has proven difficult (8). An alternate
approach is the “block and lock” strategy (9–11). In this approach to a “functional cure” or
“HIV remission,” the virus is not eradicated, but a state of deep latency is induced, leading
to sustained virological control in the absence of cART.

When HIV infects a cell, after virus entry, the reverse transcriptase copies the viral
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RNA into double-stranded viral DNA (vDNA). Along with other viral and cellular pro-
teins, the vDNA and HIV integrase then form the so-called preintegration complex
(PIC). Once inside the nucleus, integrase catalyzes both a 39 processing and a strand
transfer reaction, permanently inserting the vDNA into the host cell genome. The
strand transfer reaction is impaired by INSTIs through competition with the vDNA for
binding to the integrase catalytic core (12). HIV integrase has little resemblance to
human proteins, resulting in a low risk for off-target effects and presents as an attrac-
tive therapeutic target (13). Next to INSTIs, a second class of integrase inhibitors exist,
which target the interaction of HIV integrase with lens epithelium-derived growth fac-
tor (LEDGF/p75).

Albeit not sequence-specific, HIV integration is not random (14). HIV preferentially
integrates in actively transcribed, gene-dense regions (14–20). One of the most impor-
tant determinants of this selectivity is the interaction of HIV integrase with LEDGF/p75.
LEDGF/p75 is ubiquitously expressed in human cells and functions as a transcriptional
coactivator, tethering various proteins to active chromatin through recognition of the
histone modification H3K36me3 by its N-terminal PWWP domain (21, 22). Next to
PWWP, LEDGF/p75 is characterized by AT-hooks for chromatin interaction (23, 24) and
a C-terminal domain containing the integrase binding domain (IBD) to which both HIV
integrase and cellular partners bind (25–27). The dimeric catalytic core domain of all
lentiviral integrases specifically interacts with this IBD (27–30). During HIV infection,
LEDGF/p75 acts as a molecular tether linking the HIV PIC to the chromatin. In addition,
it stimulates the integration reaction (25) and determines HIV-1 integration sites by tar-
geting HIV toward active transcription units (18, 31–33).

An interhelical loop between the first two a-helices of the IBD (a1 and a2) of
LEDGF/p75 fits in a tight cleft formed at the interface of the catalytic core dimer of
integrase, outside the actual catalytic site which is targeted by INSTIs (29). Structure-
based drug design led to the discovery of small molecules (LEDGINs) that mimic the
IBD loop, disturb the integrase-LEDGF/p75 interaction, and inhibit HIV integration. This
mechanism of action is now referred to as the early effect of LEDGINs (13, 34–36). As
the binding site of LEDGINs differs from that of INSTIs, there is no cross-resistance
between the two classes, and combination treatment even showed synergistic effects
(37, 38). Interestingly, LEDGINs also affect HIV particle maturation (39–42), leading to
less infectious viral particles, the so-called late effect. During assembly and through
interaction with the LEDGF/p75 binding pocket in integrase, LEDGINs induce prema-
ture integrase multimerization which leads to a deformed viral capsid and displaces
the viral genome outside the viral core, resulting in crippled viral progeny, with deficits
in reverse transcription, nuclear import, and integration (39–43). Interestingly, the late
effect occurs at lower LEDGIN concentrations and contributes to the potency of these
compounds.

Various names have been used in literature to describe these molecules, referring
to either the entire class or specific subsets—small molecules binding to the LEDGF/
p75 binding site on integrase, (LEDGINs) (34); noncatalytic site integrase inhibitors or
(NCINIs) (41), allosteric integrase inhibitors (ALLINIs) (44, 45), multimerization selective
integrase inhibitors (MINIs) (46), and integrase-LEDGF allosteric inhibitors (INLAIs) (42).
We prefer to call this novel class of antivirals LEDGINs since all chemotypes share the
LEDGF/p75 binding site of HIV integrase that mediates both early and late effects. In
addition, the first compounds belonging to this class were referred to as LEDGINs (35).
Various LEDGINs with submicromolar and even nanomolar activity have been devel-
oped since (13, 35, 36, 47). After the discovery of the 3-quinoline acetic acid scaffold in
a high-throughput 39-processing assay, extensive lead optimization led to the develop-
ment of BI224436 (48). In preclinical testing BI224436 showed potent in vitro antiviral
activity against different HIV-1 laboratory strains in the low nanomolar range, no cross-
resistance with common INSTI resistance mutations (including N155S, Q148H, and
E92Q), and excellent pharmacokinetic profiles in rats, monkeys, and dogs (37). The
compound was the first LEDGIN to advance into phase Ia clinical trials, showing
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adequate plasma concentrations at 100mg and no safety concerns at concentrations
up to 200mg (49). A long-standing pursuit at Gilead for a novel antiretroviral agent
with the potential for low-dose, unboosted once-daily oral dosing and a high barrier to
resistance resulted in the identification of GS-9822 (Fig. 1d) (50). Screening of represen-
tatives from the LEDGIN library against a virus harboring the HIV-1 integrase polymor-
phisms A124T and A128T and the LEDGIN resistance mutation T174I revealed that the
5-indazolyl substitution of the 2-benzothiazole core gave a lower potency shift relative
to wild-type virus. Subsequent optimization of the 5-indazole moiety yielded substan-
tial improvements in potency while maintaining activity against LEDGIN binding-
pocket variants. GS-9822 has high in vitro metabolic stability and favorable oral phar-
macokinetic profiles with low systemic clearance in rats, dogs, and monkeys (50).
However, a unique and difficult-to-monitor urothelial toxicity was observed in cyno-
molgus monkeys that poses a formidable challenge for further development of GS-
9822.

CX05045 and CX14442 are LEDGINs with submicromolar potency (38) used as
research compounds to investigate the role of LEDGF/p75 in integration site selection
(51). CX14442 (Fig. 1a) is a 2-(quinolin-3-yl)acetic acid with a tert-butyl ether as a hydro-
phobic bulk on the acetic acid 2-position, which aids in filling up the LEDGF/p75 bind-
ing pocket on HIV integrase, resulting in increased activity (38). As was previously
shown for LEDGF/p75 depletion (31–33, 52, 53), treatment with LEDGIN CX14442 dur-
ing transduction with a replication-deficient HIV-1-based vector reduced the number

FIG 1 CX14442 and GS-9822 block HIV-1-induced cell toxicity and inhibit the interaction between HIV-1 integrase and LEDGF/p75. (a and d) Chemical
structures of CX14442 and GS-9822. (b and e) Dose-response curves for MTT viability assays with CX14442 and GS-9822 in MT4-cells 5 days after infection
with HIV-1 (strain IIIB). Cell viability, measured as optical density (OD) values, is greatly reduced upon HIV-1 infection but increases upon addition of the
compounds. Results are plotted as a percentage of the OD values obtained in uninfected, untreated cells within the same experiment. Mean values and
standard deviations (SD) are shown for CX14442 (n= 4) and GS-9822 (n= 5). Each sample was run in triplicate. (c and f) Dose-response curves of CX14442
and GS-9822 in AlphaScreen. Increasing concentrations of compound were added to 50 nM HIV-1 integrase (strain NL4.3) and 100 nM LEDGF/p75. Data
shown are mean values and standard deviations for 3 experiments, with each analysis performed in duplicate. Data are plotted as a percentage of the
signal in the no-drug control.
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of integrated proviruses. In addition, LEDGIN treatment retargeted the site of residual
integration away from active transcription units (51, 54). After treatment with CX05045
(38), the residual provirus was located away from the nuclear periphery toward the
center of the nucleus (51). Importantly, by using the HIV-1 OGH double reporter vector
(51, 55–58), the residual integrants after CX14442 treatment were shown to be more
latent and more resistant to reactivation (51). Using barcoded HIV vectors (B-HIVE), the
Fillion lab showed that integration in proximity to enhancers affects transcription and
reactivation by different latency reversing agents (19). In a recent study, the same bar-
coded vector technology was used to show that CX14442 shifts integration away from
H3K36me3, resulting in lower transcription levels (20). Residual transcription of retar-
geted provirus was most pronounced in the proximity of (super) enhancers. However,
micromolar concentrations of CX14442 were necessary to achieve these results, as
they are dependent on the early effect. The impact of the so-called late-effect of
LEDGINs, leading to integrase multimerization and crippled progeny virions, on inte-
gration site selection in a subsequent round of infection was also studied (58). By treat-
ing only the producer cells with CX14442, residual integrants of a replication-deficient HIV
vector were still retargeted toward less-gene-dense regions and a more repressive epige-
netic environment, though the effect on transcription units and H3K36me3 was less clear
(58). Interestingly, the residual integrants were more quiescent and resistant to reactiva-
tion. Lastly, the effect of treatment with CX14442 during multiple-round infection of pri-
mary cells with wild-type HIV was also investigated (58). Both retargeting out of transcrip-
tion units and the creation of a more refractory reservoir were confirmed in this model
that scores for both the early and the late effect (51, 58).

Here, we report on a side-by-side comparison of the preclinical lead compound GS-
9822 with CX14442 with respect to their relative impacts on integration site selection,
latency, and reactivation through the early effect of LEDGINs. GS-9822 displayed a
block-and-lock phenotype at nanomolar concentrations, supporting a potential future
clinical use of LEDGINs in a functional cure strategy.

RESULTS
GS-9822 has potent antiviral activity against wild-type HIV-1 viruses. First, the

50% effective concentration (EC50) of CX14442 and GS-9822 against wild-type HIV-1
was determined by infecting MT-4 cells with wild-type HIV-1 subtype B viruses (Fig. 1b
and e; Table 1). GS-9822 was 23-fold more potent against the IIIb strain and over 100-
fold more potent against NL4.3 than CX14442, with an EC50 in the low nanomolar
range for each strain. The 50% cytotoxic concentration (CC50) value of GS-9822 was
about 15-fold lower than that of CX14442 in these cells. Due to its potency, the selec-
tivity index (SI) of GS-9822 was still 2-fold higher than that of CX14442.

GS-9822 potently inhibits the LEDGF/p75-integrase interaction in vitro. Next,
we evaluated if GS-9822 inhibits the integrase-LEDGF/p75 interaction, the mechanism
of action required to affect integration site selection. Using X-ray crystallography, it
was shown before that GS-9822 binds integrase at the LEDGF/p75 interaction interface

TABLE 1 Potency of CX14442 and GS-9822 in antiviral and protein-protein interaction assays

LEDGIN

AlphaScreen MTT/MT-4 assay

LEDGF/p75 -
integrase
IC50 (mM)a,f CC50 (mM)b,f

Strain IIIb Strain NL4.3

EC50 (mM)c,f EC90 (mM)d,f SIe,f EC50
c,g EC90

d,g SIe,g

CX14442 0.926 0.34 70.8326 7.022 0.0516 0.004 0.8146 0.594 1,725 0.2966 0.135 0.6236 0.345 239
GS-9822 0.076 0.02 4.75706 0.5972 0.00226 0.0003 0.09286 0.0593 3,570 0.00256 0.0008 0.00426 0.0011 2,162
aInhibitory concentration (mM) required to inhibit the in vitro protein-protein interaction by 50%.
bCytotoxic concentration (mM) reducing cell viability by 50%.
cEffective concentration (mM) required to reduce HIV-1-induced cytopathic effects by 50%.
dEffective concentration (mM) required to reduce HIV-1-induced cytopathic effects by 90%.
eSI, selectivity index: CC50/EC50.
fMean and SEM of at least 3 independent experiments.
gMean and SEM of 2 independent experiments.

Bruggemans et al. Antimicrobial Agents and Chemotherapy

May 2021 Volume 65 Issue 5 e02328-20 aac.asm.org 4

https://aac.asm.org


(50). Therefore, AlphaScreen interaction assays with His6-tagged HIV-1 integrase and
Flag-tagged LEDGF/p75 (34) were performed in the presence of increasing concentra-
tions of CX14442 or GS-9822. A dose-dependent inhibition by each compound was evi-
denced (Fig. 1c and f; Table 1). GS-9822 inhibited the interaction at a 10-fold lower con-
centration (IC50 = 0.076 0.02mM) than CX14442 (50% inhibitory concentration [IC50],
0.926 0.34mM).

GS-9822 potently retargets HIV-1 integration. To study the effect of GS-9822 on
integration site selection, 100,000 SupT1 cells were transduced with 1.2� 105 pg of the
lentiviral vector CH-SFFV-eGFP-P2A-fLuc (Fig. 2a) and cultured for 3 days in the pres-
ence of GS-9822 or CX14442 or no drug. Cells were then washed and kept in culture
for at least 10 days in the absence of compound to allow for the dilution of noninte-
grated DNA. All samples were obtained from a single transduction experiment.
Genomic DNA was extracted and prepared for Illumina Miseq integration site sequenc-
ing as well as Alu-long terminal repeat (Alu-LTR) quantitative PCR (qPCR) for proviral
copy numbers. Sequencing data were analyzed using the INSPIIRED platform (59, 60).
CX14442 and GS-9822 both induced a dose-dependent reduction in the number of
integrated proviruses (see Fig. S1b in the supplemental material). Among the residual
integrants, a reduction in the number of unique integration sites was detected for
both inhibitors by the next-generation sequencing analysis (Fig. S1a). Thus, CX14442
and GS-9822 both inhibited HIV-1 OGH integration. In line with previous results
(14–20), integration into genes was strongly favored in the no-drug control condition.
Treatment with the compounds resulted in a proportion (up to 13%) of the residual
integrants retargeting to regions outside genes (Table 2, Fig. S2), as was previously
demonstrated for CX14442 (20, 51), though integration into genes was still preferred
compared with the matched random controls. In addition, a dose-dependent reduction
in the gene count surrounding residual integration sites was observed (Fig. 2b and d;
Fig. S2 and S4). The effect was more pronounced with CX14442, with a maximal reduc-
tion (53.2%) at 25mM (Fig. 2b), while a similar but less pronounced trend was also
observed with GS-9822 (Fig. 2d). Under the no-drug control condition, the frequency
of HIV-1 integration shows a positive correlation with the gene density per chromo-
some (Fig. 2c and e), as was shown previously (20). Treatment with GS-9822 signifi-
cantly decreased the slope of this correlation for all the concentrations used. Taken to-
gether, these results point to LEDGINs retargeting residual integrants away from gene-
dense regions as well.

We analyzed other genomic markers to see if we could confirm these results (Fig.
S1c to r and S2). DNase I hypersensitive sites, a marker for actively transcribed chroma-
tin, were found slightly less frequently in proximity to residual integrants. As CpG
islands occur mostly in proximity of promoters, the CpG count correlates with the
number of genes in the region when examined at large ranges. With an increased con-
centration of GS-9822 (and, to a lesser extent, CX14442), a decrease in the CpG count
at 1Mb was seen. Gene-dense regions also tend to be more GC rich. As expected, the
GC content surrounding residual integrants in a 1 kb range decreased with increasing
concentrations of GS-9822 and CX14442, though the effect was most clear for GS-
9822. Finally, the width of intergenic regions and genes is inversely correlated with
gene density. We observed a trend toward an increase in the width of genes and
intergenic regions with both GS-9822 and CX14442, implying once again a shift
away from gene-dense regions, although this observation was not statistically sig-
nificant. When looking at these genomic markers, results were consistent with a
compound-induced retargeting away from gene-dense regions compared to the
no-drug control, though gene-dense regions were still preferred compared with
the matched random controls.

Overall, treatment with GS-9822 resulted in a similar retargeting pattern as previ-
ously observed for CX14442 (20, 51). However, nanomolar concentrations of the highly
potent GS-9822 were sufficient to induce the retargeting, and for most parameters the
effect of GS-9822 was more pronounced.
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FIG 2 GS-9822 retargets integration away from gene-dense regions. SupT1 cells were transduced for 3 days with CH-SFFV-eGFP-P2A-fLuc in the
presence or absence of various drug concentrations and kept in culture for at least 10 days. Next, genomic DNA was extracted for Illumina Miseq
integration site sequencing, and data were analyzed via the INSPIIRED platform (59, 60). (a) Schematic representation of CH-SFFV-eGFP-P2A-fluc, a
single round lentiviral vector containing an enhanced green fluorescent protein (eGFP) and firefly luciferase (fLuc) reporter gene used for
integration site sequencing. (b and d) Graphs plotting the number of genes counted within a 1-Mb range of each integration site for samples
treated with CX14442 and GS-9822, respectively. Annotated data were obtained using the University of California Santa Cruz (UCSC) Genome
Browser website (http://genome.ucsc.edu, UCSC Known Genes) (90, 91). Mean values and standard deviations are plotted on top. Samples were
compared to the no-compound condition using a Kruskall-Wallis test. (c and e) XY-plots showing the relative number of mapped insertions/Mb (y
axis) over the UCSC protein coding gene density of each chromosome (x axis). For each sample, we calculated the insertions per Mb per
chromosome, relative to the number of mapped insertions per condition to compensate for the differences in the number of integration sites
between samples. For each condition, the total number of sites for all chromosomes is 100. Protein-coding genes were defined as gene entries
containing a UniProt protein ID.
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Retargeting of HIV-1 integration sites results in a different epigenetic landscape
of the residual provirus. The INSPIIRED platform was used to generate an epigenetic
heat map, to analyze the effect of the retargeting on the epigenetic landscape sur-
rounding the provirus (Fig. S3). Methylation marks that are associated with repressed
chromatin, such as H4K20me3, H3K27me2, H3K27me3, H3K9me3, and H3K9me2
(61–64) are normally disfavored by HIV (51, 65–68). The presence of GS-9822 increased
residual integration toward these methylation marks, even reaching levels comparable
to the matched random controls for H4K20m3 under the 150-nM conditions. CX14442
produced a similar effect, though less pronounced, consistent with our previous obser-
vations (20, 51). Moreover, for GS-9822 in particular, integration was also shifted away
from methylation marks usually highly favored by HIV, most notably H3K36me3, the meth-
ylation mark recognized by LEDGF/p75 (21, 22, 68–70). Like H3K36me3, H3K27me1,
H2BK5me1, H4K20me1, and H3K9me1 are usually found along active gene bodies (61–64,
71–74) and favored by HIV (20, 51, 65–68). GS-9822 treatment shifted integration away
from these marks, though the effect is less clear for H3K9me1, and integration near these
marks was still favored compared to the matched random controls. These results further
support our observation that LEDGINs and GS-9822 in particular retarget integration away
from active transcription units (20, 51). Overall, a clear shift in the epigenetic features of
the HIV integration sites was observed in the presence of the LEDGIN compounds, which
was more pronounced with GS-9822 than with CX14442.

GS-9822 reduces infectivity and increases immediate latency of a single round,
double reporter vector. CX14442-mediated retargeting of HIV-1 integration to an
altered chromatin landscape was associated with an increased immediate HIV-1 la-
tency and less reactivation (20, 51). To study if treatment with GS-9822 is capable of
similar effects at nanomolar concentrations, we used the HIV-1 OGH double reporter
vector (51, 55, 56, 58, 75) (Fig. 3a). This previously described reporter vector combines
LTR-dependent expression of enhanced green fluorescent protein (eGFP) replacing nef
and a second reporter transcription unit immediately downstream, consisting of a con-
stitutively active EF1a promoter, driving mutant Kusabira-Orange 2 (mKO2) reporter
gene expression. This system allows us to distinguish cells containing productive and
latent proviruses via flow cytometry (Fig. 3c). Other researchers have used this double
reporter to show differences in integration sites between inducible and noninducible
latent HIV-1 proviruses (75). SupT1 cells (3� 105 cells) were transduced with 60� 106

to 240� 106 pg of the HIV-1 OGH double reporter in the presence of various

TABLE 2 CX14442 and GS-9822 retarget integration away from gene-dense regions

Type CX14442 (mM) No. of unique sites Sites in genes (%)a,c Sites in protein coding genes (%)b,c

Integration site 0 11,624 76.49 72.76
12.5 350 70.57 (**) 68.86
25 427 71.66 (*) 68.85

MRC 0 34,872 41.75 37.28
12 1,050 39.52 36.38
25 1,281 40.67 36.85

Type GS-9822 (nM) No. of unique sites Sites in genes (%)a,c Sites in protein coding genes (%)b,c

Integration site 0 11,624 76.49 72.76
38 2,804 66.55 (***) 62.02 (***)
75 1,401 62.96 (***) 59.03 (***)
150 1,213 64.14 (***) 60.92 (***)

MRCd 0 34,872 41.75 37.28
38 8,412 42.05 37.61
75 4,203 41.90 37.97
150 3,639 41.49 37.32

aPercentage of integration sites within genes, calculated based on the University of Califorina Santa Cruz (UCSC) genes data set, which itself is based on data from RefSeq,
GenBank, the Consensus Coding Sequence (CCDS) database, and UniProt (90, 91).

bPercentage of integration sites within protein-coding genes, calculated based on the USCS genes data set. Protein-coding genes were defined as gene entries containing a
UniProt protein ID.

cAsterisks represent a statistically significant deviation from the control data set as calculated by the Chi-square test. *, P, 0.05; **, P, 0.005; ***, P, 0.0005.
dMRC, matched random control.
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concentrations of CX14442 or GS-9822. Raltegravir, an INSTI, was used as a control (Fig.
3b). We performed the first flow cytometry analysis 3 days after transduction. As expected,
all three integrase inhibitors inhibited HIV-1 transduction as measured by the percentage
of mKO2-positive cells with IC50 values of 0.002mM, 0.007mM, and 1.6mM for RAL, GS-
9822, and CX14442, respectively (Fig. 4a to c). For all compounds, the decrease in the num-
ber of eGFP-positive cells correlated with the decrease in proviral copy numbers per cell
(Fig. 4a to c and e). When calculating the latent fraction (% single mKO21 cells/[% single
mKO21 cells 1 % double positive cells] � 100 or C/[B 1 C] � 100 [Fig. 3c]), treatment
with GS-9822 or CX14442 resulted in a dose-dependent increase in the latent fraction (Fig.
4d; Fig. S5a). For raltegravir, an increase in latency was only seen at concentrations of 17-
fold the IC50 (Fig. 4d; Fig. S5a). Although the increase in latent fraction appears similar for
GS-9822 and CX14442 when plotted with respect to fold IC50, the IC50 of GS-9822 is over
200-fold lower than that of CX14442, indicating that GS-9822 increases immediate HIV la-
tency at nanomolar concentrations.

GS-9822 reduces HIV-1 reactivation in a single-round, double-reporter system.
Finally, we evaluated HIV-1 reactivation in SupT1 cells pretreated with CX14442 or GS-
9822 or with raltegravir as a control. Cells were transduced with the HIV-1 OGH vector
for 3 days in the presence of the compounds and then washed twice to remove com-
pound and cell-free vector and kept in culture until day 8 in the absence of inhibitor.
On day 8 postransduction, half of the cells were reactivated with 10 ng/ml tumor ne-
crosis factor a (TNF-a), and the other half were left untreated. Thus, reporter gene
expression and latency with and without reactivation could be compared (Fig. 3b).
Upon reactivation, the percentage of mKO2-positive cells (transduced cells) remained
unchanged, as expected, while an increase in eGFP-positive cells (reactivation of latent

FIG 3 HIV-1 OGH: a double reporter construct used to analyze the impact of LEDGINs on immediate latency and reactivation. (a) Schematic representation
of the HIV-1 OGH construct (51, 55, 56). HIV-1 OGH is a replication-deficient vector containing an eGFP gene under the control of the viral LTR promoter.
HIV-1 OGH also carries a constitutively active transcriptional unit of an mKO2 reporter driven by an EF1a promoter. (b) Timeline of the transduction and
reactivation experiments. SupT1 cells were transduced in the presence of CX14442 or GS-9822. Three days postransduction, vector and compounds were
washed away, and flow cytometry analysis was performed. Eight days postransduction, cells were reactivated with 10 ng/ml TNF-a for 24 h. At day 9, 24 h
postreactivation, cells were analyzed by flow cytometry. (c) Representative dot plot of SupT1 cells, transduced with 120 � 106 pg of HIV-1 OGH on day 9
(condition without TNF-a), showing how flow cytometry makes it possible to distinguish between different cell populations. Cells only expressing mKO2
from the constitutively active EF1a promoter have an inactive LTR and are thus considered to be latently transduced (quadrant C). If cells are productively
transduced (quadrant B), the viral LTR promoter will drive eGFP expression as well, resulting in double positive cells.
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FIG 4 Treatment with CX14442 or GS-9822 but not raltegravir increases immediate latency of HIV-1 OGH double reporter
construct. (a to c) Data of one representative experiment out of 4 plotting the average of duplicate measurements with
standard deviation. Percentage of eGFP and mKO2-positive cells 3 days postransduction of SupT1 cells with a 1/20,000
dilution of HIV-1 OGH. Cells were treated with increasing concentrations of CX14442, GS-9822, or raltegravir. eGFP-positive
cells are shown in green, and mKO2 positive cells are plotted in red. Mean IC50 values with standard error of the mean
(SEM) for CX14442, GS-9822 and raltegravir are listed below the graphs. (d) The latent fraction (percentage of single
mKO2-positive cells/[percentage of single mKO2-positive cells 1 percentage of double positive cells] · 100) or (quadrant
C/[quadrant B 1 quadrant C]) as shown in panel c was calculated 3 days postransduction of SupT1 cells with a 1/20,000
dilution of HIV-1 OGH virus. Compound concentrations are plotted as a fold of the IC50. (e) Copies/million cells as
calculated by Alu-LTR and CCR5 qPCR on day 3 postransduction of SupT1 cells with a 1/20,000 dilution of HIV-1 OGH
virus. Mean values and SD are shown for one representative experiment out of 2. Compound concentrations are plotted
as a fold of the IC50.
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proviruses) was seen under all conditions (Figure 5a to c). The latent fraction decreased
as transduced cells were reactivated from latency (Figure 5d to f). However, when cells
had been treated with CX14442 or GS-9822 during initial transduction, a dose-depend-
ent decrease in the reactivatable latent fraction was evidenced (Fig. 5d, e, and g; Fig.
S5b). This effect was more pronounced for GS-9822 than for CX14442. Again, for ralte-
gravir, a similar effect on reactivation was observed but only at concentrations of 17-
fold the IC50 (Fig. 5f and g). Treatment with GS-9822 thus reduces reactivation from la-
tency at nanomolar concentrations.

DISCUSSION

GS-9822, a preclinical LEDGIN candidate, is a potent antiviral with nanomolar activ-
ity against wild-type HIV-1 viruses (Fig. 1b and e, Table 1). GS-9822 inhibits the LEDGF/

FIG 5 Treatment with CX14442 or GS-9822 but not raltegravir decreases reactivation from latency. Flow cytometry data on day 9 or 24 h after reactivation
of HIV-1 OGH transduced SupT1 cells with 10 ng/ml TNF-a are shown for a 1/20,000 virus dilution. Full lines represent nonactivated cells, and dotted lines
represent TNF-a-treated cells. Data show one representative experiment out of 4, and the average of duplicate measurements with standard deviation is
plotted. (a to c) The percentages of mKO2- and eGFP-positive cells for cells pretreated with CX14442, GS-9822, or raltegravir are shown. eGFP-positive cells
are shown in green, and mKO2-positive cells are plotted in red. (d to f) The latent fraction, calculated as described above, for cells pretreated with
CX14442, GS-9822, or raltegravir is shown. (g) Upon reactivation, the latent fraction decreases, and the plotted decrease in latent fraction is calculated by
subtracting the latent fraction under the TNF-a-treated condition from the latent fraction under the nontreated condition. Compound concentrations for
this graph are plotted as a fold of the IC50.
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p75-integrase interaction (Fig. 1c and f, Table 1) and reduces HIV-1 integration (Fig.
S1a and b; Table 2, Fig. 4a to c and e). Much like CX14442 (20, 51), GS-9822 retargeted
integration of residual proviruses away from genes and gene-dense regions (Table 2,
Fig. 2b to e; Fig. S1c to r, S2, and S4), resulting in a more repressive epigenetic land-
scape (Fig. S3). Finally, when using a double reporter construct, CX14442 and GS-9822
were shown to reduce HIV-1 infectivity, increase immediate latency, and decrease the
reactivation potential of residual integrants (Fig. 4 and 5). Remarkably, GS-9822 induced
these effects at 200 to 300-fold lower concentrations than CX14442.

The present study is the first to show a combined effect on viral replication, inte-
grase-LEDGF/p75 interaction, integration sites, chromatin landscape, immediate la-
tency, and latency reversal after treatment with a LEDGIN at nanomolar concentrations.
Compared to CX14442, GS-9822 was 20- to 100-fold more potent against wild-type HIV
infection in MT-4 cells and inhibited the integrase-LEDGF/p75 interaction at a 10-fold
lower concentration. When present during transduction with a single-round HIV-1-
based lentiviral vector or the HIV-1 OGH double reporter, both GS-9822 and CX14442
hampered integration as shown by a reduction in copies per cell determined by qPCR
(Fig. S1b; Fig. 4e), reporter gene expression via flow cytometry (Fig. 4a to d), and the
number of unique sites obtained after integration site sequencing (Fig. S1a) (Table 2)
(20, 51). Though HIV-1 normally favors integration in active genes and transcription
units (14–20), both LEDGINs decreased integration within genes and gene-dense
regions (Table 2 and Fig. 2b to e; Fig. S1c to r and S4) as was shown before for
CX14442 (20, 51), CX05045 (51), and the BI/D compound (54). This shift in integration
sites also coincided with differences in the epigenetic environment surrounding the
integrated proviruses. Consistent with previous research on CX14442 (20, 51), GS-9822
reduced integrations in proximity to H3K36me3 (Fig. S3), a marker found along active
gene bodies (61–64, 71–73), the histone modification targeted by LEDGF/p75 (21, 22,
69, 70), and according to an analysis by a deep learning neural network, the strongest
predictor of HIV-1 integration of all epigenetic marks investigated (76). Recently, B-HIVE
was used to show that upon retargeting by CX14442, proviruses integrated away from
H3K36me3 had reduced RNA expression levels (20). GS-9822 clearly had a stronger effect
than CX14442 (51) on other markers for active gene bodies (61, 63, 74), such as H3K27me1
and H2B5Kme1. H4K20me1 and H3K9me1, a marker usually located closest to the tran-
scription start site (61, 73), were affected to a lesser degree. HIV usually disfavors integra-
tion near H3K27me2, H3K27me3, H3K9me2, H3K9me3, and H4K20me3 (20, 51, 65–68), all
markers associated with silent genes and repressive chromatin (61–64, 74). As demon-
strated previously for CX14442, retargeting of integration by GS-9822 resulted in relatively
closer integration to these markers, at about the level of the generated matched random
controls (MRCs) (20, 51). Overall, when comparing both compounds, GS-9822 showed
stronger retargeting effects than CX14442 for most parameters and at nanomolar concen-
trations. Finally, GS-9822 and CX14442 both increased immediate latency (Fig. 4d; Fig. S5a)
and reduced reactivation (Fig. 5, particularly Fig. 5g; Fig. S5b) from the residual integrated
proviruses as was shown previously for CX14442 (20, 51). Here, the effect of both com-
pounds seems comparable relative to their respective IC50s, though GS-9822 is about 200-
fold more potent (GS-9822 IC50 = 6.929nM versus CX14442 IC50 = 1.577mM) and thus
achieves the same effect at much lower concentrations. Based on these findings, we con-
clude that (i) the retargeting of integration, (ii) the increase in immediate latency, and (iii)
the induction of a reservoir that is refractory to reactivation are all class effects related to
the inhibition of the LEDGF-integrase interaction and are not specific for single com-
pounds of the class. Notably, since MINIs may not exhibit this mechanism of action, this
subtype of LEDGINs may not have this additional effect. Furthermore, highly potent
LEDGIN compounds that inhibit the LEDGF-integrase interaction with good selectivity can
induce these effects at low doses that could be achieved in the clinic, making LEDGINs an
interesting candidate for functional HIV cure research.

LEDGINs are attractive antivirals given their multimodal effects, including blocking
of viral maturation, integration, and induction of latency. Certain LEDGINs also reduce
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viral reactivation, though viral transcription is not fully blocked in each single cell.
Whether the observed inhibition is enough to delay viral rebound or help to induce a
functional cure phenotype will need to be investigated in animal models. On the other
hand, research has shown that over time, intact proviruses located at integration sites
suggestive of deeper latency accumulate in CD41 T cells derived from patients on
cART, pointing to selective pressures weeding out active proviruses (77). In addition,
next-generation sequencing of proviruses and integration sites in elite controllers has
shown that in these patients, proviruses are more frequently located in regions associ-
ated with heterochromatin features enriched in repressive chromatin marks (78). Thus,
increasing the percentage of proviruses in the reservoir in such a latent state with
LEDGINs could theoretically help some patients obtain viral control over time.

If used in the clinic with the specific goal of inducing a more latent reservoir, the
timing of LEDGIN treatment will be important. Since we know that early treatment
reduces the size of the HIV reservoir (79), treatment during primary-infection or at least
early after infection is likely to have the most impact. Since even in the European
Union/European Economic Area (EU/EAA), almost 50% of HIV patients are diagnosed in
the late stages of infection (80), a relevant question requiring investigation is whether
LEDGINs would have any impact on the existing latent reservoir of chronically infected
patients. Recent research suggests that 60 to 70% of the HIV latent reservoir is formed
in the year before cART initiation, although earlier strains do make up parts of the res-
ervoir in certain patients (81, 82). Whether LEDGINs would exert a block-and-lock phe-
notype in chronically treated patients, perhaps after a treatment interruption, also
remains to be investigated.

Since the effect of LEDGINs on latency has only been tested in cell culture, confir-
mation in animal models will be needed prior to clinical evaluation. GS-9822 has an
excellent in vitro and pharmacokinetic profile, but an unmonitorable urothelial toxicity
was seen in a monkey model, leading to a halt in further advancement (50). However,
recently, a new LEDGIN compound, STP0404, was announced (47). STP0404 has favor-
able physicochemical and pharmacokinetic properties, nanomolar antiviral activity in
different cell models, and a high therapeutic index. STP0404 was active against ralte-
gravir-resistant HIV strains, while the typical LEDGIN resistance mutations Y99H and
A128T conferred resistance to STP0404. No significant toxicities were reported in rat
and dog. STP0404 was also shown to decrease reactivation from latency in primary
resting CD41 T cells. Given its high potency, STP0404 is being explored for long-acting
antiretroviral therapy. Phase I clinical trials with this new LEDGIN were scheduled to
start in 2020.

The present paper highlights the block-and-lock potential of LEDGINs in addition to
their potent antiviral properties. Since we show that GS-9822 can affect HIV latency in
vitro at clinically achievable doses, we believe that it should be investigated whether
potent and safe LEDGIN compounds could act as modifiers and silencers of the func-
tional HIV reservoir in vivo.

MATERIALS ANDMETHODS
Compounds. CX14442 (38) was synthesized at Cistim/CD3 KU Leuven (courtesy of A. Marchand). GS-

9822 (50) was provided by Gilead (courtesy of M. Balakrishnan). Raltegravir was purchased from the
National Institute for Biological Standards and Control (NIBSC). All compounds were diluted in dimethyl
sulfoxide (DMSO) to a stock concentration of 25mM, which was then diluted in a 1/10 series and ali-
quoted for use in the different experiments.

Cell culture. All cells were tested to be mycoplasma free (PlasmoTest, InvivoGen) and cultured in a
humidified atmosphere at 5% CO2 and 37°C. MT-4 cells and SupT1 cells were provided by the National
Institutes of Health (NIH) AIDS reagent program. They were cultured in RPMI 1640 (Gibco) supplemented
with 10% (vol/vol) fetal bovine serum (FBS; Gibco) and 0.01% (vol/vol) gentamicin (Gibco). HEK293T cells
were purchased from ATCC (293T/17 [HEK 293T/17; ATCC CRL-11268]) and cultured in Dulbecco modi-
fied Eagle medium (DMEM; Gibco) with 5% FBS (Gibco) and 0.01% gentamicin (Gibco).

Reporter viruses. CH-SFFV-eGFP-P2A-fLuc. CH-SFFV-eGFP-P2A-fluc is a replication-deficient lenti-
viral vector containing an enhanced green fluorescent protein (eGFP) reporter and a firefly luciferase
(fLuc) reporter, separated by a P2A sequence and driven by the spleen-focus-forming-virus (SFFV) pro-
moter (58).

HIV-1 OGH. The dual-colored reporter vector, HIV-1 OGH, is an orange-green variant of a
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previously described LAI-based double reporter vector (55, 56, 75) used to study HIV latency (51, 58).
It is replication deficient and contains an LTR-driven enhanced green fluorescent protein (eGFP) in
the nef position followed by a constitutively active EF1a promoter driving a mutant Kusabira-
Orange 2 (mKO2) reporter. The double reporter vector was a kind gift from the Verdin lab (Buck
Institute for Research on Aging).

Viral strains. The HIV-1 IIIB and NL4-3 strains were obtained through the NIH AIDS Reagent Program,
Division of AIDS, NIAID, NIH. HIV-1 IIIB virus was obtained from Robert Gallo (catalog number 398) and
HIV-1 NL4-3 infectious molecular clone (pNL4-3) from Malcolm Martin (catalog number 114). HIV-1 IIIB
was originally derived from concentrated culture fluids of peripheral blood or bone marrow from several
patients with AIDS or AIDS-related diseases. The source of this chimeric molecular clone is the HIV-1 NY5
isolate (59) and the HIV-1 LAV isolate (39) cloned directly from genomic DNA (83–85). HIV-1 NL4-3 is a chi-
meric molecular clone based on the HIV-1 NY5 and HIV-1 LAV isolates (86).

Virus production. HIV-1 OGH was produced in HEK293T cells by double transfection with pOGH
plasmid and pVSVG, the VSV-G protein encoding plasmid, using linear polyethylenimine (PEI;
Polysciences) in Optimem (Gibco). First, HEK293T cells were seeded overnight in DMEM (Gibco) at
5.7 million cells per petri dish. A DNA mixture was made consisting of 20mg of transfer plasmid and
5mg of pVSVG diluted in 700ml of Optimem per petri dish. Next, a PEI mixture containing 68ml of
10mM PEI in 632ml of 150mM NaCl was added gently to the plasmid mixture. After incubation for
15 min at room temperature, 5 ml of Optimem was added, and the resulting medium was used to
replace the seeding medium. After 6 h, the plates were washed twice with phosphate-buffered sa-
line (PBS), and the medium was replaced with Optimem. After 72 h, the supernatant was collected
for the first time, and the medium was replaced for a second collection after another 24 h. The su-
pernatant was filtered through a 0.45-mm pore membrane (Merck), concentrated using a Vivaspin
device with a 15- to 50-kDa cutoff (Merck), treated with 100 U/ml DNase (Roche Diagnostics) for 1 h
at 37°C, and stored at –80°C until use.

CH-SFFV-eGFP-P2A-fluc was produced in HEK293T cells by triple transfection with 20mg of the trans-
fer plasmid pCH-SFFV-eGFP-P2A-fLuc, 10mg of the packaging plasmid D8.91, and 5mg of pVSV-G, using
the protocol described above with 95ml of PEI in 605ml of 150mM NaCl.

MTT assay. In this assay, a yellow dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) is reduced by a mitochondrial dehydrogenase in metabolically active cells to a purple formazan
derivative (87), which is measured spectrophotometrically. Here, we used the MTT assay to determine
the inhibition of HIV-induced cytopathic effects (CPE) in MT-4 cells and thus the inhibition of HIV-1 infec-
tion. MT-4 cells were infected with wild-type HIV-1 subtype B viruses (IIIB and NL4.3) at a multiplicity of
infection (MOI) of 0.01 in the presence of a dilution series of CX14442 and GS-9822 (1.28 nM to 100mM
for CX14442 and 0.064 nM to 5mM for GS-9822). The MTT assay was performed after 5 days.

Expression and purification of recombinant proteins. His6-tagged HIV-1 integrase and Flag-
tagged LEDGF/p75 were purified for AlphaScreen applications as described previously over a HiTrap
nickel affinity gel (Ni21-NTA) and HiTrap heparin column, respectively (28, 88).

AlphaScreen assays. We performed LEDGF/p75-integrase interaction AlphaScreen assays (Perkin
Elmer, Waltham, MA) as described previously (34). The reaction buffer contained 25mM Tris/HCl (pH
7.3), 150mM NaCl, 1mM MgCl2, 0.1% Tween 20, and 0.1% bovine serum albumin (BSA). All compounds
and proteins were diluted to a 5� working solution in this buffer. We used a final volume of 25ml in a
384-well microtiter plate (OptiPlate-384; Perkin Elmer). We used purified His6-tagged integrase (His-IN)
protein from HIV-1, recognized by a nickel-chelate donor bead, and Flag-tagged LEDGF/p75 (Flag-p75),
recognized by an anti-FLAG coated acceptor bead. First, AlphaScreen assays without compounds were
run, with a range of concentrations (final concentrations, 10 to 200mM) for both proteins to determine
the optimal reaction conditions (data not shown). Then, 5ml of His-IN was incubated for 1 h with 5ml of
Flag-p75 at 4°C. Next, 10ml of a mix of nickel-chelate donor beads and anti-FLAG coated acceptor beads
at a 1/100 dilution were added. The plate was then incubated for 3 h at 30°C while limiting exposure of
the reaction mixture to light. The emission of light from the acceptor beads was analyzed in the
Envision plate reader (Perkin Elmer) in AlphaScreen mode.

Next, we determined dose response curves in the presence of the compounds. First, 5ml of His-IN at
a final concentration of 50 nM was incubated for 30min at 4°C in the presence of 5ml of various concen-
trations of the compounds (final concentrations of 0.1 to 500mM for CX14442 and 0.001 to 500 mM GS-
9822). Next, 5ml of Flag-tagged LEDGF/p75 at a final concentration of 100 nM was added for an addi-
tional 1 h at 4°C. Further steps were performed as described above. Data were analyzed using the
Envision Manager software (Perkin Elmer) and GraphPad Prism.

Transduction and reactivation experiments with HIV-1 OGH. SupT1 cells were transduced for
3 days in the presence of different concentrations of either CX14442 (38), GS-9822 (50), or raltegravir, af-
ter which the cells were washed twice with PBS. Eight days after infection, cells were reactivated in
duplicate with 10 ng/ml tumor necrosis factor a (TNF-a; Immunosource). Flow cytometry analysis was
performed 3 days postransduction and 24 h postreactivation (Fig. 5b). Drug concentrations are listed for
each individual experiment. IC50 values were calculated using GraphPad Prism.

Flow cytometry. Cells were fixed in 2% paraformaldehyde (PFA) for 15min at room temperature
and stored at 4°C. Cells were washed with and resuspended in PBS before flow cytometry analysis with a
MACS Quant VYB analyzer (Mylteny Biotech). eGFP expression was measured using a 488-nm, 50-mW
diode-pumped solid-state (DPSS) excitation laser, and the emitted signal was measured after a 525/50-
nm band pass filter. mKO2 expression was measured using a 561-nm, 100-mW diode excitation laser
and a 586/15-nm band pass filter. The gating strategy involved gating for lymphocytes using the for-
ward and side scatter channel (FSC-H/SSC-H) and exclusion of doublets (FSC-A/FSC-H). At least 15,000
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single live cells were counted in total, and each sample was measured in duplicate. Data were analyzed
using FlowJo software.

Integration site analysis. Integration sites were determined as previously described (60). SupT1
cells were seeded and transduced with a lentiviral vector (CH-SFFV-eGFP-P2A-fLuc) for 3 days in the
presence of a range of concentrations of CX14442 or GS-9822. After 3 days, the cells were washed
twice with PBS and kept in culture for at least 10 days to allow nonintegrated DNA to be diluted. Per
condition, a single pellet of 5 to 10 million cells was used for further analysis. Next, genomic DNA was
extracted using the GenElute mammalian genomic DNA miniprep kit (Sigma-Aldrich) and sheared by
sonication with the Covaris M220 instrument. Linkers were added to the sheared DNA ends, and inte-
gration sites were amplified by nested PCR with primers complementary to the linker and the viral
LTR. Finally, the PCR products were sequenced with Illumina Miseq (paired-end, 300 cycles).
Sequencing data were analyzed using the INSPIIRED software (59) and Rstudio (BiocManager,
GenomicRanges, and hiAnnotator packages). All samples were obtained from a single transduction
experiment.

Integrated copies/cell qPCR. Integrated HIV copies were quantified with a nested real-time Alu-
LTR qPCR (58). For the first round, the PCR mix contained 5ml of genomic DNA, 12.5ml of iQ
Supermix (Bio-Rad), 0.5ml of 3 primers each at a 20 mM concentration (Alu forward [FW],
TCCCAGCTACTGGGGAGGCTGAGG; Alu reverse [RV], TGCTGGGATTACAGGCGTGAG; HIV-1 LTR FWr1,
GCTAACTAGGGAACCCACTGCTTA), and 6ml of water. The PCR started with 10min at 95°C, followed
by 15 cycles of 95°C for 30 sec, 60°C for 40 sec, and 72°C for 3.5 min. The mix for the second round
contained 12.5ml of SuperiQ mix, 0.5ml of 2 primers each at a 20mM concentration (HIV-1 LTR FWr2,
AGCTTGCCTTGAGTGCTTCAA; HIV-1 LTR RVr2, TGACTAAAAGGGTCTGAGGGATCT), 1ml of probe at a
5mM concentration (59-FAM-TTACCAGAGTCACACAACAGACGGGCA-TAMRA-39), and 5ml of the first
round PCR product. The PCR was performed in a LightCycler 480 device (Roche Life Science), starting with
5min at 95°C, followed by 45 cycles of 95°C for 15 sec, 60°C for 30 sec, and 72°C for 1min. To normalize for total
input DNA, a CCR5 qPCR was performed on the same samples, as previously described (89). The PCR mix con-
tained 5ml of genomic DNA, 10ml of Sybr Green (Invitrogen), 1ml of 2 primers each at 20mM concentration
(LK46, GCTGTGTTTGCGTCTCTCCCAGGA; LK47, CTCACAGCCCTGTGCCTCTTCTTC), and 3ml of water. The PCR
was performed in a LightCycler 480 device (Roche Life Science). All samples were run at least in duplicate. Data
were analyzed using the provided LightCycler 480 software.

Data availability. All HIV-1 OGH integration sites with annotation, as obtained through analysis with
the INSPIIRED software (59), are provided as supplemental material (Supplemental Data Sets S1 to S4).
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