

In Vitro Antibacterial Activity of Hydrogen Peroxide and Hypochlorous Acid, Including That Generated by Electrochemical Scaffolds

📴 Yash S. Raval,ª 🖻 Laure Flurin,ª 🕫 Abdelrhman Mohamed,^b Kerryl E. Greenwood-Quaintance,ª Haluk Beyenal,^b 🕫 Robin Patelª.c

^aDivision of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA

Antimicrobial Agents

MICROBIOLOGY and Chemotherapy®

AMERICAN SOCIETY FOR

^bThe Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA ^cDivision of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA

ABSTRACT Hydrogen peroxide (H₂O₂) and hypochlorous acid (HOCI) are biocides used for cleaning and debriding chronic wound infections, which often harbor drugresistant bacteria. Here, we evaluated the in vitro activity of H₂O₂ and HOCI against 27 isolates of eight bacterial species involved in wound infections. Minimum inhibitory concentrations (MICs) and minimum biofilm bactericidal concentrations (MBBCs) were measured. Compared to their respective MICs, MBBCs of isolates exposed to H₂O₂ were 16- to 1,024-fold higher, and those exposed to HOCI were 2- to 4-fold higher. We evaluated the selection of resistance after exposure of Staphylococcus aureus and Pseudomonas aeruginosa biofilms to 10 iterations of electrochemically generated HOCI or H₂O₂ delivered using electrochemical scaffolds (e-scaffolds), observing no decrease in antibiofilm effects with serial exposure to e-scaffold-generated H₂O₂ or HOCI. Twenty-four-hour exposure to H2O2-generating e-scaffolds consistently decreased the number of CFU of S. aureus and P. aeruginosa biofilms by \sim 5.0 log₁₀ and \sim 4.78 log₁₀ through 10 iterations of exposure, respectively. Four-hour exposure to HOCI-generating e-scaffolds consistently decreased the number of CFU of S. aureus biofilms by \sim 4.9 log₁₀, and 1-h exposure to HOCl-generating e-scaffolds consistently decreased the number of CFU of P. aeruginosa biofilms by \sim 1.57 log₁₀. These results suggest that HOCI has similar activity against planktonic and biofilm bacteria whereas the activity of H₂O₂ is less against biofilm than planktonic bacteria, and that repeat exposure to either biocide, generated electrochemically under the experimental conditions studied, does not lessen antibiofilm effects.

KEYWORDS H₂O₂, HOCl, biofilm, e-scaffold, MIC, MBIC, MBBC, resistance

Chronic wound infections caused by antibiotic-resistant bacteria are a challenge in clinical practice. In the United States, costs associated with treating chronic wound infections exceed \$10 billion yearly (1). Such infections are commonly associated with the presence of biofilms in wound beds, making them especially difficult to treat, since many antimicrobial agents are poorly active against bacterial biofilms (2). Biofilms in wound beds can hamper wound healing by impairing movement of keratinocytes/ fibroblasts or decreasing angiogenesis, for example (3–5). Antiseptics and topical disinfectants used for cleaning and debriding chronic wound infections include chlorhexidine, povidone-iodine, sodium hypochlorite, hypochlorous acid (HOCI), peracetic acid, quaternary ammonium compounds, and hydrogen peroxide (H_2O_2), to name a few (6, 7). Biofilms in wound beds may hinder the optimal efficacy of these biocides. Among the various biocides, H_2O_2 and HOCI are generated as part of natural cellular inflammatory responses and are noteworthy for their inherent potential properties in eliminating biofilms in wound beds and stimulating wound healing (8–11). Increased migration

Citation Raval YS, Flurin L, Mohamed A, Greenwood-Quaintance KE, Beyenal H, Patel R. 2021. *In vitro* antibacterial activity of hydrogen peroxide and hypochlorous acid, including that generated by electrochemical scaffolds. Antimicrob Agents Chemother 65:e01966-20. https://doi.org/10.1128/AAC.01966-20.

Copyright © 2021 American Society for Microbiology. All Rights Reserved.

Address correspondence to Robin Patel, patel. robin@mayo.edu.

Received 11 September 2020 Returned for modification 24 October 2020 Accepted 23 February 2021

Accepted manuscript posted online 1 March 2021 Published 19 April 2021 and differentiation of keratinocytes and fibroblasts have been reported in the presence of H_2O_2 and HOCI (12, 13). A limitation in the application of H_2O_2 and HOCI to wounds is, however, that they are rapidly oxidized/reduced in wound environments, losing activity over time. Therefore, the continuous generation and delivery of H_2O_2 and HOCI to wound beds to reduce biofilms could be considered for ideal antibacterial effects.

Few studies have assessed the antibiofilm activity of H_2O_2 and HOCl in terms of minimum biofilm inhibitory concentrations (MBICs) and minimum biofilm bactericidal concentrations (MBBCs) against biofilms formed by numerous/broad-spectrum clinically important pathogens. Since wound infections often involve biofilms in wound beds, antibiofilm activity is an important consideration. Previously, we described H_2O_2 - and HOCl-generating electrochemical scaffolds (e-scaffolds) as prototypes of devices being developed to treat wound infections (13, 14).

Here, we studied the susceptibility of selected clinically relevant Gram-positive and -negative bacteria by determining MICs, MBICs, and MBBCs of H_2O_2 and HOCI. The literature has contrasting reports regarding the selection of H_2O_2 and HOCI resistance (15–17), so we also assessed whether there would be a decrease in antibiofilm activity with serial application of H_2O_2 or HOCI. Specifically, we tested *S. aureus* and *P. aeruginosa* biofilms with multiple exposures to H_2O_2 - and HOCI-generating e-scaffolds.

RESULTS

Susceptibility of planktonic bacteria to hydrogen peroxide and hypochlorous acid. The 27 bacterial isolates studied had mean H_2O_2 MICs ranging from 0.20 to 3.19 mM (Table 1). Gram-positive and -negative bacteria showed wide H_2O_2 MIC ranges. *P. aeruginosa* PA14 had a mean H_2O_2 MIC of 3.19 mM, whereas its isogenic mutant strain lacking the catalase genes *katA* and *katB*, *P. aeruginosa* PA14 Δ *katAB*, had a mean H_2O_2 MIC of 0.20 mM, ~16-fold lower than the parent strain.

The 27 bacterial isolates studied had mean HOCI MIC values ranging from 0.5 to 1.99 mM (Table 1), a tighter range than H_2O_2 and below concentrations considered toxic to mammalian cells (~15.12 mM) (10). As with H_2O_2 , both Gram-positive and -negative bacteria showed similar HOCI MIC ranges.

Susceptibility of bacterial biofilms to hydrogen peroxide and hypochlorous acid. (i) Biofilm inhibitory concentrations. As shown from Table 1, mean H₂O₂ MBICs ranged from 0.40 to 170 mM. For most tested Gram-positive bacteria, H₂O₂ MBICs were similar or slightly higher than corresponding MIC values. For Gram-negative bacteria, except for *P. aeruginosa*, H₂O₂ MBICs were also similar/slightly higher than their MICs. Almost all *P. aeruginosa* isolates, except *P. aeruginosa* PA14 Δ *katAB*, had 128- to 256-fold MBICs compared to MICs.

All bacteria studied had mean HOCI MBICs similar to or slightly higher than their respective MICs; an exception was *P. aeruginosa* IDRL-7543, which had a mean HOCI MBIC of \geq 3.97 mM, markedly higher than its MIC (0.99 mM).

(ii) Biofilm bactericidal concentrations. Mean H_2O_2 MBBC values ranged from 51 to 680 mM, 32- to 512-fold higher than their MIC or MBIC. *P. aeruginosa* isolates had the highest H_2O_2 MBBC values of the bacteria studied. Almost all *P. aeruginosa* isolates had an overall 256- to 512-fold higher H_2O_2 MBBC than MIC and MBIC.

Mean HOCI MBBCs ranged from 0.66 to \geq 3.97 mM, the same or slightly higher than the respective MICs and MBICs. HOCI MBBCs for the Gram-positive bacteria studied were generally similar to their MICs and MBICs, whereas for Gram-negative bacteria, HOCI MBBCs were generally higher than their MICs and MBICs.

Measurement of susceptibility following repeated exposure of *S. aureus* and *P. aeruginosa* biofilms to H_2O_2 and HOCI generated by e-scaffolds. Figure 1 shows the results of repeated e-scaffold treatment of *S. aureus* USA100 and *P. aeruginosa* IDRL-11442 biofilms. Based on our prior e-scaffold studies, ~45 mM H_2O_2 is typically generated over a 24-h treatment period and ~22 mM HOCI over a 4-h treatment period (13, 14). When *S. aureus* USA100 biofilms were exposed to an H_2O_2 -producing e-scaffold for 24 h, a mean reduction of ~5.00 log_{10} CFU/cm² was observed compared to controls over 10 iterations (Fig. 1A). When the same biofilms were exposed to an HOCI-generating e-

H,0,H,0,H0BatteriaJoint designationJoint designationSatteriasUSA100Joint designationJoint designationSatteriasUSA100Joint designationJoint designationSatteriasUSA100Clinical isolate: resistant to methicilinOUJoint designationSatteriasUSA300Clinical isolate: resistant to methicilinOUJoint designationCarleriaUSA300Clinical isolate: resistant to methicilinOUJoint designationCarleriaDRI-J707Clinical isolate: resistant to methicilinOUJoint designationCarleriaDRI-J707Clinical isolate: resistant to methicilinOUJoint designationCarleriaDRI-J707Clinical isolate: resistant to methicilinOUJoint designationCarlerer isolate: resistant to methicilinOUJoint designationCarlerer isolate: resistant to methicilinOUJoint designationSatteriaDRI-J707DRI-J707Joint designationCar				Value (mean:	s ± SD, in mM) f	ora:			
BatterineBotter designationJohat edispationJohat edispationMatMa				H ₂ O ₂			HOCI		
Sources USA100 Clinical loadar, restant to methicilin 0.44 ± 0.00 6.42 ± 0.01 6.46 ± 0.02 6.2 ± 2.9 1.55 ± 0.57 Sources USA200 Clinical loadar, restant to methicilin 0.22 ± 0.11 0.40 ± 0.00 6.2 ± 0.23 1.92 ± 0.00 0.92 ± 0.00 <t< th=""><th>Bacteria</th><th>Isolate designation</th><th>Isolate characteristics</th><th>MIC</th><th>MBIC</th><th>MBBC</th><th>MIC</th><th>MBIC</th><th>MBBC</th></t<>	Bacteria	Isolate designation	Isolate characteristics	MIC	MBIC	MBBC	MIC	MBIC	MBBC
Sarrens USA300 Clinical isolate, resistant to methicilin 0.27 ± 0.11 0.40 ± 0.00 0.53 ± 0.23 153 ± 0.23 152 ± 0.27 Sequedrandis DRL-3072 DRL 4610 Iode transition isolate 153 ± 0.23 153 ± 0.23 153 ± 0.03 153 ± 0.23 153 ± 0.23 153 ± 0.23 153 ± 0.23 153 ± 0.03 <td< td=""><td>S. aureus</td><td>USA100</td><td>Clinical isolate, resistant to methicillin</td><td>0.40 ± 0.00</td><td>0.40 ± 0.00</td><td>85 ± 29</td><td>1.65 ± 0.57</td><td>1.32 ± 0.57</td><td>1.32 ± 0.57</td></td<>	S. aureus	USA100	Clinical isolate, resistant to methicillin	0.40 ± 0.00	0.40 ± 0.00	85 ± 29	1.65 ± 0.57	1.32 ± 0.57	1.32 ± 0.57
Surveys USA300 Clinical isolate, resistant to methicilin 0.40 ± 0.00 0.66 ± 0.23 1.92 ± 0.00	S. aureus	USA200	Clinical isolate, resistant to methicillin	0.27 ± 0.11	0.40 ± 0.00	85 ± 29	1.65 ± 0.57	0.99 ± 0.00	1.32 ± 0.57
Surres DR-6169 Prosthetic hile badaer resistant to methicilin add = 0.00 0.55 = 0.23 51 = 0.00 0.55 = 0.53 51 = 0.00 0.55 = 0.53 <th0.52< th=""> 0.55</th0.52<>	S. aureus	USA300	Clinical isolate, resistant to methicillin	0.40 ± 0.00	0.66 ± 0.23	68 ± 29	1.99 ± 0.00	0.99 ± 0.00	0.99 ± 0.00
Surres Xen 30 Clinical Isolate resistant to methicilin 0.66 ± 0.23 119 ± 78 132 ± 0.57 Surrers NRL 234 Clinical Isolate resistant to methicilin 0.66 ± 0.23 170 ± 59 165 ± 0.25 Surrers NRL 234 Clinical Isolate resistant to methicilin 0.33 ± 0.23 0.75 ± 0.23 170 ± 59 152 ± 0.57 Surrers NRL 234 Clinical Isolate resistant to methicilin 0.33 ± 0.23 0.75 ± 59 152 ± 0.57 Surrers DRL 4061 Prothetic tip infection isolate 0.33 ± 0.23 0.35 ± 0.23 170 ± 59 0.56 ± 0.25 Exercis DRL 11790 Rothetic tip infection isolate 0.33 ± 0.20 0.35 ± 0.23 170 ± 59 0.56 ± 0.25 Exercis DRL 11790 Rothetic tip infection isolate 0.33 ± 0.04 0.26 ± 0.02 0.35 ± 0.00 0.95 ± 0.00 Exercis DRL 11790 Rothetic tip infection isolate 0.33 ± 0.04 0.26 ± 0.02 0.39 ± 0.00 Exercis DRL 1075 Prothetic tip infection isolate 0.33 ± 0.04 0.26 ± 0.23 0.70 ± 59 0.99 ± 0.00 Exercis	S. aureus	IDRL-6169	Prosthetic hip isolate; resistant to methicillin and mupirocin	0.40 ± 0.00	0.66 ± 0.23	51 ± 0.00	0.99 ± 0.00	0.99 ± 0.00	0.99 ± 0.00
Sentensis DRI, 4.234 Clinical isolate: resistant to methicilin 065 = 0.23 0.23 = 0.23 170 = 59 199 = 0.00 S epidermidis Xen 43 Clinical isolate: resistant to methicilin 0.53 = 0.23 170 = 59 195 = 0.00 S epidermidis Xen 43 Catheter sepsis isolate: resistant to methicilin 0.53 = 0.23 170 = 59 195 = 0.00 S epidermidis Xen 43 Catheter sepsis isolate: resistant to methicilin 0.53 = 0.23 170 = 59 154 = 0.57 E foreculis DRL -1010 Prosthetic hip infection isolate 0.33 = 0.04 0.00 0.54 = 0.05 0.55 = 0.00 E foreculis DRL -11700 Abscess isolate; resistant to variconycin and penicilin, and anot constraint 0.33 = 0.05 0.55 = 0.00 0.50 = 0.00 E foreculis DRL -1070 Abscess isolate; resistant to variconycin and penicilin, and anot constraint 0.33 = 0.06 0.51 = 0.00 0.50 = 0.00 E foreculis DRL -1070 Abscess isolate; resistant to penicolate 0.33 = 0.05 0.51 = 0.00 0.51 = 0.00 E foreculis DRL -1070 Miseculio isolate 0.33 = 0.02 0.32 = 0.02 0	S. aureus	Xen 30	Clinical isolate; resistant to methicillin	0.66 ± 0.23	0.53 ± 0.23	119 ± 78	1.32 ± 0.57	1.32 ± 0.57	1.32 ± 0.57
Septemidis RTCG 3594 Catterer septis later, resistant to methicilin 033=0.23 0.53=0.23 165=0.57 155=0.57 Sepdermidis Sepdermidis RTCG 3594 Catterer septis later, resistant to methicilin 033=0.02 0.65=0.023 165=0.67 155=0.02 155=0.02 155=0.02 155=0.02 0.55=0.02	S. aureus	IDRL-4284	Clinical isolate; resistant to methicillin	0.66 ± 0.23	0.66 ± 0.23	170 ± 59	1.99 ± 0.00	1.32 ± 0.57	0.99 ± 0.00
S epidermidis DR64di Prosthetic knee infection isolate 133 ± 50 135 ± 50 132 ± 057 S epidermidis Xen 43 Catheter isolate: susceptible to methicilin 045 ± 000 138 ± 122 135 ± 59 055 ± 000 E faeculis DRL -661 Prosthetic knee infection isolate 313 ± 0.46 102 ± 000 55 ± 45 059 ± 000 E faeculis DRL -1070 Asscess isolate resistant to vornycin and pencilin, and 313 ± 0.46 052 ± 0.00 55 ± 45 059 ± 0.00 E faeculis DRL -10366 106_{coc} -fostive isolate 133 ± 0.46 052 ± 0.00 059 ± 0.00 E coli DRL -10366 106_{coc} -fostive isolate 133 ± 0.46 056 ± 0.023 170 ± 59 059 ± 0.00 E coli DRL -10366 108_{coc} -fostive isolate 133 ± 0.46 066 ± 0.23 170 ± 59 059 ± 0.00 E coli DRL -10366 108_{coc} -fostive isolate 133 ± 0.46 066 ± 0.02 170 ± 59 099 ± 0.00 E coli DRL -10366 Disclose testive isolate 213 ± 0.46 066 ± 0.23	S. epidermidis	ATCC 35984	Catheter sepsis isolate; resistant to methicillin	0.53 ± 0.23	0.53 ± 0.23	170 ± 59	1.65 ± 0.57	1.32 ± 0.58	1.65 ± 0.57
5. epidemidis facerais Xert 43 Xert 22:12 Carbeter isolate: susceptible to methicilin 0.04 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 <th0.00< th=""></th0.00<>	S. epidermidis	IDRL-6461	Prosthetic knee infection isolate; susceptible to methicillin	0.53 ± 0.23	0.66 ± 0.23	136 ± 59	1.32 ± 0.57	0.99 ± 0.00	0.99 ± 0.00
E faecols ATCC 29212 Unine isolate 339 0.66 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 <th0.00< th=""> 0.</th0.00<>	S. epidermidis	Xen 43	Catheter isolate; susceptible to methicillin	0.40 ± 0.00	1.06 ± 0.46	102 ± 0.00	1.32 ± 0.57	1.32 ± 0.58	1.32 ± 0.57
E facerdis IDRL 8618 Prosthetic hip infection isolate 0.33 ± 0.46 102 ± 0.00 0.50 ± 0.00	E. faecalis	ATCC 29212	Urine isolate	3.19 ± 0.00	1.86 ± 1.22	136 ± 59	0.66 ± 0.29	1.32 ± 0.57	1.65 ± 0.57
E facculs DRt7107 Prosthetic knee infection isolate 3.19 ± 0.00 4.55 ± 1.84 170 ± 59 0.59 ± 0.00 E faccum DRt11790 Abscess iolate resistant to varcomycin and penicillin, and 3.19 ± 0.00 3.09 ± 0.00 9.99 ± 0.00 E coli DRt10366 bl a_{orc} positive isolate: resistant to ceftolozane tazobactam, i 3.3 ± 0.46 0.66 ± 0.23 170 ± 59 0.99 ± 0.00 E coli DRt7029 Prosthetic kne infection isolate 2.13 ± 0.46 0.66 ± 0.23 170 ± 59 0.99 ± 0.00 E coli DRt7029 Prosthetic kne infection isolate 2.13 ± 0.22 3.40 ± 1.18 0.99 ± 0.00 E coli DRt7029 Prosthetic kne infection isolate 2.13 ± 0.22 3.40 ± 1.18 0.99 ± 0.00 E coli DRt7023 Prosthetic kne infection isolate 2.13 ± 0.22 3.40 ± 1.00 0.99 ± 0.00 E coli DRt7023 Prosthetic kne infection isolate 2.13 ± 0.22 3.40 ± 0.00 0.99 ± 0.00 P aeruginosa DRt7262 Prosthetic kne infection isolate 2.13 ± 0.22 1.04 ± 0.00 1.22 ± 0.00	E. faecalis	IDRL-8618	Prosthetic hip infection isolate	0.53 ± 0.23	1.33 ± 0.46	102 ± 0.00	0.50 ± 0.00	1.32 ± 0.57	1.99 ± 0.00
E faccium IDRL-11790 Abscess isolate; resistant to vancomycin and penicillin, and 0.80 ± 0.06 55 ± 45 0.99 ± 0.00 E. coli IDRL-10366 bis_acceptible to linezolid 1.33 ± 0.46 0.66 ± 0.23 170 ± 59 0.99 ± 0.00 E. coli IDRL-7029 Prosthetic hip infection isolate 1.33 ± 0.46 0.66 ± 0.23 170 ± 59 0.99 ± 0.00 E. coli IDRL-7029 Prosthetic hip infection isolate 2.13 ± 0.92 1.59 ± 0.00 0.99 ± 0.00 E. coli IDRL-8110 Biood isolate 2.13 ± 0.92 1.59 ± 0.00 0.99 ± 0.00 E. coli IDRL-8110 Biood isolate 2.13 ± 0.92 1.59 ± 0.00 0.99 ± 0.00 P. aeruginosa IDRL-7029 Prosthetic hip infection isolate 2.13 ± 0.92 3.02 ± 1.02 0.99 ± 0.00 P. aeruginosa IDRL-1742 Round isolate 2.13 ± 0.92 3.02 ± 1.02 0.99 ± 0.00 P. aeruginosa PA1.4 Wide-type laboratory strain 2.13 ± 0.92 1.70 ± 58.99 4.08 ± 0.00 0.99 ± 0.00 P. aeruginosa ID	E. faecalis	IDRL-7107	Prosthetic knee infection isolate	3.19 ± 0.00	$\textbf{4.25} \pm \textbf{1.84}$	170 ± 59	0.50 ± 0.00	1.99 ± 0.00	2.32 ± 1.52
E coli IDR-10366 bla _{se-c} -bisitive isolate, resistant to ceftolozane-tazobactam, imipenen, meropenem, ertapenem, ceftriaxone, and cefepime 1.33 \pm 0.46 0.66 ± 0.23 170 ± 59 0.99 ± 0.00 E coli IDR-7029 Prostihetic hip infection isolate 1.59 ± 0.00 1.88 ± 1.22 340 ± 118 0.99 ± 0.00 E coli IDR-7029 Prostihetic hip infection isolate 2.66 ± 0.02 1.70 ± 58.99 0.99 ± 0.00 E coli IDR-7029 Prostihetic hip infection isolate 2.66 ± 0.02 1.70 ± 58.99 0.99 ± 0.00 P aeruginosa Net.5 Blood isolate 2.66 ± 0.02 1.70 ± 58.99 0.99 ± 0.00 P aeruginosa Net.5 Blood isolate 2.66 ± 0.02 1.70 ± 58.99 0.99 ± 0.00 P aeruginosa PAOI, ATCC 47085 Wound isolate; type strain 2.66 ± 0.02 1.70 ± 58.99 0.99 ± 0.00 P aeruginosa PAOI, ATCC 47085 Wound isolate; resistant to piperacillin-tazobactam, cefepime, 2.66 ± 0.02 1.70 ± 58.99 0.99 ± 0.00 P aeruginosa PAI AkatAB Karl And Karl Bouble knockout of PAI 4 2.66 ± 0.02 $1.70 $	E. faecium	IDRL-11790	Abscess isolate; resistant to vancomycin and penicillin, and susceptible to linezolid	0.80 ± 0.00	0.80 ± 0.69	55 ± 45	0.99 ± 0.00	0.82 ± 0.28	1.32 ± 0.57
Coli DRL-7029 Prosthetic hip infection isolate Leg to more procession isolate <thleg isolate<="" more="" processic="" procession="" td="" thr<="" to=""><td>r coli</td><td>1081 - 10366</td><td>hla</td><td>1 33 + 0 46</td><td>0 66 + 0 23</td><td>170 + 59</td><td>00 0 + 00 0</td><td>1 32 + 0 57</td><td>1 32 + 0 57</td></thleg>	r coli	1081 - 10366	hla	1 33 + 0 46	0 66 + 0 23	170 + 59	00 0 + 00 0	1 32 + 0 57	1 32 + 0 57
E coliIDR-7029Prosthetic hip infection isolate 1.59 ± 0.00 1.86 ± 1.22 340 ± 118 0.99 ± 0.00 E coliIDR-7029Prosthetic kree infection isolate 2.13 ± 0.92 1.59 ± 0.00 408 ± 0.00 0.99 ± 0.00 E coliIDR-7162Prosthetic kree infection isolate 2.66 ± 0.02 3.72 ± 2.44 306 ± 0.00 0.99 ± 0.00 E actionIDR-7562Prosthetic kree infection isolate 2.66 ± 0.22 3.72 ± 3.83 408 ± 0.00 0.99 ± 0.00 P aeruginosaPAO1, ATCC 47085Wound isolate 0.66 ± 0.22 170 ± 5.889 408 ± 0.00 0.99 ± 0.00 P aeruginosaPAO1, ATCC 47085Wound isolate 2.13 ± 0.92 170 ± 5.849 0.99 ± 0.00 P aeruginosaPA14Wild-type laboratory strain 2.19 ± 0.00 85 ± 2.944 408 ± 0.00 0.99 ± 0.00 P aeruginosaPA14KartABkard and kard double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P aeruginosaPA14VartABkardkard double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P aeruginosaPA14AuratABkard kard kard double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P aeruginosaPA14AuratABkard kard kard kard kard 0.00 ± 0.00 3.19 ± 0.00 0.99 ± 0.00 P aeruginosaPA14AuratABkard kard kard kard kard 0.90 ± 0.00 0.90 ± 0.00 0.99 ± 0.00 P aeruginosaPA14AuratABkard kard kard kard kard<			imipenem, meropenem, ertapenem, ceftriaxone, and cefenime						
E coliDRL-6199Prosthetic knee infection isolate 2.13 ± 0.92 1.59 ± 0.00 408 ± 0.00 0.99 ± 0.00 E coliDRL-8110Blood isolateBlood isolate 2.66 ± 0.92 3.72 ± 2.44 340 ± 118 0.99 ± 0.00 P aeruginosaDRL-7262Prosthetic hip infection isolate 2.66 ± 0.92 3.72 ± 2.44 340 ± 118 0.99 ± 0.00 P aeruginosaPAO1, ATCC 47085Blood isolate 2.66 ± 0.02 3.72 ± 2.44 340 ± 118 0.99 ± 0.00 P aeruginosaPAO1, ATCC 47085Wound isolate 2.66 ± 0.02 1.70 ± 58.89 408 ± 0.00 0.99 ± 0.00 P aeruginosaPA14 $\Delta katAB$ kart A and katB double knockout of PA14 2.313 ± 0.92 170 ± 58.83 6.99 ± 0.00 P aeruginosaPA14 $\Delta katAB$ kart A and katB double knockout of PA14 0.20 ± 0.02 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P aeruginosaPA14 $\Delta katAB$ kart A and katB double knockout of PA14 0.20 ± 0.02 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P aeruginosaPA14 $\Delta katAB$ kart A and katB double knockout of PA14 0.20 ± 0.02 3.72 ± 2.43 51 ± 0.00 1.99 ± 0.00 P aeruginosaPA1-11442Groin isolate; resistant to piperacillin-tazobactam, cefepime, 0.60 ± 0.34 51 ± 0.00 1.70 ± 58 0.99 ± 0.00 P aeruginosaPA14 $\Delta katAB$ katA and katB double knockout of PA14 0.20 ± 0.02 3.72 ± 2.43 51 ± 0.00 1.70 ± 59 0.99 ± 0.00 A baumanniiATCC 17978Meningisti	E. coli	IDRL-7029	Prosthetic hip infection isolate	1.59 ± 0.00	1.86 ± 1.22	340 ± 118	0.99 ± 0.00	1.32 ± 0.57	3.31 ± 1.15
E coliIDRL-8110Biood isolate 2.66 ± 0.02 3.72 ± 2.44 3.40 ± 118 0.99 ± 0.00 P. aeruginosaIDRL-7262Prosthetic hip infection isolate 2.66 ± 0.02 170 ± 58.89 408 ± 0.00 0.99 ± 0.00 P. aeruginosaXen 5Blood isolateNound isolate 2.13 ± 0.02 170 ± 58.89 408 ± 0.00 0.99 ± 0.00 P. aeruginosaYen 14Xen 5Blood isolate 2.13 ± 0.02 170 ± 58.89 408 ± 0.00 0.99 ± 0.00 P. aeruginosaPAO1, ATCC 47085Wound isolate; type strain 2.13 ± 0.02 153 ± 88.33 600 ± 2.35 0.99 ± 0.00 P. aeruginosaPA14Wild-type laboratory strain 2.13 ± 0.02 153 ± 88.33 600 ± 2.36 0.99 ± 0.00 P. aeruginosaPA14WatA8KatA and katB double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P. aeruginosaPA14 AkatA8KatA and katB double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P. aeruginosaIDRL-11442Groin isolate; resistant to piperacillin-tazobactam, cefepime, 0.60 ± 0.23 51 ± 0.00 1.70 ± 59 0.99 ± 0.00 A. baumanniiATCC 17978Meningitis isolate 0.60 ± 0.03 2.12 ± 0.92 68 ± 2.29 0.83 ± 0.29 A. baumanniiATCC 13078Meningitis isolate 0.60 ± 0.03 2.12 ± 0.92 102 ± 0.00 A. baumanniiATCC 1308Vound isolate; resistant to effezidime, gentamicin, 0.60 ± 0.02 1.02 ± 0	E. coli	IDRL-6199	Prosthetic knee infection isolate	2.13 ± 0.92	1.59 ± 0.00	408 ± 0.00	0.99 ± 0.00	1.65 ± 0.57	3.31 ± 1.15
P. aeruginosaIDRL-726.2Prosthetic hip infection isolate0.66 \pm 0.23170 \pm 58.89408 \pm 0.000.99 \pm 0.00P. aeruginosaXen SBlood isolate2.13 \pm 0.92170 \pm 58.89612 \pm 3530.99 \pm 0.00P. aeruginosaPAO1, ATCC 47085Wound isolate; type strain2.66 \pm 0.92153 \pm 88.33680 \pm 2360.99 \pm 0.00P. aeruginosaPA14Wild-type laboratory strain2.66 \pm 0.92153 \pm 88.33680 \pm 2360.99 \pm 0.00P. aeruginosaPA14KatAWild-type laboratory strain2.13 \pm 0.02170 \pm 58.83680 \pm 2360.99 \pm 0.00P. aeruginosaPA14KatAWild-type laboratory strain2.13 \pm 0.02170 \pm 58.83680 \pm 2360.99 \pm 0.00P. aeruginosaPA14KatAMad katB double knockout of PA140.60 \pm 0.033.72 \pm 2.4351 \pm 0.000.99 \pm 0.00P. aeruginosaIDRL-11442Gioni solate; resistant to piperacillin-tazobactam, cefepime,0.60 \pm 0.3451 \pm 0.000.99 \pm 0.00P. aeruginosaIDRL-11442Gioni solate; resistant to ceftazidime, gentamicin,0.80 \pm 0.002.12 \pm 0.920.99 \pm 0.00A. baumanniiATCC 17978Meningitis isolate0.80 \pm 0.002.12 \pm 0.920.83 \pm 2.290.83 \pm 0.29A. baumanniiATCC 12078Meningitis isolate0.80 \pm 0.002.12 \pm 0.920.83 \pm 2.290.83 \pm 0.29A. baumanniiATCC 12078Meningitis isolate0.80 \pm 0.002.12 \pm 0.92102 \pm 0.29 <td>E. coli</td> <td>IDRL-8110</td> <td>Blood isolate</td> <td>2.66 ± 0.92</td> <td>3.72 ± 2.44</td> <td>340 ± 118</td> <td>0.99 ± 0.00</td> <td>1.65 ± 0.57</td> <td>3.97 ± 0.00</td>	E. coli	IDRL-8110	Blood isolate	2.66 ± 0.92	3.72 ± 2.44	340 ± 118	0.99 ± 0.00	1.65 ± 0.57	3.97 ± 0.00
P. aeruginosaXen 5Blood isolate2.13 \pm 0.92170 \pm 58.89612 \pm 3330.99 \pm 0.00P. aeruginosaPAO1, ATCC 47085Wound isolate; type strain 2.66 ± 0.92 153 ± 88.33 680 ± 236 0.99 ± 0.00 P. aeruginosaPAO1, ATCC 47085Wound isolate; type strain 2.66 ± 0.92 153 ± 88.33 680 ± 236 0.99 ± 0.00 P. aeruginosaPA14Wild-type laboratory strain 3.19 ± 0.00 85 ± 29.44 408 ± 0.00 0.99 ± 0.00 P. aeruginosaPA14KarA and karB double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P. aeruginosaIDRL-11442Groin isolate; resistant to piperacillin-tazobactam, cefepime, 0.60 ± 0.34 51 ± 0.00 170 ± 59 0.99 ± 0.00 P. aeruginosaIDRL-11442Groin isolate; resistant to ceftazidime, meropenem, aztreonam, ciprofloxacin, 0.50 ± 0.34 51 ± 0.00 170 ± 59 0.99 ± 0.00 A. baumanniiATCC 17978Meningitis isolate 0.50 ± 0.34 51 ± 0.00 2.13 ± 0.92 0.33 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.50 ± 0.00 2.112 ± 0.92 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.12 ± 0.92 0.83 ± 0.29 A. baumanniiATGC 1268Wound isolate; resistant to ceftazidime, effetime, 0.60 ± 0.02 2.66 ± 0.92 0.83 ± 0.29 A. baumanniiAtLG-1268Wound isolate; resistant to ceftazidime, 0.80 ± 0.00 2.12 ± 0.92 0.83 ± 0.29	D. aeruainosa	IDRL-7262	Prosthetic his infection isolate	0.66 ± 0.23	170 ± 58.89	408 ± 0.00	0.99 ± 0.00	1.65 ± 0.57	1.65 ± 0.57
P. aeruginosaPA01, ATCC 47085Wound isolate; type strain 2.66 ± 0.92 153 ± 88.33 680 ± 236 0.99 ± 0.00 P. aeruginosaPA14WatAWound isolate; type laboratory strain 3.19 ± 0.00 85 ± 29.44 408 ± 0.00 0.99 ± 0.00 P. aeruginosaPA14KatA and katBkatA and katB double knockout of PA14 3.19 ± 0.00 85 ± 29.44 408 ± 0.00 0.99 ± 0.00 P. aeruginosaPA14AkatABkatA and katB double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P. aeruginosaIDRL-11442Groin isolate; resistant to piperacillin-tazobactam, cefepime, levofloxacin; usceptible to colistin 0.60 ± 0.34 51 ± 0.00 170 ± 59 0.99 ± 0.00 A baumanniiATCC 17978Meningitis isolate 0.60 ± 0.34 51 ± 0.00 2.13 ± 0.92 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.13 ± 0.92 68 ± 2.9 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.13 ± 0.92 0.83 ± 0.29 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.13 ± 0.92 0.83 ± 0.29 0.28 ± 2.94 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.13 ± 0.92 0.83 ± 0.29 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.12 ± 0.92 0.83 ± 0.29 0.83 ± 0.29 A. baumanniiALG-1268	D. aeruainosa	Xen 5	Blond isolate	2.13 ± 0.92	170 ± 58.89	612 ± 353	00.0 + 90.0	>3.97	>3.97
P. aeruginosa PA14 Wild-type laboratory strain 3.19 ± 0.00 85 ± 29.44 408 ± 0.00 0.99 ± 0.00 P. aeruginosa PA14 $\Delta karAB$ Wild-type laboratory strain 3.19 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P. aeruginosa PA14 $\Delta karAB$ KarA and karB double knockout of PA14 0.20 ± 0.00 3.72 ± 2.43 51 ± 0.00 0.99 ± 0.00 P. aeruginosa IDRL-11442 Groin isolate; resistant to piperacillin-tazobactam, cefepime, 0.60 ± 0.34 51 ± 0.00 1.99 ± 0.00 A. baumanni ATCC 17978 Meningitis isolate 0.60 ± 0.34 51 ± 0.00 2.32 ± 2.94 408 ± 0.00 A. baumanni ATCC 17978 Meningitis isolate 0.30 ± 0.00 2.12 ± 0.92 6.8 ± 2.9 0.83 ± 0.29 A. baumanni ATCC 17978 Meningitis isolate 0.80 ± 0.00 2.12 ± 0.92 0.83 ± 0.29 A. baumanni ATCC 12978 Meningitis isolate 0.80 ± 0.00 2.12 ± 0.92 0.83 ± 0.29 A. baumanni ATCC BAA-1605 Sputum isolate; resistant to ceftazidime, cefepime, cipnologatic, and tobrame, cipnoloxacin	P. aeruainosa	PAO1. ATCC 47085	Wound isolate: type strain	2.66 ± 0.92	153 ± 88.33	680 ± 236	0.99 ± 0.00	1.65 ± 0.57	1.99 ± 0.00
P. aeruginosaPA14 $\Delta karAB$ karA and karB double knockout of PA140.20 ± 0.003.72 ± 2.4351 ± 0.000.99 ± 0.00P. aeruginosaIDRL-11442Groin isolate; resistant to piperacillin-tazobactam, cefepime, levofloxacin, levofloxacin; susceptible to colistin0.60 ± 0.3451 ± 0.00170 ± 590.99 ± 0.00A. baumanniiATCC 17978Meningitis isolate strandini0.60 ± 0.3451 ± 0.002.99 ± 0.00A. baumanniiATCC 17978Meningitis isolate strandini0.80 ± 0.002.11 ± 0.920.83 ± 0.29A. baumanniiATCC 17978Meningitis isolate trearcillin, piperacillin, aztreonam, ciprofloxacin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem and meropenem ciprofloxacin, ampicillin, cefepime, ticarcillin, piperacillin, aztreonam, cefepime, ticarcillin, piperacillin, aztreonam, cefepime, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin and tobramycin0.80 ± 0.002.112 ± 0.920.83 ± 0.29A. baumanniiATCC 12978Meningitis isolate 	P. aeruainosa	PA14	Wild-type laboratory strain	3.19 ± 0.00	85 ± 29.44	408 ± 0.00	0.99 ± 0.00	1.65 ± 0.57	1.65 ± 0.57
P. aeruginosaIDRL-11442Groin isolate; resistant to piperacillin-tazobactam, cefepime, ceftazidime, meropenem, aztreonam, ciprofloxacin, levofloxacin; susceptible to colistin0.60 ± 0.3451 ± 0.00170 ± 590.99 ± 0.00A. baumanniiATCC 17978Meningitis isolate solate0.80 ± 0.002.13 ± 0.9285 ± 290.83 ± 0.29A. baumanniiATCC 17978Meningitis isolate sputum isolate; resistant to ceftazidime, gentamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem and meropenem d. baumannii0.80 ± 0.002.13 ± 0.920.83 ± 0.29A. baumanniiATCC 12978Meningitis isolate sputum isolate; resistant to ceftazidime, gentamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem and meropenem d. baumannii0.80 ± 0.002.12 ± 0.920.83 ± 0.29A. baumanniiATCC 1268Wound isolate; resistant to amikacin, ampicillin, cefepime, ceftazidime, ciprofloxacin and tobramycin0.80 ± 0.002.12 ± 0.92102 ± 0.00K. pneumoniaeIDRL-10377bla _{ferC} -positive isolate; resistant to ceftolazane-tazobactam, imichenem, meropenem, ceftriaxone and0.40 ± 0.002.12 ± 0.92102 ± 0.00K. pneumoniaeIDRL-10377bla _{ferC} -positive isolate; resistant to ceftolazane-tazobactam, imichenem, meropenem, ceftriaxone and0.40 ± 0.002.12 ± 0.92102 ± 0.00	P. aeruainosa	PA14 AkatAB	katA and katB double knockout of PA14	0.20 ± 0.00	3.72 ± 2.43	51 ± 0.00	0.99 ± 0.00	1.32 ± 0.57	1.65 ± 0.57
A. baumanniiATCC 17978ceftazidime, meropenem, aztreonam, ciprofloxacin, levofloxacin; susceptible to colistin0.80 ± 0.002.13 ± 0.9285 ± 290.83 ± 0.29A. baumanniiATCC 17978Meningitis isolate0.80 ± 0.002.13 ± 0.9285 ± 290.83 ± 0.29A. baumanniiATCC 17978Meningitis isolate0.80 ± 0.002.12 ± 0.9268 ± 290.83 ± 0.29A. baumanniiATCC BAA-1605Sputum isolate; resistant to ceftazidime, gentamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem and meropenem0.80 ± 0.002.12 ± 0.9268 ± 290.83 ± 0.29A. baumanniiARLG-1268Wound isolate; resistant to amikacin, ampicillin, cefepime, ceftazidime, ciprofloxacin and tobramycin1.06 ± 0.462.66 ± 0.92102 ± 0.000.66 ± 0.29K. pneumoniaeIDRL-10377bla _{ferc} -positive isolate; resistant to ceftolozane-tazobactam, imipenem, meropenem, ceftriaxone and0.40 ± 0.002.12 ± 0.92102 ± 0.000.99 ± 0.00	P. aeruginosa	IDRL-11442	Groin isolate; resistant to piperacillin-tazobactam, cefepime,	0.60 ± 0.34	51 ± 0.00	170 ± 59	0.99 ± 0.00	1.65 ± 0.57	1.32 ± 0.57
A. baumanniiATCC 17978Revinoacuty susceptute to constit 0.80 ± 0.00 2.13 ± 0.92 85 ± 29 0.83 ± 0.29 A. baumanniiATCC 17978Meningitis isolate 0.80 ± 0.00 2.13 ± 0.92 85 ± 29 0.83 ± 0.29 A. baumanniiATCC BAA-1605Sputum isolate; resistant to ceftazidime, gentamicin, 0.80 ± 0.00 2.12 ± 0.92 68 ± 29 0.83 ± 0.29 A. baumanniiATCC BAA-1605Sputum isolate; resistant to ceftazidime, gentamicin, 0.80 ± 0.00 2.12 ± 0.92 68 ± 29 0.83 ± 0.29 A. baumanniiATLG-1268Wound isolate; resistant to amikacin, ampicillin, cefepime, 1.06 ± 0.46 2.66 ± 0.92 102 ± 0.00 0.66 ± 0.29 K. pneumoniaeIDRL-10377bla _{rec} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00			ceftazidime, meropenem, aztreonam, ciprofloxacin,						
A. baumanniALCL 1/9/8Meningiris isolate 0.80 ± 0.00 2.13 ± 0.92 85 ± 29 0.83 ± 0.29 A. baumanniiATCC BAA-1605Sputum isolate; resistant to ceftazidime, gentamicin, 0.80 ± 0.00 2.12 ± 0.92 68 ± 29 0.83 ± 0.29 A. baumanniiATCC BAA-1605Sputum isolate; resistant to ceftazidime, gentamicin, 0.80 ± 0.00 2.12 ± 0.92 68 ± 29 0.83 ± 0.29 A. baumanniiATCC BAA-1605Sputum isolate; resistant to ceftazidime, gentamicin, 0.80 ± 0.00 2.12 ± 0.92 68 ± 29 0.83 ± 0.29 A. baumanniiARLG-1268Wound isolate; resistant to amikacin, ampicillin, cefepime, 1.06 ± 0.46 2.66 ± 0.92 102 ± 0.00 0.66 ± 0.29 K. pneumoniaeIDRL-10377 bla_{kpc} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00 K. pneumoniaeIDRL-10377 bla_{kpc} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00	:					-			
A. baumannin ALC-DAX-1003 Sputtum isolate; resistant to certazionine, gentaninent, which will be a streonam, cefepime, which will be a streonam, and meropenem 0.00 \pm 0.00 \pm 0.00 \pm 0.00 \pm 0.00 \pm 0.29 \pm 0.00 \pm 0.0	A. baumannii A. baumannii	AILC 1/9/8 ATCC DA A 1605	Meningitis isolate Carteria isolata societant to cofficience contranicia	0.80 ± 0.00	2.13 ± 0.92	67 ± 68	0.83 ± 0.29	0.00 ± 66.0	1.32 ± 0.0
A. baumanniiARLG-1268Ciprofloxacin, imipenem and meropenemA. baumanniiARLG-1268Wound isolate; resistant to amikacin, ampicillin, cefepime, 1.06 ± 0.46 2.66 ± 0.92 102 ± 0.00 0.66 ± 0.29 K. pneumoniaeIDRL-10377 bId_{kpc} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00 K. pneumoniaeIDRL-10377 bId_{kpc} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00			uputum isolate, resistant to centazionne, gentamment, ticarcillin, piperacillin, aztreonam, cefepime,		76.10 - 21.2	00 - Z2	6710 - CO10		
A. baumanniiARLG-1268Wound isolate; resistant to amikacin, ampicillin, cefepime, 1.06 ± 0.46 2.66 ± 0.92 102 ± 0.00 0.66 ± 0.29 K. pneumoniaeIDRL-10377bla _{kec} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00 K. pneumoniaeIDRL-10377bla _{kec} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00			ciprofloxacin, imipenem and meropenem						
Ceftazidime, ciprofloxacin and tobramycin 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 K. pneumoniaeIDRL-10377 bla_{kpc} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 imipenem, meropenem, ertapenem, ceftriaxone and	A. baumannii	ARLG-1268	Wound isolate; resistant to amikacin, ampicillin, cefepime,	1.06 ± 0.46	2.66 ± 0.92	102 ± 0.00	$\textbf{0.66}\pm\textbf{0.29}$	$\textbf{0.66}\pm\textbf{0.29}$	0.66 ± 0.29
<i>K. pneumoniae</i> IDRL-10377 bla_{KPC} -positive isolate; resistant to ceftolozane-tazobactam, 0.40 ± 0.00 2.12 ± 0.92 102 ± 0.00 0.99 ± 0.00 <i>K. pneumoniae</i> IDRL-10377 bla_{KPC} -positive isolate; resistant ceftriaxone and			ceftazidime, ciprofloxacin and tobramycin						
imipenem, meropenem, ertapenem, ceftriaxone and	K. pneumoniae	IDRL-10377	$bla_{ m kpc}$ -positive isolate; resistant to ceftolozane-tazobactam,	0.40 ± 0.00	2.12 ± 0.92	102 ± 0.00	0.99 ± 0.00	0.66 ± 0.29	0.99 ± 0.00
			imipenem, meropenem, ertapenem, ceftriaxone and						
cefepime			cefepime						
I california, santri anusco). Ach so, and and ach suants were provided by camper life sucres. F. actuginosa FNO 1, FN1-4, and FN1-4 suants suants were provided by variner hasse		טוווומ, שמוו רו מווכושכטי. אבוו שכ	י, אבוו דט, מוות אבון ט זינומווז אבוב מיטטעמבת מי כמוומבו בווב טרובוורבז. ר. מבו מש		מווח באול באמנאם	אומווז אבוב הומוזי	red by Dailler Hass	אבוו (טוועבואוא טו כ	included. A.

 ${\bf TABLE}\ {\bf 1}$ Susceptibility of bacterial isolates (planktonic and biofilm forms) to H_2O_2 and HOCl

In Vitro Antibacterial Activity of $\rm H_2O_2$ and HOCI

FIG 1 Repeated treatment with e-scaffolds demonstrating no decrease in effect over 10 sequential iterations. (A) *Staphylococcus aureus* USA100 biofilms exposed to an H₂O₂ generating e-scaffold. (B) *S. aureus* USA100 biofilms exposed to an HOCl-generating e-scaffold. (C) *Pseudomonas aeruginosa* IDRL-11442 biofilms exposed to an H₂O₂ generating e-scaffold. (D) *P. aeruginosa* IDRL-11442 biofilms exposed to an HOCl-generating e-scaffold. Data are expressed as means \pm SD (n = 3). All the experiments were performed in triplicate.

scaffold treatment for 4 h, a mean reduction of \sim 4.90 log₁₀ CFU/cm² compared to controls was observed over 10 iterations (Fig. 1B). The degree of effect was maintained with repeated e-scaffold treatment, with reductions in CFU counts remaining consistent between iterations for both e-scaffold types.

When *P. aeruginosa* biofilms were exposed to an H_2O_2 -producing e-scaffold for 24 h, a mean reduction of ~4.78 \log_{10} CFU/cm² was observed compared to controls over 10 iterations (Fig. 1C). When the same *P. aeruginosa* biofilms were exposed to an HOCl-generating e-scaffold treatment for 1 h, a mean reduction of ~1.57 \log_{10} CFU/cm² was observed compared to controls over 10 iterations (Fig. 1D). *P. aeruginosa* biofilms were exposed to the HOCl-producing e-scaffold for only 1 h, since longer exposure times resulted in biofilm eradication (data not shown). Reductions in CFU counts of *P. aeruginosa* biofilm were consistent over 10 iterations.

We did not observe the emergence of resistance with exposure of *S. aureus* or *P. aeru*ginosa biofilms to H_2O_2 - or HOCI-producing e-scaffolds over 10 iterations. We measured the susceptibilities of planktonic and biofilm forms of *S. aureus* USA100 and *P. aeruginosa*

	Value (means \pm SD, in mM) for ^{<i>a</i>} :						
	H ₂ O ₂			носі			
Bacteria	MIC (planktonic)	MBIC (biofilm)	MBBC (biofilm)	MIC (planktonic)	MBIC (biofilm)	MBBC (biofilm)	
<i>S. aureus</i> USA100 before e-scaffold exposure	0.40 ± 0.00	$\textbf{0.40} \pm \textbf{0.00}$	85 ± 29	1.65 ± 0.57	1.32 ± 0.57	1.32 ± 0.57	
S. aureus USA100 after e-scaffold exposure for 10 sequential iterations	$\textbf{0.66} \pm \textbf{0.23}$	$\textbf{0.66} \pm \textbf{0.23}$	68 ± 29	$\textbf{1.99} \pm \textbf{0.00}$	1.65 ± 0.57	1.65 ± 0.57	
P. aeruginosa IDRL-11442 before e-scaffold exposure	$\textbf{0.60} \pm \textbf{0.34}$	51 ± 0.00	170 ± 59	$\textbf{0.99} \pm \textbf{0.00}$	$\textbf{1.32} \pm \textbf{0.57}$	$\textbf{0.99} \pm \textbf{0.00}$	
P. aeruginosa IDRL-11442 after e-scaffold exposure for 10 sequential iterations	$\textbf{0.66} \pm \textbf{0.23}$	85 ± 29	204 ± 0.00	1.32 ± 0.57	$\textbf{0.99} \pm \textbf{0.00}$	1.65 ± 0.57	

TABLE 2 Planktonic and biofilm susceptibilities of *Staphylococcus aureus* USA100 and *Pseudomonas aeruginosa* IDRL-11442 before and after repeated e-scaffold exposure for 10 sequential iterations

^oSusceptibility data values (i.e., MIC, MBIC, and MBBC) are represented as means ± SD (*n* = 3). All experiments were performed in triplicate.

IDRL-11442 after 10 iterations of exposure to both H_2O_2 - and HOCl-producing e-scaffolds. As evident from Table 2, there was no significant difference in the mean MIC, MBIC, or MBBC before and after e-scaffold exposure, suggesting that repeated exposure to H_2O_2 or HOCl as delivered herein does not affect susceptibility to H_2O_2 or HOCl.

DISCUSSION

We assessed planktonic and biofilm susceptibilities to H₂O₂ and HOCl of 27 bacterial isolates. Mean H₂O₂ MICs ranged from 0.20 to 3.19 mM. Low concentrations of H₂O₂ disrupt cell membranes, oxidize DNA, and destabilize enzymes and proteins (16). Moreover, H_2O_2 is rapidly oxidized to a hydroxyl radical ($\cdot OH$), which promotes oxidative stress (17). In other studies, H₂O₂ MIC values have been reported to range between 0.40 and 14 mM, similar to those observed here (18, 19). In prior studies, variable susceptibility to H₂O₂ has been reported and tolerance to H₂O₂ described as more strain than species specific (19). The exact mechanism of action of HOCl is not fully understood. HOCl is a highly active oxidizing agent that disrupts cellular activities of proteins and oxidative phosphorylation and inhibits DNA synthesis (16). In one study, the HOCI MIC of bacterial isolates was >0.025% (\sim 3.78 mM), similar to what was found with P. aeruginosa IDRL-7543 (20). Mazzola et al. described a MIC range of HOCI against various bacterial species of 0.02 to 0.06% (3 to 9 mM) (21) and that these values were dependent on the pH of the HOCl solution. Thus, HOCl MICs may depend on factors such as pH; at pH 4.0 to 7.0, HOCI was most active (21). At pH >7.5, HOCI is no longer the active moiety in solution, as free chlorine speciation becomes dominated by OCI-.

Prior work has shown that biofilms have reduced susceptibilities to H₂O₂ and HOCI compared to the same isolates grown planktonically (22, 23). Compared to their planktonic forms, biofilms are more evolved and complex. Bacteria in biofilms grow slowly and have overall reduced metabolic activity. They are also encased in an extracellular polymeric substance matrix comprised of DNA, proteins, and polysaccharides, which protects them from adverse environmental conditions and confers mechanical and biochemical protection against biocides and antibiotics (24, 25). Additionally, the interior of biofilms has a lower pH than the surface, alongside less oxygen and water availability, which may render biocides ineffective (26). The MBICs of H₂O₂ were not higher than MICs for most bacterial isolates used in this study. The exception was P. aeruginosa, which showed 128- to 256-fold higher H₂O₂ MBIC than MIC values. Overall, Gramnegative bacteria had relatively higher MBBCs for H₂O₂ than Gram-positive bacteria. Escherichia coli and P. aeruginosa isolates studied were found to have the most tolerance to H_2O_2 when grown as biofilms. Perumal et al. found similar results (18); they performed MIC and MBBC assays to evaluate the activity of various disinfectants against Gram-negative bacteria, observing that bacterial biofilms were 266-fold less susceptible to H_2O_2 than bacteria in the planktonic state. The addition of another acidic agent (e.g., peracetic acid or 2-furoic acid) in combination with H₂O₂ improved the susceptibility of bacteria to these agents when exposed for short time intervals. In several

other studies, bacterial biofilms were exposed to H₂O₂ for short durations as part of surface contact treatments, with varying results (15, 27). For example, in one study, among different disinfectants used, only H₂O₂ and sodium hypochlorite removed both S. aureus and P. aeruginosa biofilm matrix and bacterial viable mass (28). It is expected that over a 24-h period, H_2O_2 will be oxidized into other reactive oxygen species (ROS), including hydroxyl radical and singlet oxygen species, and undergo autocatalytic degradation to oxygen and water. Bacterial cells embedded in outer layers of biofilms can produce free radical scavenger molecules that destroy some ROS during early stages of interactions, which occur when biofilm cells are presented with H₂O₂ (29). Prior studies have revealed that H₂O₂ cannot effectively penetrate mature biofilms with outer surface biofilm layers decomposing H₂O₂ and abrogating its effective diffusion into interior layers (30). The effective diffusion coefficients of solute molecules like H₂O₂ and HOCl are reduced in biofilm environments compared to water (31). Expression of new genes and their resulting products has been hypothesized to play a prominent role in reduced susceptibility of biofilms toward biocides (32). In addition, bacterial cells present in biofilm layers can produce a plethora of enzymes, including catalases, peroxidases, glutathione reductase, and superoxide dismutase (16), which can break down H₂O₂, HOCl, and antibiotics. A common enzyme produced by bacteria to destroy H₂O₂ is catalase. The degradation of H₂O₂ due to catalase production could be a reason we observed high MBBC values with H₂O₂ exposure. Among the isolates studied here, E. coli and P. aeruginosa are known to have strong SOS response signaling pathways when challenged with sublethal concentrations of H₂O₂. Work done by Elkin et al. demonstrates a protective role of catalase genes katA and katB in P. aeruginosa mutant strains (in planktonic and biofilm forms) when exposed to sublethal concentrations of H_2O_2 (33). The authors conclude that KatA catalase is important for conferring resistance to H₂O₂, especially at high concentrations, whereas KatB catalase helps confer resistance when initial levels of H₂O₂ are sublethal. In our study, *P. aeruginosa* PA14 $\Delta katAB$ had a 16-fold lower MBIC value than its parent wild-type isolate, P. aeruginosa PA14. This supports the idea that catalase produced by *P. aeruginosa* has a protective role against H_2O_2 by degrading it. *E. coli* isolates have distinct stress response elements when exposed to H₂O₂; induction of SoxR and OxyR regulons is mainly responsible for providing resistance to H₂O₂ (34). The high MBBC values observed here may be attributed, at least in part, to the activation of enzymes connected to oxidative stress response signaling. H₂O₂ has a higher probability of being degraded in the presence of bacterial enzymes than other biocides. Therefore, it is our view that to ideally use H_2O_2 as an antibiofilm agent, a high working concentration of H_2O_2 along with a long surface contact time are likely to be needed.

The mean MICs of HOCI against the bacteria studied ranged from 0.50 to 1.99 mM. In contrast to H₂O₂, we did not observe large variations in MIC, MBIC, or MBBC ranges. The mechanism of action of HOCI is incompletely defined, and how bacterial molecular stress mechanisms respond to it are also poorly understood. It has been proposed that the transport of free chlorine into biofilms is a significant factor in imparting resistance (35). In work done by Castillo et al., HOCI was used as oral rinses to remove dental plaque (36). HOCI was a more effective antibacterial agent than chlorhexidine and reduced bacterial viability of different periodontopathic bacteria found in biofilms. The authors suggested that HOCI can oxidize taurine, an amino acid, promoting the formation of chlorine-taurine complexes that have antibacterial activity. In another study, 0.018% HOCI (2.72 mM) removed lipopolysaccharides found in Porphyromonas gingivalis biofilms. The authors suggested that HOCI forms chlorohydrins, which attack acyl chains in unsaturated fatty acids, causing cell membrane damage along with cytolysis (37). HOCI has been found to interact with sulfur-containing amino acids, aromatic amino acids, nitrogen-containing compounds, and lipids (38). Various ATP-independent HOCI-sensing chaperones, like Hsp33, RidA, CnoX, etc., have been found to be activated as part of the immediate counter-response to HOCI, especially in Gram-negative bacteria.

In previous work, we evaluated e-scaffold antibiofilm activity against biofilms of S.

aureus, *P. aeruginosa*, and *A. baumannii* (13, 14, 39). In these studies, we observed timedependent increases in antibiofilm activity with >4-log₁₀ biofilm reductions after 24 h of treatment for biofilms exposed to H_2O_2 -producing e-scaffolds and complete eradication of biofilms when exposed to HOCI-producing e-scaffold for 4 h. We also found that treatments were not toxic to host tissue (13, 14). Given the prolonged exposure to biocides associated with e-scaffolds, there might be concerns about selection for resistance to H_2O_2 or HOCI. Here, we show that H_2O_2 - and HOCI-generating e-scaffolds maintain activity against *S. aureus* and *P. aeruginosa* biofilms after 10 iterations of exposure under the conditions studied. Until now, there have been few studies of biocide resistance in planktonic bacteria over several generations of exposure. Ikai et al. evaluated antibacterial activity of hydroxyl radicals generated by the photolysis of H_2O_2 (40), examining repeated biocide exposure over 40 continuous generations in selected bacterial pathogens and reporting no evidence of selection of biocide resistance.

Our e-scaffold system continuously produces small amounts of H_2O_2 or HOCl, below concentrations that are toxic to tissue. We produced ~45 mM H_2O_2 in 24 h of continuous treatment and ~22 mM HOCl in 4 h (13, 14). By continuously producing small amounts of these biocides, we achieved an ~5-log₁₀ reduction in the number of CFU of *S. aureus* USA100 despite a mean H_2O_2 MBBC of 85 mM. The continuous production of H_2O_2 and HOCl likely can overwhelm oxidative stress response systems in bacterial biofilms to the point where that they cannot respond.

A limitation of this study is that we performed the biocide resistance experiments on biofilms formed for short durations. This does not fully represent the chronic wound infection environment, which frequently harbors mature biofilms. Furthermore, susceptibility testing was done on biofilms on pegged lids whose material composition is different from that of biofilms used for resistance iteration testing and also may not represent the actual situation found in wound infections. Additionally, we only tested two bacterial strains commonly found in wounds to evaluate the potential emergence of resistance. Another limitation is that we grew subsequent iterations of biofilms from two/three colonies of bacteria, which were exposed to e-scaffold treatment. This reduces the probability of selecting a mutation in the next iteration. Bacteria also were grown without selective pressure (in broth culture and then used to establish biofilms for 24 h). Finally, selective evolution of biocide resistance depends on the initial number of cells before treatment (41), and we did not study large population sizes.

In conclusion, our data suggest that HOCl has similar activity against planktonic and biofilm bacteria, whereas H_2O_2 is substantially less active against biofilm than planktonic bacteria. We did not observe the emergence of antibiofilm resistance with repeated exposure to either H_2O_2 - or HOCl-producing e-scaffolds under the conditions studied.

MATERIALS AND METHODS

Bacterial isolates and growth conditions. The 27 isolates studied are listed in Table 1. Isolates were removed from -80° C freezer stocks and streaked onto sheep blood agar plates.

Susceptibility of planktonic bacterial isolates to hydrogen peroxide or hypochlorous acid. H₂O₂ and HOCI MICs for S. aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, E. coli, P. aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae were determined by a modified broth microdilution protocol described in the Clinical and Laboratory Standards Institute (CLSI) guidelines (42). Overnight-grown bacterial colonies were used to inoculate 5 ml of tryptic soy broth (TSB; catalog no. 211825; BD Company, Sparks, MD) and cultures grown to a 0.5 McFarland standard. A 30% (wt/ wt) stock solution of H_2O_2 (H1009; Sigma-Aldrich) was diluted to a 5% working solution in cationadjusted Mueller-Hinton broth (CAMHB) for susceptibility assays. This was serially diluted to concentrations ranging from 1.632 to 0.19 mM so that each well contained $50\,\mu$ l of H₂O₂, and then $50\,\mu$ l of CAMHB (212322; BD Company, Sparks, MD) containing $\sim\!\!5\times10^5$ CFU of bacteria was added to wells of U-bottom 96-well plates (non-tissue culture treated; 35117; Corning Incorporated, Corning, NY). A stock solution of 0.0525% (~7.94 mM) HOCI (Aquaox, Loxahatchee, FL) was diluted in CAMHB to create testing concentrations ranging from 3.97 to 0.062 mM, and the addition of bacteria was done as described above. Plates were incubated at 37°C for 18 to 20 h and MICs recorded as the wells with the lowest concentration of H₂O₂ or HOCI with no turbidity. All experiments were performed in triplicate, with data represented as means \pm standard deviations (SD).

Susceptibility of bacterial biofilms to hydrogen peroxide or hypochlorous acid. Minimum biofilm inhibitory concentrations (MBICs) and minimum biofilm bactericidal concentrations (MBBCs) of H₂O₂ and HOCl against bacteria were determined using a pegged-lid microtiter plate assay (43). Briefly, 150 μ l of bacterial suspension in TSB (standardized to a 0.5 McFarland) was added to wells of flat-bottom 96-well plates (243656; Thermo Scientific, Roskilde, Denmark) and covered with 96-pegged lid (445497; Nunc-TSP; Thermo Scientific). Plates were incubated for 6 h at 37°C on an orbital shaker (120 rpm). Pegged lids were rinsed with 1× phosphate-buffered saline (PBS; 10× PBS buffer; AM9625; Invitrogen) and transferred to a microplate containing serial dilutions of H₂O₂ (1.632 to 0.19 mM) or HOCl (3.97 to 0.062 mM) in CAMHB. Plates were incubated for 24 h at 37°C without shaking. MBICs were recorded as the lowest concentration of biocide showing no visible bacterial growth. Next, the pegged lids were washed in PBS and transferred to recovery microtiter plates containing 200 μ l of CAMHB per well and incubated at 37°C for an additional 24 h. MBBCs were recorded as the wells with the lowest concentration of H₂O₂ or HOCl with no turbidity. All experiments were performed in triplicate, with data represented as means \pm SD.

Repeated exposure of methicillin-resistant S. aureus (MRSA) and P. aeruginosa biofilms to H₂O₂ and HOCI generated by e-scaffolds to assess decrease in activity with repetitive exposure. For these experiments, we used H₂O₂- and HOCI-generating e-scaffolds made of carbon fabric designed and assembled as in our previous study (14). e-scaffolds electrochemically reduce dissolved oxygen to H_2O_2 when polarized at $-0.6 V_{Aq/AqCI}$ or produce HOCI when polarized at $+1.5 V_{Aq/AqCI}$ (13, 14). We evaluated changes in activity using polarized e-scaffolds against S. aureus USA100 and P. aeruginosa IDRL-11442. Biofilms were grown in vitro in 6-well plates for 24 h at 37°C and then exposed to H₂O₂-generating escaffolds for 24 h (for both S. aureus and P. aeruginosa). For HOCI-generating e-scaffold treatment, S. aureus biofilms were exposed for 4 h and P. aeruginosa for 1 h at room temperature (initial inoculum, \sim 1 \times 10⁴ CFU [CFU/well]). Controls were biofilms exposed to nonpolarized e-scaffolds. After e-scaffold treatment, biofilms were removed and quantified and results reported as log₁₀ CFU/cm², as previously described (39). After the first treatment, two to three colonies recovered from quantitative culture were used to prepare a new biofilm, which was again exposed to treatment for the same time; this was repeated for 10 iterations. At the end of 10 iterations of exposure, we again determined the MIC, MBIC, and MBBC of the two studied bacterial isolates. All experiments were performed in triplicate, with data represented as means \pm SD.

ACKNOWLEDGMENTS

This research was supported by the National Institutes of Health (award number R01 Al091594). R.P. reports grants from CD Diagnostics, Merck, Hutchison Biofilm Medical Solutions, Accelerate Diagnostics, ContraFect, TenNor Therapeutics Limited, and Shionogi.

We acknowledge Melissa Karau and Suzannah Schmidt-Malan for critical review of the manuscript. We thank Henry Chambers III (University of California, San Francisco) for providing *S. aureus* USA100, USA200, and USA300, Caliper Life Sciences for providing *S. aureus* Xen 30, *S. epidermidis* Xen 43, and *P. aeruginosa* Xen 5, Daniel Hassett (University of Cincinnati) for providing *P. aeruginosa* PAO1, PA14, and the PA14 $\Delta katAB$ mutant, and the Antibacterial Resistance Leadership Group for providing *A. baumannii* ARLG-1268.

R.P. is a consultant for Curetis, Specific Technologies, Next Gen Diagnostics, PathoQuest, Selux Diagnostics, 1928 Diagnostics, and Qvella; monies are paid to the Mayo Clinic. In addition, R.P. has patents on *Bordetella pertussis*/parapertussis PCR, a device/method for sonication with royalties paid by Samsung to the Mayo Clinic, and an antibiofilm substance. R.P. receives travel reimbursement from ASM and IDSA, an editor's stipend from IDSA, and honoraria from the NBME, Up-to-Date, and the Infectious Diseases Board Review Course. H.B. holds a patent (US20180207301A1), "Electrochemical reduction or prevention of infections," which refers to the electrochemical scaffold described here.

REFERENCES

- Bumpus K, Maier MA. 2013. The ABC's of wound care. Curr Cardiol Rep 15:346. https://doi.org/10.1007/s11886-013-0346-6.
- 2. Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. https://doi.org/10.1038/nrd1008.
- Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T. 2011. *Staphylococcus aureus* biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596. https://doi.org/10 .4049/jimmunol.1002794.
- Baranoski S, Ayello EA. 2008. Wound care essentials: practice principles. Lippincott Williams & Wilkins, Philadelphia, PA.
- Eming SA, Krieg T, Davidson JM. 2007. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol 127:514–525. https:// doi.org/10.1038/sj.jid.5700701.

- Lipsky BA, Hoey C. 2009. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 49:1541–1549. https://doi.org/10.1086/644732.
- Atiyeh BS, Dibo SA, Hayek SN. 2009. Wound cleansing, topical antiseptics and wound healing. Int Wound J 6:420–430. https://doi.org/10.1111/j .1742-481X.2009.00639.x.
- Schreml S, Landthaler M, Schäferling M, Babilas P. 2011. A new star on the H₂O₂rizon of wound healing? Exp Dermatol 20:229–231. https://doi.org/ 10.1111/j.1600-0625.2010.01195.x.
- Armstrong DG, Bohn G, Glat P, Kavros SJ, Kirsner R, Snyder R, Tettelbach W. 2015. Expert recommendations for the use of hypochlorous solution: science and clinical application. Ostomy Wound Manage 61:S2–S19.
- Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, Hwong W, Barati E, Belisle B, Celeri C, Robson MC. 2007. Hypochlorous acid as a potential

wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds 6:e5.

- Rojkind M, Dominguez-Rosales JA, Nieto N, Greenwel P. 2002. Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872–1891. https://doi.org/10.1007/pl00012511.
- Sakarya S, Gunay N, Karakulak M, Ozturk B, Ertugrul B. 2014. Hypochlorous acid: an ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds 26:342–350.
- Kiamco MM, Zmuda HM, Mohamed A, Call DR, Raval YS, Patel R, Beyenal H. 2019. Hypochlorous-acid-generating electrochemical scaffold for treatment of wound biofilms. Sci Rep 9:2683. https://doi.org/10.1038/s41598 -019-38968-y.
- Sultana ST, Atci E, Babauta JT, Falghoush AM, Snekvik KR, Call DR, Beyenal H. 2015. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Sci Rep 5:14908. https://doi.org/10.1038/srep14908.
- Chaieb K, Zmantar T, Souiden Y, Mahdouani K, Bakhrouf A. 2011. XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of *Staphylococcus epidermidis*. Microb Pathog 50:1–5. https://doi.org/10.1016/j.micpath.2010.11.004.
- 16. McDonnell G, Russell AD. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179. https://doi.org/10 .1128/CMR.12.1.147.
- Montagna MT, Triggiano F, Barbuti G, Bartolomeo N, De Giglio O, Diella G, Lopuzzo M, Rutigliano S, Serio G, Caggiano G. 2019. Study on the in vitro activity of five disinfectants against nosocomial bacteria. IJERPH 16:1895. https://doi.org/10.3390/ijerph16111895.
- Perumal PK, Wand ME, Sutton JM, Bock LJ. 2014. Evaluation of the effectiveness of hydrogen-peroxide-based disinfectants on biofilms formed by Gram-negative pathogens. J Hosp Infect 87:227–233. https://doi.org/10 .1016/j.jhin.2014.05.004.
- Aarestrup FM, Hasman H. 2004. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 100:83–89. https://doi.org/10.1016/j.vetmic.2004.01.013.
- Hu H, Sleiman J, Johani K, Vickery K. 2018. Hypochlorous acid versus povidone-iodine containing irrigants: which antiseptic is more effective for breast implant pocket irrigation? Aesthet Surg J 38:723–727. https://doi .org/10.1093/asj/sjx213.
- Mazzola PG, Jozala AF, Novaes LCDL, Moriel P, Penna TCV. 2009. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz J Pharm Sci 45:241–248. https://doi.org/10.1590/S1984 -82502009000200008.
- Bardouniotis E, Huddleston W, Ceri H, Olson ME. 2001. Characterization of biofilm growth and biocide susceptibility testing of *Mycobacterium phlei* using the MBEC assay system. FEMS Microbiol Lett 203:263–267. https:// doi.org/10.1016/S0378-1097(01)00364-0.
- Rodrigues D, Cerca N, Teixeira P, Oliveira R, Ceri H, Azeredo J. 2011. *Listeria monocytogenes* and *Salmonella enterica* enteritidis biofilms susceptibility to different disinfectants and stress-response and virulence gene expression of surviving cells. Microb Drug Resist 17:181–189. https://doi .org/10.1089/mdr.2010.0183.
- Mah T-FC, O'Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. https://doi.org/10.1016/S0966 -842X(00)01913-2.
- 25. O'Toole GA, Stewart PS. 2005. Biofilms strike back. Nat Biotechnol 23:1378–1379. https://doi.org/10.1038/nbt1105-1378.
- de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589. https:// doi.org/10.1016/j.mib.2013.06.013.

- DeQueiroz GA, Day DF. 2007. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing *Pseudomonas aeruginosa* biofilms from surfaces. J Appl Microbiol 103:794–802. https://doi.org/10.1111/j.1365-2672.2007.03299.x.
- Tote K, Horemans T, Berghe DV, Maes L, Cos P. 2010. Inhibitory effect of biocides on the viable masses and matrices of *Staphylococcus aureus* and *Pseudomonas aeruginosa* biofilms. Appl Environ Microbiol 76:3135–3142. https://doi.org/10.1128/AEM.02095-09.
- Yun HS, Kim Y, Oh S, Jeon WM, Frank JF, Kim SH. 2012. Susceptibility of Listeria monocytogenes biofilms and planktonic cultures to hydrogen peroxide in food processing environments. Biosci Biotechnol Biochem 76:2008–2013. https://doi.org/10.1271/bbb.120238.
- Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z, Ochsner UA, Hassett DJ. 2000. Effect of catalase on hydrogen peroxide penetration into *Pseudomonas aeruginosa* biofilms. Appl Environ Microbiol 66:836–838. https://doi .org/10.1128/aem.66.2.836-838.2000.
- Stewart PS. 1998. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng 59:261–272. https://doi.org/10.1002/ (SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9.
- Cochran WL, McFeters GA, Stewart PS. 2000. Reduced susceptibility of thin *Pseudomonas aeruginosa* biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol 88:22–30. https://doi.org/10.1046/j.1365 -2672.2000.00825.x.
- Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR. 1999. Protective role of catalase in *Pseudomonas aeruginosa* biofilm resistance to hydrogen peroxide. Appl Environ Microbiol 65:4594–4600. https://doi .org/10.1128/AEM.65.10.4594-4600.1999.
- Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. https://doi.org/10.1146/annurev .biochem.77.061606.161055.
- Lechevallier MW, Cawthon CD, Lee RG. 1988. Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499. https://doi.org/10.1128/AEM .54.10.2492-2499.1988.
- Castillo DM, Castillo Y, Delgadillo NA, Neuta Y, Jola J, Calderón JL, Lafaurie GI. 2015. Viability and effects on bacterial proteins by oral rinses with hypochlorous acid as active ingredient. Braz Dent J 26:519–524. https://doi .org/10.1590/0103-6440201300388.
- Chen C-J, Chen C-C, Ding S-J. 2016. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci 17:1161. https://doi.org/10.3390/ijms17071161.
- da Cruz Nizer WS, Inkovskiy V, Overhage J. 2020. Surviving reactive chlorine stress: responses of Gram-negative bacteria to hypochlorous acid. Microorganisms 8:1220. https://doi.org/10.3390/microorganisms8081220.
- Raval YS, Mohamed A, Zmuda HM, Patel R, Beyenal H. 2019. Hydrogenperoxide-generating electrochemical scaffold eradicates methicillin-resistant *Staphylococcus aureus* biofilms. Glob Chall 3:1800101. https://doi .org/10.1002/gch2.201800101.
- Ikai H, Odashima Y, Kanno T, Nakamura K, Shirato M, Sasaki K, Niwano Y. 2013. In vitro evaluation of the risk of inducing bacterial resistance to disinfection treatment with photolysis of hydrogen peroxide. PLoS One 8: e81316. https://doi.org/10.1371/journal.pone.0081316.
- Boles BR, Thoendel M, Singh PK. 2004. Self-generated diversity produces "insurance effects" in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635. https://doi.org/10.1073/pnas.0407460101.
- CLSI. 2015. Methods for dilution–antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 10th ed. CLSI, Wayne, PA.
- Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. 1999. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776. https://doi.org/10.1128/JCM.37.6.1771-1776.1999.