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ABSTRACT

Background: This manuscript is a review of the literature investigating the use of mesenchymal stem cells (MSCs)
being applied in the setting of spinal fusion surgery. We mention the rates of pseudarthrosis, discuss current bone
grafting options, and examine the preclinical and clinical outcomes of utilizing MSCs to assist in successfully fusing the
spine.

Methods: A thorough literature review was conducted to look at current and previous preclinical and clinical
studies using stem cells for spinal fusion augmentation. Searches for PubMed/MEDLINE and ClinicalTrials.gov
through January 2021 were conducted for literature mentioning stem cells and spinal fusion.

Results: All preclinical and clinical studies investigating MSC use in spinal fusion were examined. We found 19
preclinical and 17 clinical studies. The majority of studies, both preclinical and clinical, were heterogeneous in design
due to different osteoconductive scaffolds, cells, and techniques used. Preclinical studies showed promising outcomes in
animal models when using appropriate osteoconductive scaffolds and factors for osteogenic differentiation. Similarly,
clinical studies have promising outcomes but differ in their methodologies, surgical techniques, and materials used,
making it difficult to adequately compare between the studies.

Conclusion: MSCs may be a promising option to use to augment grafting for spinal fusion surgery. MSCs must be
used with appropriate osteoconductive scaffolds. Cell-based allografts and the optimization of their use have yet to be
fully elucidated. Further studies are necessary to determine the efficacy of MSCs with different osteoconductive

scaffolds and growth/osteogenic differentiation factors.
Level of Evidence: 3.
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INTRODUCTION

Spinal fusion surgery is one of the most common
procedures performed in the United States, with
over 1 million cases performed annually.! In 2020, it
is still reported as one of the most costly procedures,
with an average cost of $120,000 per hospitaliza-
tion.” Conditions treated with spinal fusion include
various degenerative disorders, fractures, spinal
tumors, and deformities of scoliosis, kyphosis, and
more. Spinal fusions are performed when any
structural or neurologic component of the spine is
compromised, typically affecting abnormal motion,
and likely producing pain and disability. Successful
fusion involves new bone formation between 2 or
more adjacent vertebrae, returning stability to the
diseased segment of the spine.

A wide variety of spinal fusion procedures exist,
with the anatomic location and pathology directing
which surgical approach, stabilizing instrumenta-

tion, and procedure may maximize stability and
rapid healing, while minimizing surgical trauma. As
novel technologies progress, influencing instrumen-
tation, biomaterials, implants, and grafting tech-
niques, new and less tissue-destructive approaches
are being discovered/designed.

The incidence of pseudarthrosis, or nonunion,
can be as high as approximately 25%-35% in spinal
fusion surgery, which is highly dependent on the
type of procedure, approach used, and patient
factors, such as bone quality, health status, and
comorbidities.® This is an extremely high incidence
for such a widely and commonly performed, as well
as expensive, procedure. When there is a failure of
bone formation, unsuccessful fusion leads to the
following: pain, instability, implant failure, reoper-
ation, patient stress, and drastically increased costs.*
Risk factors include cigarette smoking, age, female
sex, excessive thoracolumbar kyphosis, and various
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bone diseases, such as osteopenia and osteoporo-
sis.”®

Methods to prevent pseudarthrosis have become
some of the most researched and invested-in aspects
of spine surgery today. Traditional gold standard
for bone grafting has been autologous bone harvest,
collected from a donor site or the surgical site. Other
options include allograft, synthetics, and growth
factors such as recombinant human bone morpho-
genic protein (thBMP)-2. With the acceleration of
regenerative medicine and technology, we have seen
the emergence of mesenchymal stem cells (MSCs) as
a possible option for increasing fusion rates, as well
as decreasing complications. In this manuscript, we
present current bone grafting options and then
focus on the use of stem cells to augment grafting
options to reduce the potential for pseudarthrosis in
spinal fusion surgery.

MATERIALS AND METHODS

This manuscript is a review of the literature,
performed to be up to date up until January 2021.
PubMed/MEDLINE databases were searched, as
well as ClinicalTrials.gov, for any literature with
relevant information pertaining to stem cells and
their use in spinal fusion. Keywords that were used
were as follows: spine fusion, spinal fusion, stem
cells, MSCs, adipose derived stem cells, autologous
bone, allogeneic stem cells. Pertinent studies that
were included were largely focused on preclinical
and clinical trials investigating the rate of fusion
with the use of stem cells in spine surgery. The
heterogeneity between studies did not allow for data
and statistical analysis to show whether or not
fusion rates differed, but the studies are summarized
and left for conclusions to be made by the readers.

Bone Graft Review

The gold standard to achieve successful fusion is
currently autologous bone (autograft) from either
the iliac crest or local bone graft (LBG), found in or
near the surgical site. Studies have shown both
grafts to be equally effective for single-level fusions,
but LBG was found to be unsatisfactory for
multilevel procedures.” Autograft contains all 3
key elements to provide for successful spine fusion:
osteoinductive factors such as cytokines and growth
factors, osteoconductive materials such as collagen
and minerals for a structural support scaffolding,

and osteogenic components such as osteoblastic/
preosteoblastic cells and bone marrow stem cells.'”

Although successful fusion rates with autograft
may be as high as 95%, bone available for harvest is
limited, and quality varies depending on the patient
bone health, age, smoking, diabetes, and other
comorbidities. Additionally, autograft harvesting
may lead to infection, donor site pain, blood loss,
and risk of fracture.'"'? These complications have
been reported to be as high as 39% with iliac crest
bone graft harvest.'?

For these reasons, other modalities for grafting
have been explored. Biologics and synthetics,
osteogenic differentiation factors such as BMP-2,
demineralized bone matrix (DBM), hydroxyapatite,
provide combinations of osteoinduction and osteo-
conduction, but fail fundamentally as they are not
osteogenic. Additionally, these products also have
limitations and side effects of their own. Using these
biological and synthetics as stand-alone substitutes
for bone graft has not been fully explored, and
would likely not provide the adequate stability and
fusion ability as in conjunction with other modal-
ities."*'® The unmet need for commonly used
autograft substitutes has paved the way for the
investigation of using stem cells for spinal fusion.

Stem Cells

Stem cells, first described by Friedenstein'’ in
1968, are defined as immature tissue precursor cells,
which can differentiate into muscle, bone, tendons,
fat, and other various stromal tissues.'® ' They can
be categorized into embryonic stem cells, induced
pluripotent cells, and adult stem cells.

MSCs, which fall under the category of adult
stem cells, have benefited from advancements in the
field of regenerative medicine, and are the focus for
use in spinal fusion procedures. The multipotent
nature of individual MSCs was first described by
Pittenger et al*® in 1999. Research has shown that
MSCs have osteogenic properties, can be modified
to secrete osteoinductive factors, and can be
implemented on an osteoconductive scaffold to
successfully provide the 3 components for optimiz-
ing fusion and osteogenesis.'® MSCs are able to
differentiate into osteogenic cells and also exhibit
paracrine effects. Additionally, they can be easily
cultured and have a high ex-vivo expansive poten-
tial. >4

MSCs can be derived from numerous adult
tissues, including bone marrow, muscle, and subcu-
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taneous fat,>>?° and have been shown to resist

immunologic rejection.!®?” The most common
source for MSCs in spinal fusion is bone marrow
aspirate (BMA), followed by adipose tissue.”® 3
Clinical studies have explored BMA harvest sites,
with vertebral bodies and iliac crests having robust
harvests.>’ BMA is easily obtained in the supine
position from the posterior iliac bone, or can be
obtained easily through the surgical site, as well.>
Studies have looked at regenerative capacity over
time with various stem cell subtypes,* > as well as
regenerative capacity in older patients. Mazini et
al** reported a maintained regenerative capacity in
in vitro studies with adipose-derived stem cells,
whereas bone marrow MSCs may start to lose
expression of specific surface antigens in later
passage.>*>° Although demonstrated with in vitro
studies, this information is difficult to understand
and demonstrate in vivo and in the clinical setting.

Bone marrow MSCs have been studied to provide
new treatment methods for arthritis, periodontal
disease, intrinsic muscular dystrophy, and cardiac
disease because of their ability to differentiate into
different cell types.'®?* Similarly, they have been
shown to differentiate into cells of the osteogenic
lineage within the appropriate conditions.*’® The
adipose-derived MSCs can also be extracted via
liposuction, which is typically less painful than bone
marrow aspiration.’** Lastly, allogeneic MSCs
from matching donors have been used for patients
with low bone volume, who are unable to produce
enough of their own MSCs. Concerns have been
expressed with allogeneic MSCs due to immune
reactions in patients.*!

MSCs present a lesser fraction of the total
population of nucleated cells, under 0.01%*** of
cells when isolated from BMA, and an in-vitro
expansion phase may be necessary to obtain
sufficient stem cell numbers prior to implantation.*
Several techniques for expansion exist, but problems
such as sterility technique, culture time, medium
used, as well as number of MSCs required are still
yet to be established. Additionally, this source of
cells may vary and not be as reliable in an elderly
population, due to dissipation of the potency of the
MSCs.*

Preclinical Results

To date, there has been a great deal of preclinical
trials investigating the efficacy of stem cells in bony
fusion with various animal spinal fusion models.*>**¢

Many of these studies have investigated variations
in growth factors and scaffold options to promote
optimized bony fusion, with some studies even
looking at genetically modified MSCs. As common
in emerging topics, the results of these studies are
variable, but the majority of studies are able to
replicate outcomes between autograft and MSCs
with supporting scaffolds in spinal fusion.!®#347-%7
These studies are summarized in Table 1.

Numerous studies have shown the addition of
MSCs to achieve superior rates of fusion when
compared with autograft.*>*>>® Nakajima et al®'
studied rabbit spines treated with MSCs cultured in
osteogenic differentiation medium versus without
differentiation medium and autograft, showing
higher fusion rates in the first group. Minamide et
al* demonstrated increased fusion rates in rabbits
with bone marrow cells when compared with BMP
and autograft. Similarly, the same group also
showed higher fusion rates with bone marrow
derived MSCs cultured in rhBMP-2 and fibroblast
growth factor when compared with autograft. Bae
et al®* showed increased posterolateral intertrans-
verse process fusion rates to 89% in rats treated
with BMA on collagen sponges and subeffective
concentrations of thBMP-2 compared with 33%—
50% with thBMP-2 and collagen sponges alone.
Additionally, Crowley et al*® demonstrated various
preclinical and clinical studies investigating MSCs
implanted on biologic or synthetic scaffolds with
effective results in promoting bony union.

Other studies have shown comparable results
with engineered MSCs to autograft. Sheyn et al®®
and Hasharoni et al®® demonstrated genetically
modified MSCs expressing BMP-2 when placed in
the paraspinal musculature induced spinal fusion in
mice that were comparable with the fusion achieved
with instrumentation, in regards to segment rigidity.
Similar results were demonstrated when looking at
MSCs seeded on an alginate scaffold with low doses
of BMP-2.'¢

Although the majority of the preclinical models
have focused on bone marrow derived MSCs,
Miyazaki et al>> compared bone marrow derived
MSCs to adipose-derived MSCs, demonstrating no
significant difference in fusion rates between the 2
types of MSCs in a rat model of posterolateral
fusion. Similarly, Ammerman et al® demonstrated
increased fusion rates with adipose derived MSCs in
a posterolateral spinal fusion rabbit model.
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Table 1. Preclinical studies of spinal fusion using stem cells.
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Study Animals Conditions Fusion, %
Fu et al'® 24 rabbits Autograft 92
Alginate + MSC + BMP2 92
Alginate + MSC 67
Alginate + BMP2 0
Bae et al®* 53 rats rhBMP2/ACS + fresh syngeneic BMA transplant 89
rhBMP2/2ACS only 50
rhBMP2/1ACS only 33
ACS + fresh syngeneic BMA transplant 0
ACS only 0
Gupta et al*’ 24 sheep TCP + bone marrow cells 33
TCP + whole marrow 8
TCP 0
Autograft 25
Minamide et al*® 30 rabbits MSC-BMP-FGF 86
MSC-FGF 43
MSC-BMP 28
MSC 0
Autograft 57
Cinotti et al* 40 rabbits Ceramic + MSC 85
Ceramic + bone marrow 50
Ceramic 30
Autograft 25
Kai et al®® 30 rabbits Ceramic + cells 100
Ceramic + cells + BMP 100
Ceramic 50
Autograft 67
Valdes et al®® 53 rabbits 60M rhBMP6 stimulated OPC 62
30M rhBMP6 stimulated OPC 54
Autograft 55
DBM 40
Decortication alone 0
Minamide et al*’ 36 rabbits BMP-HA 100
High marrow cells 71
Low marrow cells 0
Autograft 57
Nakajima et al’' 24 rabbits Osteogenic MSC 80
MSC 33
Hydroxyapatite 0
Autograft 67
Wang et al> 9 monkeys MSC+ ceramic 67
Ceramic 17
Autograft 83
Cui et al’’ 52 rats Bone marrow 50
DI-BAG cells 100
Matrix only 0
Cuenca-Lopez et a 34 sheep HA + MSC 35
HA 22
Allograft 70
Autograft 70
Miyazaki et al> 48 rats Collagen + adipose-derived MSC + adeno-BMP2 100
Collagen + marrow-derived MSC + adeno-BMP2 100
Collagen + BMP2 100
Collagen + adipose-derived MSC + adeno-LacZ 0
Collagen + marrow-derived MSC + adeno-LacZ 0
Collagen alone 0

Abbreviations: ACS, absorbable collagen sponges; Adeno-LacZ, study specific; BMA, bone marrow aspirate; BMP2, bone morphogenic protein; DBM, demineralized
bone matrix; DI-BAG, study specific; FGF, fibroblast growth factor; HA, hydroxyapatite; MSC, mesenchymal stem cell; OPC, osteoprogenitor cells; TCP, tricalcium

phosphate.

To summarize, preclinical trials demonstrate
promising outcomes for MSCs in spinal fusion. It
is difficult to compare different trials and perform
statistical analysis, as these results are highly
dependent on the use of specific growth factors
and differentiation mediums to aid in bone forma-
tion, as well as the use of appropriate scaffoldings

and animals. The efficacy of MSCs to promote
spinal fusion without the addition of genetic
engineering or additional growth factors has been
less than ideal.>*®*%* With the appropriate tech-
niques, MSCs either approach or match the fusion
rates achieved with autograft in preclinical models.
As with any type of treatment, the question of how
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Table 2. Clinical studies using stem cells for spinal fusion.

Study Patients Approach Type Conditions Fusion, %
Gan et al*? 41 PLF/TLF Autologous Enriched BMA + B-TCP 95.1
Hostin et al® 22 AIF Autologous Collagen + BMA w/cage 87
Kitchel®* 25 PLF, IF Autologous Collagen + BMA 80
Iliac crest bone graft 84
Neen et al® 50 PLF, TLF, 360 Autologous Collagen/hydroxyapatite + BMA PLF 93, IF 85
Iliac crest bone graft PLF 93, IF 92
Niu et al®® 21 PLF Autologous LBG + BMA 85.7
Iliac crest bone graft 90.5
Vaccaro et al®’ 73 PLF Autologous BMA + DBM 63
Iliac crest bone graft 67
Bansal et al®® 30 PLF Autologous Hydroxyapatite + TCP + BMA 100
Iliac crest bone graft 96
Taghavi et al® 62 PLF Autologous Collagen + BMA 100
LBG 100
Odri et al”® 15 PLF Autologous BMC + BPCG + autologous bone 100
Hart et al”’ 40 PLF Autologous BMC + allograft 80
Ammerman et al®' 23 TLIF Allogeneic Osteocel + DBM 91.3
McAfee et al’> 25 XLIF Allogeneic Autograft/Osteocel 85
Caputo et al” 30 XLIF Allogeneic Osteocel + DBM 89.6
Tohmeh et al™ 40 XLIF Allogeneic Osteocel + DBM 90.2
Kerr et al® 52 ALIF, TLIF, 360 Allogeneic Osteocel 92.3
Peppers et al” 40 ACDF Allogeneic Trinity 91.4
Eastlack et al’® 182 ACDF + plating Allogeneic Osteocel and PEEK interbody 87

Abbreviations: ACDF, anterior cervical discectomy and fusion; AIF, anterior interbody fusion; ALIF, anterior lumbar interbody fusion; BMA, bone marrow aspirate;
BMC, bone marrow concentrate; BPCG, bisphasic phosphate ceramics graft; f-TCP, tricalcium phosphate scaffolding; DBM, demineralized bone matrix; IF, interbody
fusion; LBG, local bone graft; PEEK, polyetheretherketone; PLF, posterolateral fusion; TCP, tricalcium phosphate; TLF, transforaminal lumbar fusion; TLIF,

transforaminal lumbar interbody fusion; XLIF, extreme lateral interbody fusion.

these results will translate to clinical results is what
i1s most important.

Clinical Results

Clinical studies examining the efficacy of MSCs
on spinal fusion are more limited than preclinical
trials. Most studies look at MSCs isolated from
BMA, as it can be harvested from the iliac crest or
vertebral body intraoperatively and then transplant-
ed to the fusion site. Additionally, many of the
clinical studies use different carrier scaffolds,
making it difficult to compare between trials, but
in general, utilizing MSCs for spinal fusion show
fusion rates from 63%—100%.%*¢"-°""7® Studies are
shown in Table 2.

There are multiple prospective trials and also
systemic reviews investigating outcomes of stem
cells and spinal fusion, mostly with the use of
computed tomography or plain radiographs. In a
prospective study, Gan et al** reported on 41
patients with enriched BMA on a p-tricalcium
phosphate scaffold achieving 95.1% fusion at 24-
month follow-up. Another study reported an 87%
successful fusion rate with 182 patients in a
multicenter prospective trial.>! Odri et al’® achieved
100% fusion on 15 patients receiving MSCs with
macroporous biphasic phosphate ceramic scaffolds
and autologous bone.

A systematic review by Khashan et al*' compiled

results from 7 different clinical studies, 6 prospective
and 1 randomized control trial. Studies contained at
least 20 patients each and compared BMA on a
scaffold to iliac crest and/or LBG.?' Fusion rates for
BMA with scaffolds ranged from 63%—-100%,
whereas LBG or iliac crest bone graft ranged from
67%—100%. The majority of these studies examined
posterolateral fusion. The review concluded that
there is still insufficient evidence to support the use
of MSCs or BMA over autologous bone graft.

There are also studies involving allogeneic MSCs
(Table 2). Peppers et al’> reported on 40 patients
undergoing anterior discectomy and fusion with
Trinity Evolution Viable Cellular Bone Matrix, an
allogeneic stem cell source, with 91.4% fusion rates.
Another study reported 92.3% fusion rates for 52
patients with Osteocel, an allograft-based tissue
containing live stem cells.®® This fusion rate is higher
in comparison with Osteocel when being used with
DBM (89.6%) and autograft (85%). Osteocel has
also shown promising outcomes in other studies,
with fusion rates ranging between 87% and
929% 61627376 These studies and products demon-
strate high rates of fusion and may be options for
patients who are unable to use their own MSCs for
fusion.

Currently, as of January 2021, there are 11 active
studies listed on ClinicalTrials.gov investigating the
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Table 3. Current clinical trials.

ClinicalTrials.gov

Identifier Description Design Outcomes

NCTO01552707"" Isolation and ex-vivo expansion of MSCs with Prospective, RCT Safety of Xcelia, feasibility of Xcelia,
Xecelia, then fixed to allogenic bone compared efficacy of spinal fusion
with bone iliac crest alone.

NCT02297256" Bone marrow aspirate concentrate (BMAC) + Prospective, RCT Fusion status, Oswestry Disability
allograft compared with iliac crest bone graft Index (ODI), Short Form Health
during posterior lumbar/lumbosacral spine Survey (SF-12), numeric pain
fusion. rating scale, length of stay

NCT029245717° BMAC and allograft compared with rh-BMP2 Prospective, blinded, ODI, SF-12, numeric pain rating
for thoracolumbar spine fusion with nonrandomized scale
interbody support.

NCT03827096%° Bone marrow cell aspiration from iliac crest Single group assignment Demonstrate absence of
cultivated for 3 passages to expand and complications at the site of spinal
suspended on B-tricalcium phosphate foam to fusion, ODI, efficacy of spinal
lumbar spine. fusion on x-ray and CT

NCT00996073%! Allogeneic mesenchymal precursor cells Prospective, multicenter, Determine safety, evaluate overall
(NeoFuse) combined with MasterGraft randomized fusion success
Matrix compared with use of autologous iliac
crest bone graft in lumbar interbody fusion
site.

NCT01097486%* Allogeneic mesenchymal precursor cells Prospective, multicenter, Determine safety, evaluate overall
(NeoFuse) combined with MasterGraft randomized, single-blinded fusion success
Matrix compared with use of autologous iliac
crest bone graft in multilevel anterior cervical
discectomy and fusion.

NCT02070484% Stem cell allograft (NuCel) compared with Randomized, parallel ODI, evaluation of fusion via CT
demineralized bone matrix. assignment

NCT00941980% Stem cells attached to allograft bone matrix Prospective, nonrandomized Evaluate fusion rates, complications,
(Osteocel Plus) in subjects undergoing multicenter radiographic outcome, surgical
posterior lumbar interbody fusion surgery time, blood loss
compared with historic autograft control.

NCT00948831%° Osteocel Plus in subjects undergoing anterior Prospective, nonrandomized Evaluate fusion rates, complications,
lumbar interbody fusion. multicenter radiographic outcome, surgical

time, blood loss

NCT00947583% Osteocel Plus in subjects undergoing Prospective, nonrandomized Evaluate fusion rates, complications,
transforaminal lumbar interbody fusion. multicenter radiographic outcome, surgical

time, blood loss

NCT00951938% Allogeneic cancellous bone matrix with viable Case-only, prospective Fusion rates, pain, complications

osteoprogenitor cells, MSCs, and
demineralized cortical bone (Trinity
Evolution) in patients undergoing ACDF.

Abbreviations: BMP2, bone morphogenic protein; CT, computed tomography; MSC, mesenchymal stem cell; RCT, randomized controlled trial.

effects of stem cells on spinal fusion (Table 3). As
time goes on, with expanded popularity of stem cells
increasing fusion rates, we will likely see more
studies investigating clinical outcomes associated
with MSCs compared with autologous bone graft.
Ultimately, with the heterogeneity of clinical studies
at this time, it is difficult to directly compare fusion
rates with autologous bone graft, but the studies are
overall promising.

DISCUSSION

Successfully achieving spinal fusion is highly
dependent on having osteogenic, osteoconductive,
and osteoinductive factors available. Traditionally,
autologous bone harvesting from the surgical site or
iliac crest have been the standard of care, but
complications, donor site morbidity, and limited

quantities of bone have brought other options into

the spotlight.

MSCs have the potential to become widely used

as bone graft augmentation and for achieving
successful spinal fusion. It is believed that stem
cells contribute to the fusion process and improve
union through their osteogenic and osteoinductive
properties within the fusion site, although the
primary contribution is still unknown. Although
they are not yet on the path of becoming the gold
standard for achieving successful fusion, MSCs have
gained interest due to ease of use, ability to harvest
intraoperatively, and the regenerative capabilities.
At this time, multiple factors need to be optimized,
such as: intrinsic and extrinsic expression of growth
factors and cytokines, the optimization of choosing
the material and construction of scaffoldings for the
cells to be supported, and finding the most beneficial
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area of stromal cell harvest, while also minimizing
the morbidity of the procedure. MSCs cannot be
used alone to promote spinal fusion; they must be
used in conjunction with, at minimum, a scaffolding
to hold them in place.

There are a significant amount of preclinical
studies, which show comparable outcomes when
using MSCs to achieve successful spinal fusion.
These studies are heterogeneous in nature, using
different animal models, various scaffolds, and also
various growth factors and harvesting mediums for
the cells. Although many types of combinations
have been examined, we do not know the optimal
combination that will translate to success in the
clinical realm. Even if this perfect combination of
factors, cells, and scaffold is discovered, we also
may not be sure if it is a one-size-fits-all for every
patient.

In clinical models, we have seen studies with
fusion rates of 63%—-100%. Most studies demon-
strated at least approximately equal fusion rates,
but again, just as with preclinical models, different
studies used different combinations of growth
factors and scaffolds. Additionally, numerous stud-
ies look at the use of BMA, rather than just the
MSC:s isolated from BMA. Clinical trials involving
allogeneic MSCs have shown promise in patients,
such as elderly, who may be limited in the number of
viable cells available from liposuction or BMA.
Lastly, we also are not sure how many of these cells
continue to be viable after placement. Newer
technologies and techniques are required to quantify
viable cells and ensure their survival after implan-
tation.

As future studies are started and planned, we
should look to standardize certain aspects, that way
we can compare between different studies. Similarly,
we can start looking at patient demographics,
approaches, and the pathology behind the reason
for spinal fusion, to further understand what
combination of scaffold and MSCs will work in
each setting. Additionally, as we start to understand
these factors, cost analyses and other outcome
studies will become just as important as fusion
rates. Lastly, future studies need to address the
regenerative capacity of stem cells over time.
Although in vitro studies exist, it would be
important to the field to understand the temporal
benefit of in vivo use of MSCs in spinal fusion.

In summary, the future of spinal fusion may be
heading in the direction of using MSCs, synthetics,
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and proteins such as BMP-2 to improve outcomes.
Preclinical results with various proteins, growth
factors, and scaffolds have shown promising results.
Clinical trials, including prospective studies, have
shown that MSCs with the appropriate harvesting,
growth factors, and scaffoldings can provide com-
parable fusion rates to autograft. As new studies
begin to emerge, and as regenerative medicine and
technology advance, we may see MSCs becoming a
staple of spinal fusion surgeries.
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