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Camptothecin (CPT) is a cytotoxic quinoline alkaloid isolated from the bark and branches of the Chinese tree Camptotheca
acuminata. CPT inhibits topoisomerase I. It possesses various antitumor activities and is mainly used in the treatment of colon,
ovarian, liver, and bone cancers as well as leukemia. CPT inhibits the expressions of inflammatory genes and can prevent death
from chronic inflammation. Therefore, we investigated the effect of CPT treatment in ulcerative colitis (UC) using DSS-induced
UC mouse model; after that, we explored its potential mechanisms. Here, we found that CPT exerted protection on DSS-
induced UC in rats. In addition, the administration prominently reduced the disease activity index as well as colon length of the
model rats and remarkably reduced the inflammatory cytokines. Further, CPT significantly reduced several vital
proinflammatory proteins in LPS-induced RAW264.7 cells. In summary, our findings demonstrate that CPT is hopefully to act
as a therapeutic agent for UC.

1. Introduction

Ulcerative colitis (UC) is an inflammatory disease of the
colonic mucosa, which is usually chronic. It originates in
the rectum and usually extends downwards in a continuous
manner, through one part of the colon or through the whole
colon. However, some patients have an inflammation of the
cecal patch. A typical symptom of UC is bloody diarrhea.
The clinical courses are unpredictable and its characteristic
is deteriorating, and mitigation occurs alternatively [1]; it
has spontaneous changes or responds to treatment [2].
Although the etiology of UC is still unclear, there is an inter-
national consensus that inflammation in genetically suscepti-
ble individuals is caused by impaired intestinal mucosal
immune regulation caused by multiple environmental factors
[3]. Abundant studies have shown that UC is mediated by T
helper type 2-produced cytokines and is a disorder associated
with increased IL-6 and at the same time decreased IL-10

levels. These proinflammatory factors are crucial in the path-
ogenesis of UC [4, 5]. Therefore, a large number of therapeu-
tic drugs that suppress inflammatory response are applied in
treating UC, for instance, 5-aminosalicylate and glucocorti-
coids [6], but the overall effect is limited. Relapse is common
after treatment discontinuation, and there are many adverse
reactions. Consequently, there is patient demand for comple-
mentary and alternative drugs with fewer side effects.

Camptothecin (CPT) isolated from the bark and
branches of the Camptotheca acuminata, a kind of Chinese
tree, is a natural product. This cytotoxic quinoline alkaloid
(Figure 1) inhibits topoisomerase I and exerts a broad spec-
trum of antitumor activity; it is mainly used to treat colon,
ovarian, liver, bone, and small lung cancers as well as leuke-
mia [7]. For example, in the process of treating liver cancer,
Li et al. used lysine-mediated hydroxyethyl starch-10-
hydroxy CPT micelles. Although many studies have identi-
fied CPT as an anti-inflammatory drug [8], there are few
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anti-inflammatory studies. In 2016, Rialdi et al. reported that
CPT inhibited the expressions of inflammatory genes and
prevented death from chronic inflammation [9]. But the
effect of CPT administration on UC has not been
investigated.

Numerous studies have shown that AKT/NF-κB and
MAPK signaling pathways are indispensable in inflamma-
tory response [10, 11]. Activation of these signaling pathways
has been observed to promote and inhibit inflammatory
responses, whereas the inhibition of their activation can sup-
press inflammatory response which has become the focus of
follow-up research.

We studied CPT as a natural preparation for the treat-
ment of UC and explored its effect on dextran sodium
sulfate-induced UC in a model and LPS-induced
RAW264.7 cells to identify alternative treatments for UC.

2. Materials and Method

2.1. Drugs and Reagents. CPT (purity > 98%) was obtained
from Chengdu Pufei De Biotech Co., Ltd. (Sichuan, China).
Dimethyl sulfoxide, fetal bovine serum, modified Eagle
medium, ELISA kits, and CCK8 kit all have common sources
as the standard recommended. Resorcinol, H2O2, and Hepes
were bought from Sigma Chemical Co. (USA). The antibod-
ies, COX-2 and iNOS, occluding and β-acting came from
specialized corporation. Donkey anti-rabbit or anti-mouse
IgG and goat anti-mouse and goat anti-rabbit secondary
antibodies were all purchased.

2.2. Cell Culture. RAW264.7 cells were purchased from the
American Type Culture Collection (ATCC® CRL-3063™)
and cultured in DMEM containing 10% FBS at 37°C in a
humidified incubator under 5% CO2.

2.3. Cell Viability. The CCK8 method was applied to detect
the influence of CPT against cell activity. RAW264.7 cell
was disposed of CPT for 24 hours of different doses (0.1,
0.2, 0.4, 0.6, 0.8, 1.0, 2.0, and 5.0μmol/mL). After that, add
processing of 10μL CCK8. Then, measure optical density
after 3 hours.

2.4. Animal Experimental Design. All the 8-week C57BL/6
mice were purchased from Liaoning Changsheng Biotech-
nology Co., Ltd. In order to explore the alleviative effect of
CPT on colitis in mice, we divided the mice into six groups:
control group, CPT group, DSS group, DSS+CPT group
(0.5mg/kg), DSS+CPT group (1mg/kg), and DSS+CPT

group (1.5mg/kg). During the experiment, mice were free
to eat and drink water. Three days before the experiment,
mice in the CPT group were fed with CPT (0.5mg/kg,
1mg/kg, and 1.5mg/kg). At the beginning of the experiment,
mice in the DSS group and the DSS+CPT group were fed
with 2% DSS water, and CPT was continually fed every day.

2.5. Index of Disease Activity.Weight and fecal characteristics
including occult blood were observed during this experiment.
The scoring system described by Tian et al. was then used to
calculate the disease activity index [12] (Table 1).

2.6. ELISA for TNF-α, IL-6, and IL-1β. Protein levels of TNF-
α, IL-6, and IL-1β in colon tissue samples were detected by
ELISA kits according to technical manual.

2.7. H&E Staining. We collected the colon of mice for tissue
fixation and H&E staining. The staining method and the dis-
ease activity index in total were conducted according to Guo
et al. [13].

2.8. MPO Activity Determination. Colon tissue samples were
gathered, ground, and then centrifuged as the same treat-
ment as Liu et al. [14].

2.9. Immunofluorescence Assays. The cultured cells were sep-
arated into four groups with four cells per group. We dis-
carded the medium, used PBS to wash the cells for 3 times
in 15min, added 1mL of immunostaining fixative solution
(p0098, Beyotime, Shanghai, China) in each well, and incu-
bated the microplate for 10min at 25°C, permeabilizing cell
membranes with 1% (v/v) Triton X-100 and washing 3 times
in 15min. Following the addition of 5% PBS-diluted goat
serum, seal the wells and then incubate those 3 hours at
25°C. After that, discard the blocking solution and incubate
cells for one night. When three times (5min/wash) of PBS
washing were done, fluorescent secondary antibody diluted
with 5% goat serum (1 : 1000) was added and these cells were
incubated at 25°C under darkness for an hour. When three
times (5min/wash) of PBS washing were done, it was sealed
with a sealant containing 4′,6-diamidino-2-phenylindole. A
laser confocal microscope was used to observe and record cell
images.

2.10. qRT-PCR Analysis. Extract total RNA from cultured
RAW264.7 cells and then apply qRT-PCR to detect the
expression levels of target protein. β-Actin was applied to
normalize gene expression. Table 2 shows the primer
sequences.
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Figure 1: Structure of camptothecin.

Table 1: Disease activity index.

Score Weight loss (%) Stool appearance Fecal occult blood

0 0
Normal form Negative

1 1–5

2 5–10
Loose stool Positive

3 10–20

4 >20 Diarrhea Gross bleeding
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2.11. Western Blot. The RIPA lysate was used to extract the
total protein from RAW264.7 cells and mouse colon samples,
and the BCA protein concentration assay kit was used to
detect the protein concentration. Western blot was per-
formed according to Guo et al.’s procedure [15].

2.12. Statistical Analysis. GraphPad Prism 7.0 was applied in
performing analyses statistically and generating images pre-
senting the results. Mice were separated to groups randomly.
Histological analysis was performed. In the case of significant
population F-test (P < 0:05), Tukey’s adjustment method
was used for special comparison.

3. Results

3.1. CPT Administration Reduces Pathological Damage of
Colon Tissue in Mice with DSS-Induced US. Colon tissue sec-
tions were used for hematoxylin-eosin staining with the pur-
pose to study the protection of CPT (Figure 2). The DSS-
induced UCmice exhibited an obvious induction effect, com-
pared with the control group, which was characterized by
increased colon injury, significantly reduced levels of goblet
cells, increased cell infiltration, mucous membrane edema,
and structural damage of the colon (Figures 2(a) and 2(c)).
But CPT reduced these pathological lesions and it is dose-
dependent (Figures 2(c)–2(f)). The index of disease activity
(Figure 2(g)) and mouse colon length (Figure 2(h)) results
suggested that, in DSS-induced mice, CPT dose-
dependently reduced the activity index of disease as well as
length of colon.

3.2. CPT Inhibits Myeloperoxidase (MPO) Activity in Mice
with DSS-Induced UC. The activity of MPO was determined
by us and used as a neutrophil marker to examine the inflam-
mation degree. MPO activity in the DSS group was remark-
ably improved (Figure 3(a)). Compared with the DSS
group, the CPT groups dose-dependently showed signifi-
cantly reduced MPO activity (Figure 3(a)).

3.3. CPT Reduced the Release of Inflammatory Mediators in
Mice with DSS-Induced UC. Proinflammatory cytokines are
indispensable in the inflammation development. We deter-
mined the levels of three major proinflammatory cytokines
in colon tissues by ELISA to demonstrate the CPT effect
on inflammation level induced by DSS in UC mice. In
the DSS group, the IL-1β level (Figure 3(b)), IL-6 level
(Figure 3(c)), and TNF-α level (Figure 3(d)) all remarkably
increased, whereas CPT treatment inhibited this effect. We
detected the levels of two vital proinflammatory protein,
iNOS and COX-2, associated with inflammation by west-
ern blot. The DSS group showed significant induction of
the production of these two vital proteins (Figures 3(e)–
3(g)) in the colon, whereas the CPT groups showed signif-
icant inhibitory effect on colonic products of UC mice
induced by DSS.

3.4. CPT Inhibits the AKT/NF-κB and MAPK Signaling
Pathways in Mice with DSS-Induced UC. The AKT/NF-κB
and MAPK signaling pathways are found to be vital produc-
ing mediators of inflammation. We examined the protein
expressions of these signaling pathways by western blot to
prove its anti-inflammatory characteristic. The extracellular
phosphorylation signal regulatory protein level in the DSS
group, that is, ERK1/2 (Figures 4(a) and 4(b)), JNK1/2
(Figures 4(a) and 4(c)), P38 (Figures 4(a) and 4(d)), AKT
(Figures 5(a) and 5(b)), inhibitor of nuclear factor-κB (IκBα;
Figures 5(a) and 5(d)), and p65 (Figures 5(a) and 5(c)), was
remarkably higher. Additionally, the CPT groups showed
significant dose-dependent inhibition of DSS-induced phos-
phorylation of ERK1/2 (Figures 4(a) and 4(b)), JNK1/2
(Figures 4(a) and 4(c)), P38 (Figures 4(a) and 4(d)), AKT
(Figures 5(a) and 5(b)), IκBα (Figures 5(a) and 5(d)), and
p65 (Figures 5(a) and 5(c)).

3.5. CPT Inhibits the LPS-Induced Inflammatory Response of
RAW264.7 Cells. Our in vivo studies showed that the effect

Table 2: Primer sequences used to target TNF-α, IL-1β, IL-6, and β-actin.

Item Primer Amplicon length (bp)

TNF-α (sense) 5′-ACGGCATGGATCTCAAAGAC-3′
116

TNF-α (antisense) 5′-GTGGGTGAGGAGCACGTAGT-3′
IL-1β (sense) 5′-GCTGCTTCCAAACCTTTGAC-3′

121
IL-1β (antisense) 5′-AGCTTCTCCACAGCCACAAT-3′
IL-6 (sense) 5′-CCGGAGAGGAGACTTCACAG-3′

134
IL-6 (antisense) 5′-CAGAATTGCCATTGCACAAC-3′
iNOS (sense) 5′-GAACTGTAGCACAGCACAGGAAAT-3′

158
iNOS (antisense) 5′-CGTACCGGATGAGCTGTGAAT-3′
COX-2 (sense) 5′-CAGTTTATGTTGTCTGTCCAGAGTTTC-3′

127
COX-2 (antisense) 5′-CCAGCACTTCACCCATCAGTT-3′
β-Actin (sense) 5′-GTCAGGTCATCACTATCGGCAAT-3′

147
β-Actin (antisense) 5′-AGAGGTCTTTACGGATGTCAACGT-3′
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Figure 2: Effects of camptothecin (CPT) on the pathological injury of colon tissues in mice with DSS-induced ulcerative colitis (UC). Colon
tissue samples were collected from the (a) control group, (b) CPT (1.5mg/kg) group, (c) DSS group, (d) DSS+CPT (0.5mg/kg) group, (e)
DSS+CPT (1.0mg/kg) group, and (f) DSS+CPT (1.5mg/kg) group and stained with H&E. (g) Disease activity index and (h) colon length
of the different groups. The mean disease activity index of colon tissues was determined according to a previously described three-point
scale. Values are presented as means ± SD (∗∗P < 0:01 and ∗∗∗∗P < 0:0001 vs. the DSS group).
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Figure 3: Continued.
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Figure 3: Effects of camptothecin (CPT) on the inflammatory response of DSS-induced ulcerative colitis (UC) in mice. (a) Myeloperoxidase
(MPO) activity assay. The protein levels of (b) IL-1β, (c) IL-6, and (d) TNF-αwere detected using ELISA.Western blot assay of (e, f) inducible
nitric oxide synthase (iNOS) and (e, g) cyclooxygenase-2 (COX-2). The relative protein levels were quantified by scanning densitometry and
normalized to the protein level of β-actin. Values are presented asmean ± SD (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗∗P < 0:0001 vs. the DSS group).
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Figure 4: Effects of camptothecin (CPT) on the MAPK signaling pathway in DSS-induced ulcerative colitis in mice. Tissue lysates were
prepared and subjected to western blot using (a, b) p-ERK1/2, (a, c) p-JNK1/2, and (a, d) p-P38 antibodies. The p-ERK1/2, p-JNK1/2, and
p-P38 immunoreactive bands were digitized and expressed as a ratio of ERK1/2, JNK1/2, and P38 levels (b–d). Values are presented as
mean ± SD (∗∗∗∗P < 0:0001 vs. the DSS group).
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CPT caused in DSS-induced UC is anti-inflammatory.
Therefore, we investigated CPT on LPS-induced
RAW264.7 cell in terms of inflammatory response and
then illustrate the anti-inflammatory function. We used
CCK8 assay to detect the cytotoxicity on RAW264.7 cells
from CPT. CPT was not toxic to RAW264.7 cells at a dose
of 0.1–1.0μmol/mL (Figure 6(a)). We also pretreated
RAW264.7 cells for an hour with CPT (0.25, 0.5, and
1.0μmol/mL) and then excited them for 4 hours using
LPS (1μg/mL). We took advantage of qRT-PCR to exam-
ine the mRNA levels of several vital proinflammatory pro-
teins. After that, we applied western blot to test the
expression levels of these proteins. And the results showed
that the mRNA levels were remarkably higher in the LPS
group (Figures 6(b)–6(f)), whereas the CPT groups
showed significant dose-dependent inhibition of the
mRNA levels (Figures 6(b)–6(f)). The western blot results
exhibited that CPT inhibited the level of LPS-induced pro-
tein, namely, COX-2 and iNOS. The effect was noteworthy
and dose-dependent (Figures 6(g)–6(i)). These results are
in agreement with our in vivo results, which verified the
CPT’s anti-inflammatory effect.

3.6. CPT Inhibits the Activation of the AKT/NF-κB and
MAPK Signaling Pathways in RAW264.7 Cells Stimulated
by LPS. We investigated the signaling pathways activated by
CPT for the purpose of further elucidating CPT’s anti-
inflammatory mechanism. First, we conducted pretreatment
on these cells with CPT (0.25, 0.5, and 1.0μmol/mL). Then,
we excited the cells with LPS (1μg/mL). After that, we
detected the phosphorylation proteins. And inhibition effect
was showed to be dose-dependent in CPT-inhibited LPS-
induced phosphorylation proteins (Figures 7(a), 7(b), and
Figures 8(a)–8(d)).

3.7. CPT Inhibits the Expression of the Transcription Factor
p65 (or NF-κB p65 Subunit). Immunofluorescence analysis
was applied to show p65 expression in the NF-κB signaling
pathway under CPT effect. In resting cells, p65 binds to its
inhibitory protein. Following LPS stimulation, p65 is released
into the nucleus, resulting in a biological effect. The expres-
sion levels of p65 were remarkably significant in the LPS
group (Figure 9(a)), whereas the p65 expression was signifi-
cantly inhibited in the CPT groups (Figure 9(a)). Western
blot analysis of p65 phosphorylation showed the dose-
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Figure 5: Effects of camptothecin (CPT) on the AKT/NF-κB signaling pathway in DSS-induced ulcerative colitis in mice. Tissue lysates were
prepared and subjected to western blot using (a, b) p-AKT, (a, c) p-IκBα, and (a, d) p-p65 antibodies. The p-AKT, p-p65, and p-IκBα
immunoreactive bands were digitized and expressed as a ratio of AKT, IκBα, and p65 levels (b–d). Values are presented as mean ± SD
(∗P < 0:05, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. the LPS group).
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Figure 6: Effects of camptothecin (CPT) on LPS-induced inflammatory response in RAW264.7 cells. RAW264.7 cells were cultured with
different doses of CPT (0.1, 0.2, 0.4, 0.8, 1.0, 2.0, and 5.0μmol/mL) for 4 h, and their viability was determined by CCK8 assay. (a) The
effect of CPT was determined by CCK8 assay. RAW264.7 cells were pretreated with different doses of CPT (0.25, 0.5, and 1μmol/mL) for
1 h and stimulated with LPS for 4 h. Protein and mRNA levels were determined by qRT-PCR and western blot, respectively. The mRNA
levels of (b) IL-1β, (c) IL-6, (d) TNF-α, (e) iNOS, and (f) COX-2 were determined and normalized to the mRNA level of β-actin. The
protein levels of (g, i) COX-2 and (g, h) iNOS and the relative protein levels were quantified by scanning densitometry and normalized to
the protein level of β-actin. Values are presented as mean ± SD (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. the LPS group).
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mean ± SD (∗∗P < 0:01 vs. LPS, ∗∗∗∗P < 0:0001 vs. LPS).
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Figure 8: Effects of camptothecin (CPT) on LPS-induced activation of the MAPK signaling pathway in RAW264.7 cells. Total protein in
RAW264.7 cells was collected after 4 h of LPS stimulation. CPT was added 1 h before LPS stimulation. Protein levels of (a, b) p-ERK1/2,
(a, c) p-JNK1/2, and (a, d) p-P38 were detected by western blot and quantitatively assessed via densitometry using ERK1/2, JNK1/2, and
P38 as internal controls. Protein levels were measured using ImageJ (http://imagej.nih.gov/ij/) and normalized to the protein levels of
ERK1/2, JNK1/2, and P38. Values are presented as mean ± SD (∗∗P < 0:01 vs. LPS, ∗∗∗∗P < 0:0001 vs. LPS).
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dependent inhibition of CPT on p65 phosphorylation which
was induced by LPS (Figures 9(b) and 9(c)).

4. Discussion

UC is a chronic inflammatory disease whose main effects are
concentrated in the colon. The incidence of UC is increasing
globally [16]. Modern medical treatment is usually combined
with drugs such as salicylates, glucocorticoids, and immuno-
suppressants. The clinical efficacy of these drugs in UC is
unstable, and their administration causes side effects, for
example, hepatorenal toxicity, drug dependence, and recur-
rence after hormone withdrawal. In this experiment, in order
to simulate human UC, we constructed DSS-induced mouse
enteritis model. Previous studies have shown that DSS-
induced enteritis model has many similarities with human

UC and can be used as a model for screening anti-UC drugs
[17].

Current studies have shown that Chinese medicine
monomer can play an important role in the treatment of coli-
tis in mice. For example, Su et al. found that total matrines
can inhibit the expression of cytokines such as TNF-α and
IL-1β, thus reducing the inflammatory response of UC in rats
[18]. Huang et al. found that curcumin significantly
improved the symptoms and pathological morphology of
UC in mice and inhibited the expression of TNF-α and IL-
8 [19]. These studies revealed the important therapeutic
functions and mechanisms of different monomers of tradi-
tional Chinese medicine (TCM) in UC from different per-
spectives [19, 20]. At present, there are relatively few
studies on TCMmonomers in the treatment of human ulcer-
ative colon, but there are some TCM monomers that can be
directly used in clinic. Therefore, the combination of TCM
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Figure 9: Effects of camptothecin (CPT) on the transcription factor p65 in the NF-κB signaling pathway. RAW264.7 cells were induced by
LPS, and the phosphorylation of p65 was assayed using immunofluorescence (a). Protein levels of p-p65 were detected by western blot and
quantitatively assessed via densitometry using p65 as an internal control (b, c). The values presented are mean ± SD (∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗∗P < 0:0001 vs. LPS).
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monomer and traditional UC drugs can obtain better clinical
efficacy. This measure can significantly reduce the dosage
and time of anti-inflammatory hormone and reduce the side
effects of patients.

CPT is a TCM monomer with anti-inflammatory effect.
Our study showed that CPT can effectively alleviate DSS-
induced colitis in mice, reduce proinflammatory mediators
in mice, and alleviate colon injury [17]. In in vitro experi-
ments, we also fully confirmed that CPT can reduce the
expression of proinflammatory mediator-related genes and
proinflammatory enzymes in RAW264.7 [21]. At the same
time, we verified the toxicity of different doses of CPT on
RAW264.7 through the CCK8 test and found that large doses
of CPT did not lead to cytotoxicity. This suggested that CPT
can be used as a relatively safe drug for the treatment of UC.

Although CPT plays an important role in alleviating UC
in mice, its mechanism is still unclear [22]. Current studies
have shown that UC can activate proinflammatory signaling
pathways in the body, leading to the increased phosphoryla-
tion of MAPKs and NF-κB signaling pathway-related pro-
teins [23, 24]. And our research also confirmed this. We
detected the phosphorylation of MAPKs and NF-κB signal-
ing pathway-related proteins in vivo and in vitro. The results
showed that CPT could significantly inhibit the phosphoryla-
tion of P38, ERK1/2, JNK1/2, and p65 as well as the nuclear
transfer of p65. This suggested that CPT can inhibit the acti-
vation of the proinflammatory signaling pathway at the
molecular level, which has the significance of further research
and development.

5. Conclusion

Our results suggest that CPT improves UC which is induced
by DSS in terms of colon length and the disease activity index
in rats. Additionally, CPT inhibits the expressions of proin-
flammatory cytokines, which may be responsible for the
phosphorylation of vital proinflammatory proteins in the
AKT, NF-κB, and MAPK signaling pathways. Thus, CPT is
a potential drug for treating UC.
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