
Ely et al. Translational Psychiatry          (2021) 11:266 

https://doi.org/10.1038/s41398-021-01321-x Translational Psychiatry

ART ICLE Open Ac ce s s

Data-driven parcellation and graph theory analyses
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Abstract
Adolescence is a period of rapid brain development when psychiatric symptoms often first emerge. Studying
adolescents may therefore facilitate the identification of neural alterations early in the course of psychiatric conditions.
Here, we sought to utilize new, high-quality brain parcellations and data-driven graph theory approaches to
characterize associations between resting-state networks and the severity of depression, anxiety, and anhedonia
symptoms—salient features across psychiatric conditions. As reward circuitry matures considerably during
adolescence, we examined both Whole Brain and three task-derived reward networks. Subjects were 87 psychotropic-
medication-free adolescents (age= 12–20) with diverse psychiatric conditions (n= 68) and healthy controls (n= 19).
All completed diagnostic interviews, dimensional clinical assessments, and 3T resting-state fMRI (10 min/2.3 mm/TR=
1 s). Following high-quality Human Connectome Project-style preprocessing, multimodal surface matching (MSMAll)
alignment, and parcellation via the Cole-Anticevic Brain-wide Network Partition, weighted graph theoretical metrics
(Strength Centrality= CStr; Eigenvector Centrality= CEig; Local Efficiency= ELoc) were estimated within each network.
Associations with symptom severity and clinical status were assessed non-parametrically (two-tailed pFWE < 0.05).
Across subjects, depression scores correlated with ventral striatum CStr within the Reward Attainment network, while
anticipatory anhedonia correlated with CStr and ELoc in the subgenual anterior cingulate, dorsal anterior cingulate,
orbitofrontal cortex, caudate, and ventral striatum across multiple networks. Group differences and associations with
anxiety were not detected. Using detailed functional and clinical measures, we found that adolescent depression and
anhedonia involve increased influence and communication efficiency in prefrontal and limbic reward areas. Resting-
state network properties thus reflect positive valence system anomalies related to discrete reward sub-systems and
processing phases early in the course of illness.

Introduction
Adolescence represents a critical period of development

during which many prodromal psychiatric symptoms and
conditions first emerge, including depression, anxiety, and

substance abuse1. This increased incidence has been
attributed to rapid maturational changes in the brain
during adolescence, which involve synaptic pruning,
myelination, neurotransmission, and the formation of
mature intrinsic functional circuits found in adults2–4.
Specifically, adolescence is a period of time when reward-
seeking behaviors are dominant, with reward circuitry
undergoing major changes in corticolimbic and frontal
regions5. As such, deviations from normal developmental
processes in the reward system are hypothesized to
underlie the emergence of psychiatric conditions in ado-
lescence, and studying adolescents may therefore facilitate
the identification of modifiable factors early in the course
of psychiatric conditions. A persistent challenge in
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delineating the neural underpinnings of mental illness has
been that psychiatric diagnoses are based on clusters of
symptoms with distinct etiology and high comorbidity6. In
response, our group and others have increasingly focused
on specific symptoms7–9, which represent narrowly
defined clinical features with potentially distinct etiolo-
gies, rather than broad categorical diagnoses. In this
study, we sought to utilize such a dimensional approach
to examine the neural correlates of anxiety, anhedonia,
and overall depression severity in adolescents with diverse
psychiatric conditions.
This study further employed a data-driven analysis

approach based on graph theory, which models complex
systems like the brain as collections of nodes (e.g., cortical
areas) linked by edges (e.g., functional connectivity)10.
Graph theory provides a concise way of defining and
representing resting-state networks, and can reveal subtle
network features that compliment and transcend the
information provided by traditional connectivity analyses.
Important graph theoretical metrics include nodal mea-
sures of centrality (i.e., influence over other nodes) and
efficiency (i.e., ease of communication with other
nodes)10. Our work also builds on the recent advances in
neuroimaging methodology spearheaded by the Human
Connectome Project (HCP)11. In 2016, the HCP released
a landmark parcellation identifying 360 distinct cortical
areas based on multimodal measures of cortical thickness,
myelination, resting-state functional connectivity, and
task activation patterns in an extensively sampled cohort
of healthy young adults12. Recently, the Cole-Anticevic
Brain-wide Network Partition (CAB-NP) has extended
this parcellation scheme to include the subcortex, iden-
tifying 358 further regions on the basis of resting-state
network assignments and providing a detailed map of
discrete functional areas across the entire brain13. In
addition to revealing fundamental aspects of neural
organization, high-quality parcellations provide an
invaluable framework for further data-driven research.
The principled data reduction enabled by these parcella-
tions is especially crucial in graph theory, which has been
limited in past studies by the use of overly simplistic
network models and functionally inaccurate node
boundaries14,15. To date, only a handful of studies have
employed these new, rigorously defined parcellation maps
to examine psychiatric conditions.
Building upon the developments described above, our

aim was to use high-quality parcellations and detailed
network models to examine the neural correlates of
depression, anhedonia, and anxiety, assessed quantita-
tively in psychotropic-medication-free adolescents with
diverse psychiatric symptoms. As clinical symptomatology
is salient across disorders and lies on a continuum within
each disorder, our study was designed to capture the full
range of symptom severity by recruiting a large,

transdiagnostic sample that included adolescents with
comorbid and subthreshold diagnoses as well as healthy
controls. Using graph theory, we examined relationships
between clinical symptomatology and resting-state net-
work properties of centrality and efficiency within the
functionally accurate CAB-NP network13. As reward cir-
cuitry plays a central role in the emergence of psychiatric
conditions during adolescence, we also repeated analyses
within three functionally defined reward networks derived
from the Reward Flanker Task (RFT)16. We hypothesized
that resting-state network properties in regions related to
reward and aversion processing would be associated with
anhedonia and anxiety severity, respectively, and that both
sets of regions would be associated with overall depres-
sion severity and clinical status.

Subjects and methods
Recruitment
Adolescents, ages 12–20, were recruited from the

greater New York City area. The study was approved by
the Institutional Review Board at Icahn School of Medi-
cine at Mount Sinai. Prior to the study, procedures were
explained to adolescents and legal guardians. Participants
age 18+ provided written consent; those under 18 pro-
vided written assent and a guardian provided written
consent.

Inclusion and exclusion criteria
All participants
Adolescents were excluded if they had any significant

medical or neurological condition, estimated IQ < 80,
claustrophobia, any MRI contraindication, or a positive
urine toxicology or pregnancy test.

Psychiatric group
Clinical participants were psychotropic-medication-free

for 30+ days, or 90+ days for long half-life medications
(e.g., fluoxetine). Exclusionary diagnoses were pervasive
developmental disorders, current psychosis, or a sub-
stance use disorder in the past year. All other psychiatric
conditions were allowed, regardless of whether full diag-
nostic criteria were met.

Healthy control group
Control participants did not meet the criteria for

any current or past psychiatric diagnoses and were
psychotropic-medication-naïve.

Clinical measures
Diagnostic procedures
Clinical and sub-clinical DSM-IV-TR diagnoses were

obtained using the Schedule for Affective Disorders and
Schizophrenia—Present and Lifetime Version (K-SADS-
PL)17. Interviews were administered to all adolescent
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participants without guardians present, as well as to
guardians without adolescents present for participants
under age 18. Evaluations were discussed between the
interviewing clinician and Principal Investigator (VG), a
board-certified child and adolescent psychiatrist, in order
to enhance reliability.

Depression
Overall depression severity was assessed using the Beck

Depression Inventory-II (BDI), a 21-item scale that
assesses symptoms and features of depression over the
previous 2 weeks and has high internal consistency in
both clinical and non-clinical adolescent populations18.

Anhedonia
Anhedonia severity was assessed by the state-based

Temporal Experience of Pleasure Scale (TEPS). This 18-
item self-report separately quantifies anticipatory (TEPS-
A) and consummatory (TEPS-C), as well as total (TEPS-
T), anhedonia symptoms over the past week19. Since the
TEPS is reverse-scored (higher scores→lower anhedonia),
analyses were performed using negative TEPS values
(higher scores→higher anhedonia) for consistency with
other scales.

Anxiety
Anxiety severity was examined using the Multi-

dimensional Anxiety Scale for Children (MASC), a 39-
item scale validated in both clinical and non-clinical
populations20.

Imaging data acquisition
Data were acquired on a 3T Skyra MR system (Siemens,

Germany) with 16/4-channel head/neck coil using pro-
tocols similar to the HCP Lifespan study21. Sequences
included: T1-weighted MPRAGE (TR= 2400ms; TE=
2.06 ms; TI= 1000 ms; flip angle= 8°; 224 sagittal frames,
no gap; matrix= 256 × 256; FOV= 230 × 230mm2;
0.9 mm isotropic), T2-weighted SPACE (TR= 3200 ms;
TE= 565ms; flip angle=120°; 224 sagittal frames, no gap;
matrix= 256 × 256; FOV= 230 × 230mm2; 0.9 mm iso-
tropic), and resting-state gradient-recalled EPI (10 min;
TR= 1000ms; effective TE= 31.4 ms; flip angle= 60°;
600 frames of 60 slices parallel to AC-PC, no gap; 5×
multiband acceleration; anterior-to-posterior phase
encoding; matrix= 98 × 98; FOV= 228 × 228 mm2;
2.3 mm isotropic). Matched single-band EPI and spin-
echo fieldmaps were collected for registration and dis-
tortion correction purposes. Subjects were presented with
a fixation cross and instructed to rest with their eyes open.
Four RFT fMRI runs (6 min 14 s each) were also acquired
later in the session using similar sequences.

Imaging data processing
Data were visually inspected before preprocessing with

HCP Pipelines v3.422. For anatomical data, preprocessing
included gradient nonlinearity correction, b0 distortion
correction, AC-PC alignment, coregistration, brain
extraction, bias-field correction, nonlinear transformation
to MNI space, FreeSurfer segmentation, and cortical rib-
bon extraction. Functional data were corrected for gra-
dient nonlinearity and EPI readout distortion, realigned,
transformed to MNI space, intensity normalized, and
initially mapped to the cortical ribbon using default
FreeSurfer alignment. Subject-level dense timeseries were
generated in 32k-CIFTI grayordinate space, which com-
bines functional data from left and right 2D cortical sur-
faces with major subcortical structures in 3D MNI space
to accurately represent gross brain anatomy22.
Next, structured fMRI noise components were auto-

matically identified and removed using the multi-run
implementation of spatial ICA-FIX developed by the
HCP23,24. This version achieves excellent denoising per-
formance, comparable to the original single-run ICA-FIX,
but can accommodate shorter fMRI scans by using con-
catenated data from multiple resting-state and/or task
runs25. Combined subject-level fMRI data consisted of the
single resting-state run (600 frames) and 2–4 RFT runs
(374 frames each). Runs with excessive motion, defined as
≥5% of frames with mean framewise displacement ≥1mm,
were excluded. Concatenated subject-level fMRI data
were mildly high-pass filtered (default 2000s cutoff).
Whole-brain MNI timeseries were then decomposed into
independent components (ICs) via the FSL MELODIC
tool26. Each IC was automatically classified as “signal”,
“noise”, or “unknown” via the FIX classifier algorithm
(default HCP_hp2000.Rdata training set), which we have
previously benchmarked as achieving >97% accuracy in
locally acquired fMRI datasets. All “signal” and
“unknown” ICs were jointly reviewed by two experienced
neuroimagers (B.A.E. and Q.L.) and manually reclassified
as necessary. “Noise” ICs were then removed from both
the MNI- and grayordinate space fMRI data using “soft”
regression (i.e., only unique variance removed).
Following ICA-FIX, cortical surface data in grayordinate

space were robustly aligned across subjects based on a
combination of functional and anatomical features using
the multimodal surface matching (MSMAll) method
developed and advocated by the HCP27,28. MSMAll was
performed using all low-movement resting-state and RFT
fMRI data included in the multi-run ICA-FIX
denoising step.
In addition to ICA-FIX denoising, we performed global

signal regression (GSR) to minimize the effects of
respiratory-related intensity fluctuations and other global
sources of residual noise29,30. Mean whole-brain time-
series were extracted from FIX-denoised resting-state
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fMRI in MNI space using Conn Toolbox v17f31 and
removed using “hard” regression (i.e., all variance
removed) from the FIX-denoised, MSMAll-aligned fMRI
data in grayordinate space. In light of longstanding
debates over the benefits vs. drawbacks of GSR25,32, all
analyses were also performed without including this step
(see Supplementary Results). No spatial smoothing or
bandpass filtering was applied.
Finally, denoised resting-state fMRI data in grayordinate

space were parcellated (i.e., divided into nodes and spa-
tially averaged within each) using CAB-NP v1.0.5, which
extends the HCP cortical parcellation12 to include func-
tionally similar subcortical parcels13. As in previous
work33, we slightly modified the cortical component of
this parcellation by subdividing the somatomotor strip
along somatotopic boundaries, yielding the final Whole
Brain network (750 nodes). In addition, we identified
three reward-related networks (Fig. 1) based on a separate
analysis of RFT fMRI data collected in the same sample
(manuscript in preparation), which builds on our previous
RFT studies16,34. Briefly, these networks comprised the
10% of nodes most activated by Reward Anticipation (114
nodes), Reward Attainment (103 nodes), and Reward
Prediction Error (117 nodes) RFT contrasts, as well as any
corresponding contralateral nodes; see Supplementary
Methods for additional details.

Graph theoretical metrics
Subject-level association matrices were generated by

cross-correlating node timeseries within the Whole Brain
(750 × 750), Reward Anticipation (114 × 114), Reward
Attainment (103 × 103), and Reward Prediction Error
(117 × 117) networks in MATLAB v2017a and retaining
all positive r values. Within each network, graph theore-
tical metrics were then estimated using weighted, undir-
ected measures from Brain Connectivity Toolbox
v2019–03–0310.
(1) Strength Centrality (CStr): The sum of all edge

weights (i.e., positive r values) at each node. CStr is
the weighted analog of the binary Degree Centrality
metric.

(2) Eigenvector Centrality (CEig): The eigenvector with
the largest eigenvalue for each node. This
measurement is self-referential, such that nodes
with high CEig are those most closely associated
with other high-CEig nodes.

(3) Local Efficiency (ELoc): The inverse shortest path
length (i.e., minimum number of edges, adjusted for
edge weights) between each node and its
neighborhood.

Graph theory analysis
Group differences (clinical vs. control) in graph the-

oretical metrics were assessed using two-sample,

unequal-variance t-tests. Relationships between graph
theoretical metrics and symptom scales (BDI, MASC,
negative TEPS) were assessed using Pearson partial
correlations in the full sample. All analyses controlled
for participant age and sex. Statistical significance was
determined using non-parametric permutation tests
(10,000 iterations), as implemented in FSL PALM v111-
alpha35. Non-parametric tests provide better familywise
error (FWE) control than their parametric equivalents36

and are robust to skewed data distributions37, as was
the case for symptom scales in our study (skewness:
BDI= 1.32; MASC= 0.58; TEPS-A=−0.94; TEPS-C=
−0.75; TEPS-T=−1.00). Results were considered sig-
nificant at the two-tailed pFWE < 0.05 level. Given our
sample characteristics (see “Results” section), sensitivity
analyses indicated ~80% power to detect effect sizes of |
d| ≥0.74 for group differences and |r| ≥ 0.29 for symp-
tom correlations, consistent with our findings.

Results
Clinical characteristics
The sample included 87 adolescents, of whom 68 had

psychiatric symptoms (predominantly related to mood
and anxiety) and 19 were healthy controls. Table 1 pro-
vides participant demographic and clinical characteristics.
Relative to controls, adolescents with psychiatric symp-
toms had significantly higher BDI and MASC scores
(pFWE < 10

–3). Groups did not differ significantly in age,
sex, race, ethnicity, or TEPS scores (pFWE > 0.1).

Group differences
No significant differences in graph theoretical metrics

were observed between adolescents with psychiatric
symptoms and healthy controls for any network in the
main analysis. In the repeated analysis without GSR
(Supplementary Results), Reward Anticipation network
CStr, CEig, and ELoc in frontal language area 55b were
elevated for clinical subjects relative to controls (Table
S1); no other significant group differences were observed.

Depression severity
Depression severity (BDI) was positively correlated with:

Whole Brain CStr in the left medulla and cerebellum;
Whole Brain ELoc in the left lateral temporal lobe and
cerebellum; Reward Attainment network CStr in two right
ventral striatum nodes and the left lateral temporal lobe;
Reward Attainment network CStr and ELoc in the right
inferior pallidum; Reward Attainment network CStr, CEig,
and ELoc in a small left medial hippocampus node; and
Reward Prediction Error network CStr in the left dorso-
lateral prefrontal cortex (dlPFC). No associations with
depression were detected within the Reward Anticipation
network. Select findings are displayed in Fig. 2, with full
results detailed in Table 2. In the repeated analysis
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without GSR, only depression correlations with Reward
Attainment network CStr and ELoc in the right ventral
striatum and inferior pallidum remained significant
(Table S2).

Anhedonia severity
Anticipatory anhedonia (negative TEPS-A) was posi-

tively correlated with: Whole Brain ELoc in the left
subgenual anterior cingulate (sgACC), right

Reward Network Masks
Prediction Error

Attainment
Anticipation

Fig. 1 Reward network masks. Nodes from the Whole Brain network corresponding to Reward Anticipation (green), Reward Attainment (blue), and
Reward Prediction Error (red) networks derived from the Reward Flanker Task (RFT). Nodes included in multiple networks are indicated by additive
color mixing, as shown at the top.
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parahippocampus, right temporal pole, bilateral lateral
temporal lobe, left lateral and superior parietal cortices,
and left pulvinar thalamus; Reward Anticipation network
ELoc in the bilateral caudate; Reward Attainment network
CStr in the left lateral temporal; Reward Attainment
network ELoc in the left sgACC, right orbitofrontal cortex
(OFC), and right dorsal anterior cingulate (dACC);
Reward Prediction Error network ELoc in the right dACC
and left dlPFC; and Reward Prediction Error network CStr

and ELoc in the bilateral caudate. Total anhedonia
(negative TEPS-T) was positively correlated with: Whole
Brain ELoc in the bilateral hippocampus, right para-
hippocampus, and left inferior lateral temporal lobe; and
Reward Prediction Error network ELoc in the right cau-
date. No associations with consummatory anhedonia
(negative TEPS-C) were detected in the main analysis.
Select findings are displayed in Fig. 3, with full results
detailed in Table 2. The repeated analysis without GSR
detected extensive (~200) associations with anhedonia
across all three subscales; findings included the majority
of nodes identified in the main analysis as well as
numerous vision-related parietal and occipital areas
(Table S2).

Anxiety severity
No associations were detected between anxiety levels

(MASC) and graph theoretical metrics for any network in
either the main analysis or the supplementary analysis
without GSR.

Discussion
The present study capitalized on recent advances in

neuroimaging methodology to examine resting-state
network properties in the context of adolescent mental
illness. Our approach included high-quality multiband
fMRI sequences to achieve excellent spatial (2.3 mm iso-
tropic) and temporal (1 s) resolution, HCP-style pre-
processing including highly accurate MSMAll surface
alignment, and a large sample of psychotropic-
medication-free adolescents with diverse clinical symp-
tomatology. A key element of our study was the CAB-NP
parcellation, which enabled us to model networks using
functionally discrete nodes across the entire cortex and
subcortex. To further preserve neurobiological detail, we
derived graph theoretical metrics of centrality (CStr, CEig)
and efficiency (ELoc) using weighted association matrices,
rather than the simpler binary approach where association
matrices are arbitrarily thresholded and all surviving
correlations are treated as equivalent. In addition to
Whole Brain analyses, we also examined graph theoretical
metrics within specific Reward Anticipation, Reward
Attainment, and Reward Prediction Error networks, which
we defined empirically using task fMRI data collected in
the same subjects. Importantly, these analyses within
smaller RFT networks did not simply reduce multiple
comparison penalties, as in small-volume correction39,
but directly altered the calculation of graph theoretical
metrics by restricting the underlying association matrix to
nodes involved in the corresponding reward process.

Table 1 Clinical and demographic information.

Measure Control (n= 19) Clinical (n= 68) All (n= 87)

Age (M ± SD) 15.3 ± 2.5 15.1 ± 2.1 15.2 ± 2.2

Sex F= 9, M= 10 F= 44, M= 24 F= 53, M= 34

Racea Af= 8, As= 0, E= 7, O= 4 Af= 24, As= 2, E= 30, O= 12 Af= 32, As= 2, E= 37, O= 16

Ethnicityb H= 5, N= 14 H= 33, N= 35 H= 38, N= 49

BDI (M ± SD) 1.8 ± 2.1 (n= 19) 13.6 ± 11.4 (n= 66) 11.0 ± 11.2 (N= 85)

MASC (M ± SD) 27.0 ± 11.7 (n= 17) 44.7 ± 17.3 (n= 66) 41.1 ± 17.8 (N= 83)

TEPS-A (M ± SD) 49.4 ± 6.8 (n= 18) 45.0 ± 8.9 (n= 52) 46.1 ± 8.6 (N= 70)

TEPS-C (M ± SD) 35.0 ± 8.7 (n= 18) 33.2 ± 7.5 (n= 52) 33.6 ± 7.8 (N= 70)

TEPS-T (M ± SD) 84.4 ± 13.7 (n= 18) 78.1 ± 14.5 (n= 52) 79.7 ± 14.5 (N= 70)

Mood symptomsc 0 49 49

Anxiety symptomsc 0 43 43

Behavioral symptomsc 0 28 28

Other symptomsc 0 7 7

aAf= African American, As= Asian American, E= European American, O=Other/Mixed Race.
bH= Hispanic, N= Non-Hispanic.
cIncludes past and/or subthreshold symptoms.
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C) Reward Attainment – CStr

D) Reward Prediction Error – CStr

Depression Severity
A) Whole Brain – CStr

B) Whole Brain – ELoc

-0.4 0.4Pearson r

Medulla Lobule V

Lateral Temporal

Lobule V

Lateral Temporal

Ventral
Striatum

Pallidum

dlPFC

Fig. 2 (See legend on next page.)
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As hypothesized, both anhedonia and overall depression
severity correlation analyses implicated key reward-related
areas, supporting the notion that alterations in reward
circuitry during adolescent brain development play an
important role in the emergence of psychiatric disorders.
Across all adolescents, higher depression severity was
associated with increased CStr in the ventral striatum and
pallidum within the Reward Attainment network, while
higher anhedonia severity was associated with the
increased CStr or ELoc in the sgACC, dACC, OFC, ventral
striatum, and caudate across multiple networks. Taken
together, these findings suggest that increased commu-
nication with reward areas during rest may be related to
the initial development of positive valence system (PVS)
deficits. Notably, analyses within the RFT-derived Reward
Anticipation, Reward Attainment, and Reward Prediction
Error networks revealed many further correlations
between symptom severity and graph theoretical metrics
than Whole Brain analyses alone. Moreover, our anhedo-
nia findings were predominantly driven by anticipatory
anhedonia, which involves undervaluation of expected
rewards and is associated with motivational deficits, rather
than consummatory anhedonia, which reflects the dimin-
ished experience of pleasure once rewards are obtained. As
such, our results highlight the importance of studying
specific reward sub-systems and considering discrete
phases of reward processing, even at rest.
The benefits of this approach are evident in our

depression severity correlation findings: while Whole
Brain analyses implicated a few cerebellar and lateral
temporal nodes, the same analyses within the more spe-
cific Reward Attainment network revealed further asso-
ciations with CStr in the right nucleus accumbens (NAc).
The NAc and surrounding ventral striatum play a highly
conserved role in primary reward processing, receiving
dopaminergic inputs from the ventral tegmental area in
response to appetitive stimuli via the mesolimbic reward
pathway40,41. Similar to our result, a previous resting-state
fMRI study in children aged 6–12 found that, within a
network consisting of 12 reward-related nodes, only left
ventral striatum CStr significantly predicted the emer-
gence of depression at 3-year follow-up42. Analyses within
the Reward Prediction Error network, meanwhile,
revealed a positive correlation between depression sever-
ity and CStr in the left dlPFC, a region linked to ther-
apeutic outcomes in depression. An early PET study in

adults with severe depression found that reduced meta-
bolic activity in the left dlPFC was associated with non-
response to fluoxetine treatment43. Subsequently, multi-
ple clinical trials have established transcranial magnetic
stimulation of the left dlPFC as an effective non-
pharmacological treatment for depression44–46. Our
findings indicate that adolescent depression entails altered
resting-state communication with these prefrontal and
subcortical reward areas previously linked to depression
chronicity and treatment response.
Beyond correlations with overall depression severity,

our analyses revealed numerous associations between
graph theoretical metrics and anhedonia, a core symptom
of depression. In both the Whole Brain and Reward
Attainment network analyses, anticipatory anhedonia
positively correlated with ELoc in the left sgACC, a pre-
frontal area important for sustaining arousal and positive
affect in anticipation of expected rewards47. Increased
sgACC activity is frequently reported in neuroimaging
studies of depressed adults48 and adolescents49, while
sgACC activity decreases following many types of
depression treatment, including traditional anti-
depressants, ketamine, and deep brain stimulation50–52. In
an earlier resting-state functional connectivity study of the
striatum in adolescent depression, we found that con-
nectivity between the left NAc and bilateral sgACC was
negatively correlated with anhedonia severity8. Recent
work in non-human primates has helped clarify the role of
the ACC in anhedonia: chemically induced sgACC
hyperactivity was shown to specifically blunt anticipatory,
but not consummatory, arousal, while over-activation of
the adjacent perigenual ACC had no effect53. Our current
study is in excellent agreement with these findings,
showing that shorter connectivity paths (ELoc) to the
sgACC are associated with increased anticipatory, but not
consummatory, anhedonia severity across a large cohort
of clinically diverse adolescents.
Anticipatory anhedonia further correlated with the

resting-state network properties of many key reward-
related regions within RFT-derived networks. These
included bilateral caudate ELoc in the Reward Anticipation
network, right OFC and dACC ELoc in the Reward
Attainment network, and bilateral caudate CStr/ELoc as
well as ventral striatum dACC ELoc in the Reward
Prediction Error network. The striatum and OFC are core
components of the brain’s reward system, converting

(see figure on previous page)
Fig. 2 Depression severity correlation results. Across all adolescents, overall depression severity positively correlated with: aWhole Brain CStr in the
left medullary brainstem and left cerebellum; b Whole Brain ELoc in the left lateral temporal cortex and left cerebellum; c Reward Attainment network
CStr in the left lateral temporal cortex, right ventral striatum, and right pallidum; and d Reward Prediction Error network CStr in the left dorsolateral
prefrontal cortex (dlPFC). Maps show effect size (Pearson’s r) adjusted for age and sex. Significant nodes (two-tailed pFWE < 0.05) are indicated by
white outlines and labels; non-significant nodes are displayed at 50% saturation.
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Table 2 Graph theory symptom correlation results.

Network Metric Location CAB-NP Label (HCP Cortical Label)a Pearson rb pFWE

Depression severity

Whole Brain CStr Left medullary brainstem Frontoparietal-6 0.400 0.041

Left cerebellum lobule V Frontoparietal-17 0.416 0.027

Left cerebellum lobule V Frontoparietal-21 0.395 0.048

ELoc Left lateral temporal Frontoparietal_44 (TE1p) 0.375 0.049

Left cerebellum lobule V Frontoparietal-17 0.381 0.042

Left cerebellum lobule V Frontoparietal-18 0.379 0.044

Reward Attainment CStr Left lateral temporal Frontoparietal_44 (TE1p) 0.434 0.0042

Left medial hippocampus Default-24 0.426 0.0049

Right inferior pallidum Orbito-Affective-17 0.419 0.0060

Right ventral striatum Cingulo-Opercular-3 0.372 0.031

Right ventral striatum Orbito-Affective-2 0.362 0.041

CEig Left medial hippocampus Default-24 0.375 0.033

ELoc Right inferior pallidum Orbito-Affective-17 0.416 0.0061

Left medial hippocampus Default-24 0.441 0.0026

Reward Prediction Error CStr Left dlPFC Frontoparietal_32 (8C) 0.326 0.048

Anticipatory anhedonia severity

Whole Brain ELoc Left lateral parietal Default_68 (PGi) 0.418 0.043

Left posterior lateral temporal Visual2_44 (PH) 0.428 0.032

Left superior parietal Visual2_43 (VIP) 0.414 0.048

Left superior parietal Visual2_35 (IPS1) 0.461 0.012

Left lateral temporal Ventral_Multimodal_3 (TF) 0.423 0.037

Left sgACC Default_74 (s32) 0.417 0.045

Right lateral occipital Visual2_12 (LO2) 0.417 0.045

Right lateral temporal Default_36 (STSva) 0.421 0.040

Right temporal pole Default_27 (TGd) 0.434 0.027

Right parahippocampus Default_32 (PHA2) 0.453 0.015

Right parahippocampus Dorsal_Attention_6 (PHA3) 0.417 0.045

Left pulvinar thalamus Auditory-24 0.441 0.022

Left medial hippocampus Default-24 0.434 0.027

Inferior medial brainstem Visual-6 0.465 0.010

Reward Anticipation ELoc Left caudate Frontoparietal-10 0.365 0.044

Right caudate Frontoparietal-11 0.381 0.028

Reward Attainment CStr Left lateral temporal Frontoparietal_44 (TE1p) 0.405 0.033

ELoc Left sgACC Default_74 (s32) 0.421 0.019

Right dACC Frontoparietal_4 (d32) 0.430 0.015

Right OFC Frontoparietal_15 (13l) 0.392 0.044

Left medial hippocampus Default-24 0.411 0.025
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transient mesolimbic dopamine signals following primary
rewards and reward-predicting cues into sustained
representations of reward values and expectations54. The
dACC is a functionally diverse region involved in reward
valuation but also myriad aspects of negative affect, pain,
cognitive control, and salience monitoring55–57. Single-
neuron recordings in non-human primates indicate that
these regions play complementary roles in reward pro-
cessing, with striatum involved in learning to distinguish
reward-predicting cues, the OFC encoding information
about the type and magnitude of rewards, and the dACC
predicting future rewards and detecting Reward Predic-
tion Errors54,58. Interestingly, we found that subjects with
higher anhedonia levels had increased network influence
and communication efficiency in these reward-related
regions, which is somewhat counterintuitive given the
large body of animal studies and human fMRI research
linking anhedonia to reduced reward activity40,59,60.
However, it is important to note that resting-state func-
tional connectivity and derived features like the graph
theoretical metrics used in this study do not map neatly
onto task activation patterns but rather reflect persistent
interactions between brain regions61. If key reward

processing areas have greater influence in adolescents
with higher anhedonia levels, as the current study sug-
gests, this could potentially exacerbate the effects of
reduced reward activation reported in prior studies. Fur-
thermore, our group has found reduced levels of gamma-
aminobutyric acid (the main inhibitory neurotransmitter
in the brain) in the ACC of depressed adolescents relative
to healthy controls9,62, providing a potential mechanism
for the observed hyperconnectivity.
It is also noteworthy that our correlation analyses

revealed extensive associations between anticipatory
anhedonia and graph theoretical metrics across different
networks, while no associations were detected with con-
summatory anhedonia. Although this discrepancy may be
due to our resting-state study design, which precluded
active reward consumption, it suggests that network
abnormalities in adolescents are disproportionately rela-
ted to motivational impairments. Similarly, although we
observed multiple associations with overall depression
severity and especially the PVS construct of anhedonia,
the negative valence system (NVS) construct of anxiety
was not associated with any nodes or networks. The
absence of significant correlations with overall anxiety

Table 2 continued

Network Metric Location CAB-NP Label (HCP Cortical Label)a Pearson rb pFWE

Reward Prediction Error CStr Left caudate Frontoparietal-10 0.381 0.035

Right caudate Frontoparietal-11 0.408 0.017

Left superior parietal Dorsal_Attention_13 (MIP) 0.377 0.038

ELoc Right ventral striatum Cingulo-Opercular-11 0.377 0.044

Left caudate Frontoparietal-10 0.418 0.011

Right caudate Frontoparietal-11 0.435 0.0066

Right thalamus Visual-63 0.387 0.031

Right dACC Cingulo-Opercular_27 (a32pr) 0.383 0.037

Right dlPFC Frontoparietal_12 (a9–46v) 0.424 0.010

Total anhedonia severity

Whole Brain ELoc Left lateral temporal Ventral_Multimodal_3 (TF) 0.425 0.036

Right medial temporal Default_32 (PHA2) 0.423 0.038

Right hippocampus Visual2–26 0.432 0.029

Right hippocampus Somatomotor-19 0.424 0.036

Left hippocampus Somatomotor-16 0.436 0.026

Left medial hippocampus Default-24 0.427 0.034

Medial inferior brainstem Visual-6 0.432 0.031

Reward Prediction Error ELoc Right caudate Frontoparietal-11 0.375 0.049

Left cerebellum crus II Posterior Multimodal-13 0.384 0.036

aLabels per Cole-Anticevic Brain-wide Network Partition v1.0.5 (equivalent labels per HCP S1200 Release cortical parcellation).
bAdjusted for age and sex. Anhedonia correlations reported with negative TEPS for consistency with other scales (see “Methods” section).
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Fig. 3 Anhedonia severity correlation results. Across all adolescents, anticipatory anhedonia positively correlated with: a Whole Brain ELoc in the
left lateral and superior parietal cortices, bilateral lateral temporal cortex, right temporal pole, right lateral occipital cortex, left subgenual anterior
cingulate cortex (sgACC), and right parahippocampus; b Reward Anticipation network ELoc in the bilateral caudate; c Reward Attainment network CStr
in the left lateral temporal cortex; d Reward Attainment network ELoc in the left sgACC, right orbitofrontal cortex (OFC), and right dorsal anterior
cingulate cortex (dACC); e Reward Prediction Error network CStr in the left superior parietal cortex and bilateral caudate; and f Reward Prediction Error
network ELoc in the right dorsolateral prefrontal cortex (dlPFC), right dACC, bilateral caudate, right ventral striatum, and right thalamus. Total
anhedonia positively correlated with: g Whole Brain ELoc in the left lateral temporal cortex, right parahippocampus, and bilateral hippocampus; and h
Reward Prediction Error network ELoc in the right caudate. Maps show effect size (Pearson’s r) adjusted for age and sex. Significant (two-tailed pFWE <
0.05) nodes are indicated by white outlines and labels; non-significant nodes are displayed at 50% saturation.
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severity may be due to our focus on networks derived
from the RFT, which is specifically designed to interrogate
PVS activation during different stages of reward proces-
sing16. However, we also observed relatively few regions that
were correlated with total anhedonia or overall depression
severity, suggesting that detailed symptom quantification
improves power to detect associations with functional
metrics that may be lost using generic clinical measures.
Consistent with this, no group-level differences were found
between adolescents with clinical symptoms vs. healthy
controls in our main analysis, likely due to the heterogenous
nature of the clinical cohort. Since categorical psychiatric
diagnoses are often highly variable, we adopted an RDoC-
style approach focusing on narrow, dimensional symptom
measures instead.
Several caveats should be noted for this study. Foremost,

although we recruited a relatively large cohort of 87 ado-
lescents, sampling was more limited within major clinical
categories of mood symptoms (n= 49), anxiety symptoms
(n= 43), behavioral symptoms (n= 28), and especially
healthy controls (n= 19). This study design was intended to
capture the full range of clinical symptomatology by
including subjects with significant comorbidity and sub-
threshold symptoms. As such, analyses focused primarily on
associations with symptom severity in the full cohort;
additional research is needed to determine how resting-state
network properties differ between specific diagnostic groups
and healthy adolescents. Second, although symptom severity
is a more specific indicator of underlying PVS and NVS
abnormalities than categorical diagnosis6, clinical symptoms
are also heterogeneous to some extent. We were able to
address this directly for anhedonia by separately analyzing
anticipatory and consummatory TEPS subscales. To allow
for comparably targeted analyses of depression and anxiety
symptoms, our future work will employ more granular
assessments, such as the behavioral inhibition and activation
scales used by the Adolescent Brain Cognitive Development
study to concisely assess the dimensions of goal-directed
behavior, fun-seeking, reward responsiveness, and fearful-
ness63. We will also explore behavioral assessments, such as
the Probabilistic Reward Task64, which can provide objective
metrics of reward function and other clinically relevant
capacities. Finally, although we used the best whole-brain
parcellation currently available, there has been limited vali-
dation of the CAB-NP due to its recent release. However, all
cortical boundaries were taken directly from the multimodal
surface parcellation meticulously derived by the HCP12,
which has been found to outperform other contemporary
atlases and is widely considered a gold standard of human
brain segmentation65,66. Subcortical parcels in the CAB-NP
were then determined using a consensus partitioning
approach based on data from over 300 HCP subjects divided
into independent discovery and validation sets to ensure
reproducibility and reliability13.

In conclusion, our study prioritized high-quality
clinical and neuroimaging measures, recruiting a
large cohort of psychotropic-medication-free adoles-
cents to examine the full range of illness severity using
sophisticated fMRI acquisition and analysis techniques.
We found that PVS constructs of depression and
anhedonia severity were associated with increased
communication with key reward-related nodes in the
medial PFC and striatum during rest. Conversely, no
associations were observed between network commu-
nication metrics and clinical status or the NVS con-
struct of anxiety. These results showcase the power of
carefully constructed network models, data-driven
analyses, and targeted clinical assessments to detect
specific functional anomalies underlying emergent
psychiatric symptoms. Identifying and characterizing
these aberrant neurodevelopmental processes is crucial
for understanding and ultimately stopping the course
of mental illness.
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