Table 2.
Performance accuracy when distinguishing super-experts vs. ordinary-experts (Comparison 2).
Machine learning model | Performance accuracy comparison between varying datasets | p Value | |||
---|---|---|---|---|---|
Adaboost | ColumnSet | 0.801 ± 0.014 | RowSet | 0.772 ± 0.009 | p < 0.001 |
RowSet | 0.772 ± 0.009 | GlobalSet | 0.774 ± 0.009 | p = 0.14 | |
Gradient Boosting | ColumnSet | 0.770 ± 0.006 | RowSet | 0.784 ± 0.006 | p < 0.001 |
RowSet | 0.784 ± 0.006 | GlobalSet | 0.759 ± 0.002 | p < 0.001 | |
Random Forest | ColumnSet | 0.761 ± 0.007 | RowSet | 0.761 ± 0.004 | p = 0.959 |
RowSet | 0.761 ± 0.004 | GlobalSet | 0.769 ± 0.009 | p = < 0.001 |