Skip to main content
. Author manuscript; available in PMC: 2022 May 1.
Published in final edited form as: Surgery. 2020 Nov 5;169(5):1245–1249. doi: 10.1016/j.surg.2020.09.020

Table 2.

Performance accuracy when distinguishing super-experts vs. ordinary-experts (Comparison 2).

Machine learning model Performance accuracy comparison between varying datasets p Value
Adaboost ColumnSet 0.801 ± 0.014 RowSet 0.772 ± 0.009 p < 0.001
RowSet 0.772 ± 0.009 GlobalSet 0.774 ± 0.009 p = 0.14
Gradient Boosting ColumnSet 0.770 ± 0.006 RowSet 0.784 ± 0.006 p < 0.001
RowSet 0.784 ± 0.006 GlobalSet 0.759 ± 0.002 p < 0.001
Random Forest ColumnSet 0.761 ± 0.007 RowSet 0.761 ± 0.004 p = 0.959
RowSet 0.761 ± 0.004 GlobalSet 0.769 ± 0.009 p = < 0.001