Skip to main content
. 2021 Apr 27;7:e493. doi: 10.7717/peerj-cs.493

Table 5. The classification accuracy of each individual feature using SVM, RF, and QDA classifiers for BreakHis dataset.

Features SVM RF QDA
Magnification Factor 40×
Inception-Resnet V2 96.31 95.72 93.04
ResNet-50 95.65 91.33 93.78
GoogleNet 94.29 95.09 92.58
AlexNet 91.98 92.44 94.84
ShuffleNet 86.79 88.02 90.05
HOG 90.75 93.01 89.99
WPD 88.91 92.27 91.77
Magnification Factor 100×
Inception-Resnet V2 95.33 96.83 93.09
ResNet-50 93.11 94.71 95.35
GoogleNet 92.99 94.89 90.84
AlexNet 88.69 91.35 92.65
ShuffleNet 86.25 88.93 87.82
HOG 91.24 90.49 80.09
WPD 88.77 90.76 86.31
Magnification Factor 200×
Inception-Resnet V2 92.22 94.94 90.52
ResNet-50 90.43 92.60 93.00
GoogleNet 90.45 92.20 89.11
AlexNet 88.51 90.94 87.31
ShuffleNet 85.13 81.46 78.99
HOG 87.46 85.31 88.45
WPD 82.21 87.32 79.45
Magnification Factor 400×
Inception-Resnet V2 92.994 90.122 87.432
ResNet-50 89.456 88.321 90.322
GoogleNet 86.666 89.300 87.199
AlexNet 84.486 87.432 88.444
ShuffleNet 82.345 81.111 80.340
HOG 84.776 85.241 83.888
WPD 85.828 83.102 81.442