Table 4.
Performance of the machine learning approaches for the estimation of 1-year all-cause readmission.
| Model | AUCa | Accuracy | Precision | Recall | F1 | Brier score |
| LRb | 0.63 | 0.57 | 0.57 | 0.59 | 0.58 | 0.24 |
| RFc | 0.91 | 0.82 | 0.83 | 0.81 | 0.82 | 0.13 |
| SVMd | 0.96 | 0.90 | 0.86 | 0.96 | 0.91 | 0.16 |
| ANNe | 0.82 | 0.74 | 0.74 | 0.75 | 0.74 | 0.18 |
| XGBoostf | 0.92 | 0.83 | 0.82 | 0.84 | 0.83 | 0.12 |
aAUC: area under the curve.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eANN: artificial neural network.
fXGBoost: extreme gradient boosting.