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Abstract

Rationale: The computed tomography (CT) pattern of definite or
probable usual interstitial pneumonia (UIP) can be diagnostic of
idiopathic pulmonary fibrosis and may obviate the need for invasive
surgical biopsy. Few machine-learning studies have investigated the
classification of interstitial lung disease (ILD) on CT imaging, but
none have used histopathology as a reference standard.

Objectives: To predict histopathologic UIP using deep learning of
high-resolution computed tomography (HRCT).

Methods: Institutional databases were retrospectively searched
for consecutive patients with ILD, HRCT, and diagnostic
histopathology from 2011 to 2014 (training cohort) and from
2016 to 2017 (testing cohort). A blinded expert radiologist and
pulmonologist reviewed all training HRCT scans in consensus and
classified HRCT scans based on the 2018 American Thoracic
Society/European Respriatory Society/Japanese Respiratory Society/
Latin American Thoracic Association diagnostic criteria for
idiopathic pulmonary fibrosis. A convolutional neural network
(CNN) was built accepting 43 43 2 cm virtual wedges of
peripheral lung on HRCT as input and outputting the UIP
histopathologic pattern. The CNN was trained and evaluated on the
training cohort using fivefold cross validation and was then tested on
the hold-out testing cohort. CNN and human performance were

compared in the training cohort. Logistic regression and survival
analyses were performed.

Results: The CNN was trained on 221 patients (median age 60 yr;
interquartile range [IQR], 53–66), including 71 patients (32%)
with UIP or probable UIP histopathologic patterns. The CNN was
tested on a separate hold-out cohort of 80 patients (median age
66 yr; IQR, 58–69), including 22 patients (27%) with UIP or
probable UIP histopathologic patterns. An average of 516 wedges
were generated per patient. The percentage of wedges with CNN-
predicted UIP yielded a cross validation area under the curve of
74% for histopathological UIP pattern per patient. The optimal
cutoff point for classifying patients on the training cohort was
16.5% of virtual lung wedges with CNN-predicted UIP and
resulted in sensitivity and specificity of 74% and 58%, respectively,
in the testing cohort. CNN-predicted UIP was associated with an
increased risk of death or lung transplantation during cross
validation (hazard ratio, 1.5; 95% confidence interval, 1.1–2.2;
P = 0.03).

Conclusions: Virtual lung wedge resection in patients with ILD
can be used as an input to a CNN for predicting the histopathologic
UIP pattern and transplant-free survival.
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Interstitial lung disease (ILD) is a
heterogenous group of fibrotic lung diseases
with various etiologies, natural histories, and
prognoses (1, 2). Idiopathic pulmonary

fibrosis (IPF) is a progressive fibrotic ILD
with a high mortality rate and few available
therapies (1, 3–8). Increasing attention has
been given to the accuracy of diagnosing

IPF. The 2018 Fleischner Society white
paper update for the diagnostic criteria for
IPF offers guidance regarding the current
role of surgical biopsy, high-resolution
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computed tomography (HRCT) of the chest,
and clinical context in making the diagnosis
of IPF (9). In the correct clinical context, a
computed tomography (CT) pattern of
definite or probable usual interstitial
pneumonia (UIP) is diagnostic of IPF and
may obviate the need for invasive surgical
biopsy, which carries a significant risk of
morbidity and mortality (10).

Advancements in computer vision
and machine learning have led to new
opportunities in the diagnosis and
prognostication of various diseases (11).
Deep learning using convolutional neural
networks (CNNs) is a relatively new branch
of machine learning that excels in classifying
images (12). Few prior studies have
attempted to classify ILD patterns using
machine learning of CT scans (13–16).
Previous studies are limited by small sample
sizes, older machine-learning techniques,
and/or lack of a histopathologic reference
standard. The purpose of this study was to
build a deep-learning network capable of
predicting definite or probable UIP on
HRCT scans using histopathology as the
reference standard and to explore the
association of the model with mortality.

Methods

This was a retrospective institutional
review board–approved study with waiver
of informed consent. An institutional
radiology database was searched from
January 2010 to December 2014 for all CT
scans of the chest in patients with ILD using
the search terms “fibrosis” or “interstitial” or
“interstitial lung disease” or “fibrotic lung

disease” or “UIP” or “usual interstitial
pneumonia.” The search returned 7,005 CT
scans. All CT scan reports and respective
patient charts were reviewed to evaluate for
a diagnosis of ILD and for history of surgical
biopsy and/or lung transplant with explant
yielding a histopathologic diagnosis. In total,
944 patients had a confirmed diagnosis of
ILD. Of these, 676 were excluded because of
a lack of histopathology, yielding 268
patients. Of these 268 patients, 14 were
excluded because of an indeterminate
biopsy, one with fibrosis due to ciliary
dyskinesia, one with fibrosis attributed to
cardiac disease, three because of no evidence
of ILD on biopsy, and 28 because of poor CT
quality. This resulted in 221 patients with
diagnostic ILD protocol CT scans of the
chest and diagnostic histopathology to be
used as the training cohort in this study.

Subsequently, a search of a pathology
database at the same institution was used to
identify all patients who had a lung biopsy
performed in 2016–2017 with the term
“fibrosis” in the pathology report. This search

yielded 386 biopsies. These reports were
reviewed to include only those with surgical
lung biopsies in the setting of ILD, resulting in
80 patients. All 80 patients had a diagnostic ILD
protocol CT scan of the chest. These patients
were held out and used as the final testing
cohort. None of these patients were part of the
training cohort. Figure 1 depicts a flowchart for
the inclusion of the study patients.

CT Technique
CT images were acquired on one of three
following GE scanners (GE Healthcare):
Lightspeed VCT 64, Discovery CT750HD,
or Revolution scanner. Scans were
performed during end-inspiration phase
using the breath-hold technique with
patients in the supine position, from the
apex of the lung to the costodiagphragmatic
recesses. Tube voltage was 120 kvp, and
milliampere-seconds (mAs) was modulated.
Detector coverage was 643 0.625mm, pitch
speed was 1.375, and rotation time was 0.5
seconds. Slice thickness varied from 0.625 to

386 lung biopsies
2016–2017 with
search terms

7,005 CT scans
performed 2010–2014
with search terms

Testing Cohort:

Training Cohort:

Surgical
biopsy

944 patients with ILD 268 patients with ILD
and histopathology

221 patients with ILD
and histopathology

Confirmation
of ILD

Histopathology
available Exclusions:

•      Indeterminate
       biopsy (14)

•      Ciliary
       dyskinesia (1)

•     Cardiac disease
       related fibrosis
       (1)

•     No ILD on
       biopsy (3)

•     Poor CT quality
      (28)

80 patients
with ILD and
histopathology

Figure 1. Flow chart for selection of patients in the training and testing cohorts. CT= computed tomography; ILD= interstitial lung disease.

Figure 2. Inputs to the network were generated by obtaining a 4343 2 cm three-dimensional wedge
of the subpleural regions of the bottom half of the lungs for each patient. Left: an example input slice
with two example virtual wedge regions highlighted. Wedges were discarded if they contained no
pleural space or no lung as defined by an automatically generated lungmask (middle). On average, 516
wedges were generated for each patient, totaling more than 114,000 wedges. Right: 18 example
wedges from a patient. The red squares are sample wedges.
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5.0 mm. Images were reconstructed using a
high–spatial frequency lung kernel.

Image Analysis
One expert thoracic radiologist with 20
years of experience in ILD and one expert
pulmonologist with 13 years of experience
in ILD (blinded to pathology and the
underlying diagnosis) reviewed all CT scans
of the training cohort in consensus and
classified patients into one of four categories
as per the 2018 ATS/ERS/JRS/ALAT IPF,
“typical UIP CT pattern,” “probable UIP CT
pattern,” “CT pattern indeterminate for
UIP” and “CT features most consistent with
non-IPF diagnosis” (9). For purposes of
comparing reader performance with the
CNN performance “typical UIP CT pattern”
and “probable UIP CT pattern” were
grouped together as UIP and “CT pattern
indeterminate for UIP” and “CT features
most consistent with non-IPF diagnosis”
were grouped together as not UIP.

Lung Segmentation and
Deep Learning
Each patient’s lung volumes on CT were
automatically segmented. Hundreds of
43 43 2 cm peripheral wedges were
created for each patient (Figure 2). A CNN

was built (Figure 3) which accepted
individual virtual wedges and output a
binary result of UIP or not UIP using that
patient’s surgical biopsy as reference
standard. The CNN was trained and
evaluated on the 221 patients in the training
data set using fivefold cross validation,
with subject levels splits of 44 patients per
group with one group of 45 patients, and
subsequently tested on the hold-out set of
80 patients from the testing set. The
details of the segmentation process, CNN
architecture and training process are
explained in Appendix 1.

Reference Standard
The original diagnostic histopathology
reports from surgical resection,
pneumonectomy or autopsy for each patient
were reviewed by a pathologist and
pulmonologist with experience in ILD and
classified using the 2018 American Thoracic
Society/European Respriatory Society/
Japanese Respiratory Society/Latin
American Thoracic Association (ATS/ERS/
JRS/ALAT) IPF diagnosis statement, which
describes the following four categories: UIP,
probable UIP, indeterminate for UIP, and
alternative diagnosis (9, 17). UIP and
probable UIP were grouped together as UIP,

and indeterminate for UIP and alternative
diagnosis were grouped together as not UIP.

Statistics
The median percentage of CNN-predicted
UIP wedges across patients in the training
and testing cohorts with and without
pathology-proven UIP was compared using
the Wilcoxon rank-sum test. We built a
univariable logistic regression model to
assess the association between the
percentage of CNN-predicted wedges of
UIP per patient in the training cohort with
pathology-proven UIP; the same logistic
regression model was used to generate a
receiver operating characteristic curve and
compute the Youden Index needed to find
the optimal binary cutoff of the percentage
of CNN-predicted wedges for UIP in
classifying patients as having UIP or
not. The association of this binary per
patient CNN-predicted UIP variable and
pathology-proven UIP was then explored
before and after controlling for age, sex, and
human-predicted UIP using univariable and
multivariable logistic regression models. In
addition, the association of human CT–
predicted UIP with pathology-proven UIP
using univariable logistic regression model
was explored. The Hosmer-Lemeshow test

Residual Inception Fully Connected Linear Output

SoftmaxFlatten 1: UIP
0: Non UIP

Figure 3. Convolutional neural network architecture used. A custom 20-layer three-dimensional convolutional neural network was designed with random
initializations. UIP= usual interstitial pneumonia.
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Figure 4. Flow chart depicting process from virtual wedge creation to per patient prediction of usual interstitial pneumonia. CNN=convolutional neural
network.
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was used to assess the goodness of fit.
We created a calibration plot for the
multivariate model to demonstrate the
goodness of fit (18). Cohen’s k was used to
evaluate the agreement of CNN-predicted
UIP with histopathology-proven UIP as well
as the agreement of human-predicted UIP
with histopathology-proven UIP.

We also evaluated the predictive
validity of the per-patient CNN-predicted
UIP as well as the percentage of CNN-
predicted UIP wedges against the time to
death or lung transplantation (transplant-
free survival). Kaplan-Meier curves of
transplant-free survival were generated and
compared using a log-rank test. We used
Cox regression analysis to assess the
associations of human- and CNN-predicted
UIP with transplant-free survival.

We tested the cutoff of the percentage of
CNN-predicted wedges for UIP derived from
cross validation of the training cohort in the
testing cohort. Figure 4 demonstrates a flow

chart starting with the virtual wedge generation
and ending in the per-patient classification.

Results

Patient Characteristics
A total of 221 patients in the training
cohort (115 male and 106 female
patients; median age 60 yr; interquartile
range [IQR], 53–66 yr) had the following
multidisciplinary team discussions
(MDDs): 52 patients with IPF, 41 with
hypersensitivity pneumonitis, 30 with
unclassifiable ILD, 11 with sarcoidosis,
38 with connective tissue disease–related
ILD, 33 with idiopathic nonspecific
interstitial pneumonia, four with idiopathic
desquamative interstitial pneumonia, one
with smoking-related interstitial fibrosis,
one with amyloidosis, two with cryptogenic
organizing pneumonia, one with primary
biliary cirrhosis–related ILD, one with

respiratory bronchiolitis–associated ILD,
one with Hermnasky-Pudlak Syndrome–
related ILD, three with antineutrophil
cytoplasmic antibodies vasculitis, one with
pulmonary alveolar proteinosis, and one
with bronchiolitis obliterans.

There were 57 patients (26%) with UIP,
14 patients (6%) with probable UIP, and 150
patients (68%) with alternative diagnosis
pathology patterns on histopathology.

Reference standard histopathology
was derived from surgical biopsy in
177 patients (80%), lung transplant and
pneumonectomy/explant in 42 patients
(19%), and autopsy in two patients (1%).
During a median follow-up of 37 months
(IQR, 10–77), 98 patients (44%) underwent
lung transplantation and 29 patients
(13%) died without undergoing lung
transplantation.

Eighty patients in the testing cohort (45
male and 35 female patients; median age
66 yr; IQR, 58–69 yr) had the following
MDDs: 17 patients with IPF, 40 with
hypersensitivity pneumonitis, seven with
unclassifiable ILD, one with sarcoidosis,
four with connective tissue disease–related
ILD, nine with idiopathic nonspecific
interstitial pneumonia, one with smoking-
related interstitial fibrosis, and one with
ANCA vasculitis.

There were 13 patients (16%) with UIP,
nine patients (11%) with probable UIP,
nine patients (11%) with indeterminate
for UIP, and 49 patients (61%) with
alternative diagnosis pathology patterns
on histopathology.

Table 1. Patient characteristics

Training Cohort Testing Cohort P Value

Patients, n 221 80 —
Age, yr, median (IQR) 60 (53–66) 66 (58–69) ,0.001
Sex, M:F 115:106 45:35 0.42
Pathologic UIP*, % 71 (32) 21 (26) 0.44
Transplants, n (%) 98 (44) 8 (10) ,0.001
Deaths, n (%) 29 (13) 6 (8) 0.18

Definition of abbreviations: IQR= interquartile range; UIP= usual interstitial pneumonia.
*UIP or probable UIP.
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Figure 5. Difference in percentage convolutional neural network–predicted usual interstitial pneumonia wedges across patients in the training and testing
cohorts with and without a histopathological diagnosis of usual interstitial pneumonia. CNN=convolutional neural network; UIP= usual interstitial
pneumonia.

ORIGINAL RESEARCH

54 AnnalsATS Volume 18 Number 1| January 2021



Reference standard histopathology
was derived from surgical biopsy in all
80 patients (100%). During a median
follow-up of 27 months (IQR, 13–36),

eight patients (10%) underwent lung
transplantation and six patients (8%) died
without undergoing lung transplantation.
Patient characteristics of both the training

and testing cohorts are summarized in
Table 1.

UIP Prediction
The median percentage of CNN-predicted
UIP virtual lung wedges was significantly
different across patients in both the training
and testing cohorts with and without
pathology-proven UIP (Wilcoxon rank-sum
test P ,0.001), as shown in Figure 5.

Univariable logistic regression analysis
showed a significant association of the
percentage of CNN-predicted UIP wedges
per patient with pathology-proven UIP
(odds ratio [OR], 6.43; 95% confidence
interval [CI], 3.46–12.00; P ,0.001). The
area under the curve (AUC) of this logistic
regression model was 0.74 (Figure 6) with
sensitivity of 77%, specificity of 66%, and a
maximal Youden Index of 0.43, which was
ultimately used to compute the optimal
cutoff of 16.5% of CNN-positive wedges
to dichotomize the training cohort into
per-patient CNN prediction of UIP.
Multivariable logistic regression analysis
showed that the association between CNN-
predicted UIP and pathology-proven UIP
was independent of other factors, including
age, sex, and the human CT–predicted UIP
(OR, 4.4; 95% CI, 2.3–8.6; P ,0.001). These
results are summarized in Table 2.

The Hosmer-Lemeshow test results
were not significant (P= 0.56), indicating
goodness of fit. The test results as well as a
calibration plot are depicted in Appendix 2.

Both the human CT– and CNN-
predicted UIP showed moderate agreement
with pathology-proven UIP in the training
and testing cohorts, with k of 0.40 and 0.41,
respectively (Tables 3 and 4).

Multivariable Cox regression analysis
from cross validation of the training cohort
showed that CNN prediction of UIP was
significantly associated with transplant-free
survival from the time of pathology while
controlling for age, sex, and human CT
prediction of UIP (hazard ratio, 1.5; 95% CI,
1.1–2.2; P= 0.03). Human CT–predicted
UIP was not significantly associated with
transplant-free survival (P= 0.45). The
Kaplan-Meier transplant-free survival
curves for CNN-predicted UIP per patient
and for the percentage of CNN-predicted
UIP wedges by tertiles are shown in Figure 7
and Appendix 2, respectively.

Applying the same training cohort
cutoff of 16.5% of CNN-positive wedges
to predict UIP per patient achieved an
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accuracy of 68%, sensitivity of 74%, and
specificity of 58% in the testing cohort.
CNN-predicted UIP showed moderate
agreement with pathology-proven UIP in
the testing cohort, with a k of 0.39 (Table 5).
Multivariable Cox regression analysis failed
to show that either CNN prediction of UIP
or histopathology of UIP were associated
with transplant-free survival (P= 0.88 and
0.32, respectively). Figure 8 depicts four
sample cases from the testing cohort.

Discussion

The results of this proof-of-concept study
show that a deep-learning network can
perform moderately well in predicting a

patient’s histopathologic UIP pattern using
HRCT images. Based on cross validation
results, we suggest that this prediction is also
associated with transplant-free survival. The

potential applications of this include its use
as an adjunctive tool during the initial work-
up of a patient with ILD to be used in
combination with expert radiologist
interpretation or in lieu of it when not
available, thereby helping the pulmonologist
decide whether a surgical biopsy is
necessary.

The role of surgical lung resection
in the diagnosis of IPF has evolved over
time. This evolution is partly due to the
understanding that when a CT scan
shows probable or definite UIP and
the clinical scenario is consistent, a
diagnosis of IPF can be made without
tissue diagnosis (9). In cases with
radiological and/or clinical uncertainty,
wedge resection is recommended.
Despite this recommendation, there is the
acknowledgment that histology alone is not
a perfect reference standard andmust still be
integrated into the MDD, which has been
shown to increase the interobserver
agreement and diagnostic confidence and to
change the clinical diagnosis in 20–50% of
patients (19, 20). Biopsies should be taken
from different lobes and target abnormal but
not end-stage lung. In addition, wedges
should measure 2–3 cm wide and 1–2 cm
deep from the pleura (9, 21). We attempted
to simulate this process through virtual
wedge resections of patients’ lungs on CT
scans as the input to the CNN.

There has been prior work in machine
learning of CT scans for ILD classification.
Depeursinge and colleagues evaluated 33
patients with classic versus atypical UIP
(13). The authors used Riesz filterbanks to
characterize three-dimensional segments of
the lung parenchyma through a support
vector machine model and cross validation–
supervised machine learning. The reference
standard was two expert radiologists. They
report an AUC of 0.81 for classifying classic
UIP. Limitations include a very small

Low Probability of UIP High Probability of UIP

Key:

Figure 8. Example network predictions with overlaid predictions from the virtual wedges evaluated
by the network on the testing cohort. Top left: an example in which the network disagreed with
histopathologic diagnosis of usual interstitial pneumonia (UIP). Top right: an example in which the
network disagreed with histopathologic diagnosis of not UIP. Bottom left: an example in which the
network agreed with histopathologic diagnosis of UIP. Bottom right: an example in which the network
agreed with histopathologic diagnosis of not UIP.

Table 2. Univariable and multivariable regression analysis in the training cohort for
predicting histopathologic UIP

Univariable Model Multivariable Model

OR 95% CI P Value OR 95% CI P Value

Age 1.054 1.022–1.087 ,0.001 1.038 1.003–1.073 0.03
Sex 0.601 0.339–1.067 0.08 0.874 0.446–1.714 0.70
Human UIP 6.685 3.471–12.874 ,0.001 3.847 1.868–7.921 ,0.001
CNN UIP 6.434 3.460–11.967 ,0.001 4.422 2.266–8.628 ,0.0001

Definition of abbreviations: CI = confidence interval; CNN=convolutional neural network; OR=odds
ratio; UIP = usual interstitial pneumonia.
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sample size, use of the “leave one out” cross
validation technique, which is prone to
overfitting, lack of a histologic reference
standard, and the use of an older form of
machine learning.

Christe and colleagues built a
computer-aided diagnosis system for
classifying CT images of patients with ILD
into the four CT UIP patterns. Two
external databases of CT scans were used to
train a CNN to classify two-dimensional
regions of parenchyma into different
morphologic patterns (normal, ground
glass, honeycombing, etc.) Together with
limited clinical data, the CNN output was
fed into a random forest classifier to classify
the CT pattern into a CT UIP pattern or not.
The model was validated on 105 internal
cases of ILD, including 51 cases of UIP
and 54 cases of NSIP, as determined at a
multidisciplinary ILD conference. The
ground truth of the CT pattern for these
105 patients was consensus reads between
two expert radiologists. The network’s
performance was compared with two
additional radiologists. Accuracies for the
network, reader 1 and reader 2 in classifying
“typical” or “probable” UIP versus the other
2 CT patterns were 0.81, 0.81, and 0.70. The
F scores were similar at 0.80 (14). The major

strength of this work is the separate training
and testing cohorts. Nevertheless, there are
weaknesses, such as using the CNN to
classify morphologic patterns of the lungs
rather than directly classify CT UIP
patterns, using two-dimensional image
input rather than three-dimensional input,
using radiologist interpretation as the
ground truth rather than histopathology,
including only two types of ILD in the
testing cohort, and finally, reporting
accuracies and F scores without receiver
operating characteristic AUCs and
sensitivity/specificities.

Walsh and colleagues (16) published
the largest machine-learning study on UIP
diagnosis. The authors conducted a case-
cohort study using 1,157 HRCT scans of
patients with ILD. They trained, tested, and
validated a CNN capable of predicting UIP,
using expert radiologists’ consensus reads as
the reference standard. Survival analysis
showed that both human- and CNN-
predicted UIP were similarly significant in
predicting overall survival. Despite the large
size and testing set, it is noteworthy that the
reference standard was human consensus
and not histopathology. Therefore, it is
likely that Walsh and colleagues included
many more straightforward cases of ILD

given that surgical biopsy is more often
obtained when there is discordance between
different factors, including clinical history,
serology, and HRCT. In addition, there is no
mention of the start time for the overall
survival analysis nor the handling of lung
transplants, if relevant.

Our work builds on previous work
through the following novelties and
strengths. First, to our knowledge, this is the
first study that has used histopathology
as the reference standard rather than
radiologist interpretation. The consequence
of this inclusion criteria is the bias toward
less straightforward HRCT scans, given the
need for biopsy. Our approach of using
peripheral three-dimensional wedges of the
lung is meant to simulate the surgical biopsy
itself and can be termed a “virtual surgical
biopsy.” This allows for a three-dimensional
map to be constructed that can be used
for guiding the biopsy if one is deemed
necessary. In addition, our cohort included a
wide range of HRCT ILD patterns and
MDD diagnoses, which was greater than
those of the previously mentioned works.
Finally, we conducted multivariable logistic
regression analysis controlling for age, sex,
and human prediction of UIP.

There are limitations to our study.
We used data from a single institution for
both training and testing, which limits
generalizability. We did not perform direct
radiologic-pathologic correlation because
the surgically resected wedge was not
identified on individual patient’s scans; in
some cases, the CT scans used by the
network were post resection. In fact, some
patients’ resections were performed at an
outside institution years before the in-house
CT. This raises the issue of the interval
between surgical resection and CT. To
include as many patients as possible, we did
not exclude patients with long intervals. To
reproduce the surgical biopsy, we focused on
virtual wedge resections. The added benefit
of this approach was many wedges per
patient, which resulted in a large overall
number of wedges, a necessity when dealing
with deep learning. On the other hand, a
more intuitive approach would have been to
use the entire three-dimensional lung
volumes as a single input to a network. This
would have allowed the network access to
more data, including zonal distribution,
airway-centric disease and other
characteristics that undoubtably are
diagnostically important. Unfortunately,
this approach would have required a much

Table 4. Agreement between CNN-predicted UIP on CT scan with histopathology in the
training cohort

Training Pathology Dx of UIP CNN-predicted UIP

No [n (%)] Yes [n (%)] Total [n (%)]

No 115 (52.04) 35 (15.84) 150 (67.87)
Yes 24 (10.86) 47 (21.27) 71 (32.13)
Total 139 (62.90) 82 (37.10) 221 (100.100)

Definition of abbreviations: CNN=convolutional neural network; CT=computed tomography;
Dx=diagnosis; UIP= usual interstitial pneumonia.
k=0.41 (0.29–0.54).

Table 3. Agreement between human-predicted UIP on CT scan with histopathology in
the training cohort

Training Pathology Dx of UIP Human CT–predicted UIP

No [n (%)] Yes [n (%)] Total [n (%)]

No 129 (58.37) 21 (9.50) 150 (67.87)
Yes 34 (15.38) 37 (16.74) 71 (32.13)
Total 163 (73.76) 58 (26.24) 221 (100.00)

Definition of abbreviations: CT= computed tomography; Dx= diagnosis; UIP= usual interstitial
pneumonia.
k=0.40 (0.27–0.53).
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larger number of patients. Although we used
the histopathology report as the reference
standard, there is the major caveat that
histology is not the gold standard for
diagnosing IPF, hence the importance of the
MDD. In this regard, it is important to
reiterate that the aim of our study was not to
predict or replace theMDD. The next logical
step will be to evaluate the utility of this
tool in the setting of the MDD itself.
There was heterogeneity in obtaining the
histopathology in the training cohort,
with 20% of patients in the training cohort
having the pathologic diagnosis made
through pneumonectomy during lung
transplant or autopsy. On this note, it is
important to stress that patients with
histopathology derived from lung transplant
pneumonectomy and autopsy did not
contribute to the survival curves, as their
follow-up time was 0. Although the survival
analysis in the training cohort was

significant, we could not reproduce
these results with the testing cohort. The
fact that neither CNN-predicted UIP nor
histopathologic UIP were associated with
transplant survival in the testing cohort
suggests that the small sample size may be a
limiting factor.

We used the 2018 ATS/ERS/JRS/ALAT
diagnostic criteria for IPF rather than the
Fleischner Society guidelines. The major
difference between the two criteria is in the
management of these patients and whether
to biopsy or not rather than the radiologic
and pathologic criteria. The diagnostic
criteria were applied retrospectively by
review of the original pathology reports. A
more rigorous approach would have
included blindly reexamining the original
pathology slides themselves. There were
significant differences between the training
and testing cohorts. First and foremost, the
histopathology was interpreted by different

pathologists, which may explain the
different distribution of the UIP categories.
For example, there were no retrospective
assignments of the indeterminate category
in the training cohort. In addition, a larger
percentage of patients in the training cohort
underwent lung transplantation. This may
be due to underlying changes for which
patients proceed to biopsy over the years.
Finally, our results are likely not adequate to
be used in clinical practice and serve more as
a proof of concept. On this note, it is
important to reiterate that patients who
undergo a surgical biopsy likely have a
more ambiguous CT scan and/or clinical
presentation, which is why the biopsy was
necessary to begin with. Therefore, these
cases are a challenging subset of all patients
with ILD.

In conclusion, virtual wedge lung
resection of HRCTs in patients with ILD
can be used as input to a deep-learning
model for predicting the probability of
histologic UIP pattern with moderate
accuracy, comparable to that of human
prediction. This prediction may be
associated with transplant-free survival.
Additional research is needed to evaluate
the utility of this approach in the setting of
the MDD. n

Author disclosures are available with the text
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