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Abstract 

Background:  The timeliness of diagnostic testing after positive screening remains suboptimal because of limited evi-
dence and methodology, leading to delayed diagnosis of lung cancer and over-examination. We propose a radiomics 
approach to assist with planning of the diagnostic testing interval in lung cancer screening.

Methods:  From an institute-based lung cancer screening cohort, we retrospectively selected 92 patients with pul-
monary nodules with diameters ≥ 3 mm at baseline (61 confirmed as lung cancer by histopathology; 31 confirmed 
cancer-free). Four groups of region-of-interest-based radiomic features (n = 310) were extracted for quantitative 
characterization of the nodules, and eight features were proven to be predictive of cancer diagnosis, noise-robust, 
phenotype-related, and non-redundant. A radiomics biomarker was then built with the random survival forest 
method. The patients with nodules were divided into low-, middle- and high-risk subgroups by two biomarker cutoffs 
that optimized time-dependent sensitivity and specificity for decisions about diagnostic workup within 3 months and 
about repeat screening after 12 months, respectively. A radiomics-based follow-up schedule was then proposed. Its 
performance was visually assessed with a time-to-diagnosis plot and benchmarked against lung RADS and four other 
guideline protocols.

Results:  The radiomics biomarker had a high time-dependent area under the curve value (95% CI) for predicting 
lung cancer diagnosis within 12 months; training: 0.928 (0.844, 0.972), test: 0.888 (0.766, 0.975); the performance was 
robust in extensive cross-validations. The time-to-diagnosis distributions differed significantly between the three 
patient subgroups, p < 0.001: 96.2% of high-risk patients (n = 26) were diagnosed within 10 months after baseline 
screen, whereas 95.8% of low-risk patients (n = 24) remained cancer-free by the end of the study. Compared with the 
five existing protocols, the proposed follow-up schedule performed best at securing timely lung cancer diagnosis 
(delayed diagnosis rate: < 5%) and at sparing patients with cancer-free nodules from unnecessary repeat screenings 
and examinations (false recommendation rate: 0%).
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Background
Low-dose CT screening has been widely accepted as a 
means of mortality reduction and early detection of lung 
cancer [1–3]. It is a long-term rather than one-take effort 
because large numbers of indeterminate pulmonary nod-
ules may require diagnostic workups, follow-up scans, or 
annual repeat screenings [4, 5]. Currently, recommenda-
tions on the time targets for follow-up are based on nod-
ules’ diameter and solidity [6, 7]. However, it has been 
shown that these features are insufficient to measure nod-
ules’ complex appearance [8], and visual interpretations 
of solidity are prone to inter-rater variability [9, 10]. The 
timeliness of follow-up after positive screening remains 
suboptimal because of limited evidence [11]. Innovating 
the way we help patients with nodules to make subse-
quent decisions is important, as we must weigh the ben-
efits of early cancer diagnosis against the danger and cost 
of over-investigating unaggressive nodules.

In this study, we present a radiomics pipeline to select, 
synthetize, and recode radiomics data extracted from 
CT images and produce follow-up schedules to facilitate 
timely management of screening-detected nodules. We 
show the potential clinical impact of this approach by 
comparing its performance against that of five existing 
protocols specified in current guidelines.

Methods
Study participants
The study’s subjects were from an institute-based lung 
cancer screening cohort. The participants were those 
who underwent low-dose CT screening in August 
2014–August 2018 and had at least one noncalcified 
pulmonary nodule detected. The inclusion criteria for 
a baseline screening were age 40–80  years and nodule 
diameter ≥ 3 mm (defined as the mean of the major and 
minor axis lengths, rounded to the nearest integer). The 
exclusion criteria were: (1) pregnancy; (2) severe illness 
of the brain, heart, or kidney; (3) other conditions not 
suitable for CT examination, determined by radiologists; 
(4) already hospitalized or transferred from hospitals 
for further workup; (5) distant residence that prevented 
timely follow-up.

By the end of May 2019, we had included 61 cases 
diagnosed with lung cancer (including 52 with histo-
pathologically confirmed adenocarcinoma, 7 with ade-
nocarcinoma in  situ, 1 with squamous cell carcinoma, 

and 1 with metastatic carcinoma of the prostate), and 
we retrospectively selected 31 cancer-free patients with 
nodules who met any of the following conditions: (1) his-
topathologically confirmed benign lesion by pathology 
test (n = 24, including 17 with hamartoma, 3 with pneu-
mocytoma, 3 with inflammation, and 1 with carcinoid); 
(2) nodule disappeared or decreased in size in follow-up 
screening (n = 3); (3) no sign of malignancy during fol-
low-up for at least 2 years (n = 4). Cancer-free status was 
cross-validated through medical records to minimize the 
effects of missed detection by histopathology tests.

Data collection
We used a site-based research database to collect, store, 
and perform quality control of the following data: (1) 
demographic information, including age at baseline, sex, 
personal and family (first-degree) cancer history, and 
smoking status (current smoking defined as ≥ 10 pack-
years; quit smoking defined as ≥ 5  years’ cessation); (2) 
outcome of follow-up, including date of lung cancer diag-
nosis (analyzed as time/status outcome), specific patho-
logical type, and cancer stage at diagnosis; (3) semantic 
phenotypes of the nodules, recorded as categorical vari-
ables, including nodule type (solid, part-solid, or non-
solid), lobular, specular, juxtapleural, and pleura tag.

Baseline and follow-up CT images were acquired 
according to standardized protocols using a SOMATOM 
Definition Flash scanner, a SOMATOM Force scanner, 
and others. Images were reconstructed up to a thickness 
of 5.0 mm with a spacing of no more than 1.5 mm, stored 
as DICOM files, and retrieved from our Picture Archiv-
ing and Communication Systems.

Radiomics data generation
For each patient with nodules, one baseline CT image 
with the maximum nodule area in the transaxial plane 
was selected for primary analysis. The same rule was 
applied if there was more than one pulmonary nodule. 
Temporal changes in radiomic features were analyzed 
among patients with nodules who had one or more 
repeat CT scans during follow-up.

Regions-of-interest were delineated following the 
multi-step interactive process detailed in Additional 
file  1: Method S1. Four groups of region-of-interest-
based radiomic features, which have been extensively 
used in radiomics studies [12, 13], were extracted for 

Conclusions:  Timely management of screening-detected pulmonary nodules can be substantially improved with a 
radiomics approach. This proof-of-concept study’s results should be further validated in large programs.

Keywords:  Lung cancer screening, Radiomics biomarker, Follow-up, Pulmonary nodule management, Time-
dependent analysis
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quantitative characterization of the nodules: 21 shape 
features (Euclidean and fractal), 8 intensity features (his-
togram-based statistics), 41 texture features (gray-level 
co-occurrence matrix and run-length matrix), and 240 
wavelet features (Additional file 1: Method S2).

Biomarker development
The proposed follow-up schedules were based on a com-
posite radiomic biomarker developed using the random 
survival forest (RSF) method [14] that discriminates 
between the time-to-diagnosis distributions of patient 
subgroups. To increase interpretability and avoid over-fit-
ting, only a few predictive, noise-robust, clinically mean-
ingful, non-redundant radiomic features were selected 
as inputs to the RSF (see technical details about feature 
selection and biomarker development in Additional file 1: 
Method S3–4). This feature selection process was per-
formed in a training set that was composed of 67% the 
participants; A radiomics biomarker was then trained in 
this training set and tested in the rest of the participants. 
A cross-validation approach (by approximately equal 
sized and mutually exclusive folds; no stratification vari-
able applied) was used to evaluate the robustness of the 
results. The biomarker’s performance was also examined 
after being combined with demographic and semantic 
phenotype variables to investigate whether the addition 
of such information is necessary.

Schedule design
The radiomics biomarker was used to stratify the patients 
with nodules in a way that resembles previously pub-
lished nodule management protocols [6, 7, 15–17]. To 
minimize delayed cancer diagnosis, a “low” cutoff value 
was selected to provide high time-dependent sensitivity 
to the decision about early diagnostic workup (within 
3 months). Similarly, to reduce unnecessary follow-up, a 
“high” cutoff was selected to provide high time-depend-
ent specificity to the decision about repeat screen-
ing (after 12  months). Nodule management plans were 
then made for the low-, middle-, and high-risk patient 
subgroups, defined as having biomarker values below, 
between, and above the cutoffs, respectively. The pro-
posed schedules’ performance was visually assessed with 
a time-to-diagnosis plot and benchmarked against the 
protocols recommended in five expert consensus-based 
guidelines in a contingency table.

Statistical analysis
Because our research goal concerns the timing of diag-
nosis and follow-up rather than binary classification, 
more than one time point of interest (e.g., 3  months, 
1  year) was selected to reclassify each study partici-
pant as a “cumulative case” (diagnosed with lung cancer 

before the time of interest) or “dynamic control” (not 
diagnosed with cancer by the time of interest, including 
lung cancers diagnosed later and patients with cancer-
free nodules). This time-dependent definition was based 
on Heagerty’s analysis framework [18] and allows us to 
evaluate the performance of potential nodule descriptors 
and the composite biomarker at predicting lung cancer 
diagnosis within several time intervals. A time-depend-
ent version of the area under the curve metric (termed 
AUCt) was then calculated [18]. The bootstrap method 
(resampling 200 times) was used to estimate 95% confi-
dence intervals (CIs) where indicated.

In the calculation of sample size, a ratio ranging from 
1:2 to 2:1 was applied to allow the numbers of “cumula-
tive cases” and “dynamic controls” to vary according to 
different time points of interest. For an expected AUCt 
that ranges from 0.7 to 0.9, we need 6 to 60 cases and 60 
to 6 controls at different time points to achieve a power 
of 0.9 at a significance level of 0.050 (two-sided). With 
the available sample, the statistical powers of a signifi-
cance test for AUCt values of 0.7 or above at 3 months, 
6  months, and 12  months are ≥ 0.90, 0.92, and 0.93, 
respectively.

All statistical tests were two-sided, with a significance 
level of p = 0.050, and were performed with R version 
3.5.2.

Results
Description of study participants
Most of the 61 patients with lung cancer were diagnosed 
at an early stage (7, 50, and 1 patient at stage 0, I, and II, 
respectively). Three patients were diagnosed at stage III 
or IV. As shown in Table  1, they had no significant dif-
ferences from the cancer-free group in terms of age, sex, 
smoking status, or personal and family cancer history; all 
p > 0.050. However, the cancer group had a significantly 
higher frequency of follow-up screens over the cancer-
free group; p = 0.033. Regarding characteristics of the 
nodules, there were no significant differences between 
the two groups in terms of diameter or semantic pheno-
types including lobulation, speculation, juxtapleural, and 
pleura tag (all p > 0.050). Nodules in both groups were 
dominated by a part-solid type, but there was a higher 
proportion of solid nodules in the cancer-free group 
(p < 0.001). Further, most malignant nodules were in the 
upper lobes of the lung, whereas nearly half of the nod-
ules in the cancer-free group were in the lower lobes 
(p = 0.026).

Radiomic features selected
Eight radiomic features were selected following the flow-
chart depicted in Fig.  1. They included a shape feature 
(circularity), three intensity features (variance, kurtosis, 



Page 4 of 10Wang et al. J Transl Med          (2021) 19:191 

energy), three texture features (cluster shade, maximum 
probability, long-run high gray-level emphasis mean 
[LongHEM]), and a wavelet feature (long-run emphasis 
mean on approximation signal). All selected features had 
high predictive accuracy (AUCt ≥ 0.7 at t = 12  months) 
and were robust to image noise (intraclass correlation 
coefficient > 0.9), non-redundant (variance inflation 
factor < 7 in collinearity diagnostics), and significantly 

related to at least one of the five semantic phenotypes. 
Additional file  1: Table  S1 provides more information 
about the eight selected radiomic features’ data distribu-
tions and other characteristics.

Figure  2 illustrates the potential usefulness of Long-
HEM as an example of the selected features. Solid, 
part-solid, and non-solid nodules had markedly differ-
ent LongHEM values (Fig.  2a), p < 0.001. This radiomic 

Table 1  Characteristics of Study Participants and Pulmonary Nodules at Baseline

In cases in which more than one pulmonary nodule was present, data on nodule characteristics are shown for the one that had the greatest area in the transaxial 
plane
a Current smoker defined as ≥ 10 pack-years; quit smoking defined as ≥ 5 years’ cessation

Characteristics Lung cancer (n = 61) Cancer-free (n = 31) p-value

Age (year), mean ± SD 58.1 ± 10.1 55.7 ± 10.8 0.276

Sex, n (%)

 Man 15 (24.6) 12 (38.7) 0.226

 Woman 46 (75.4) 19 (61.3)

Smoking status, n (%)a

 Currently smoke 3 (4.9) 2 (6.5) 0.847

 Quit smoke 2 (3.3) 0 (0.0)

 Never smoke 56 (91.8) 29 (93.6)

Cancer history, n (%)

 Personal 8 (13.1) 1 (3.2) 0.264

 Family 1 (1.6) 0 (0.0)  > .999

No. of screening, n (%)

 1 33 (54.1) 25 (80.7) 0.033

 2 22 (36.1) 4 (12.9)

 ≥ 3 6 (9.8) 2 (6.5)

Nodule location, n (%)

 Left upper lobe 19 (31.2) 8 (25.8) 0.024

 Left lower lobe 6 (9.8) 10 (32.3)

 Right upper lobe 29 (47.5) 7 (22.6)

 Right middle lobe 1 (1.6) 1 (3.2)

 Right lower lobe 6 (9.8) 5 (16.1)

Diameter (mm)

 < 6 2 (3.3) 0 (0.0) 0.807

 6 ~  3 (4.9) 1 (3.2)

 8 ~  8 (13.1) 7 (22.6)

 10 ~  27 (44.3) 12 (38.7)

 15 ~  12 (19.7) 5 (16.1)

 20 ~  9 (14.8) 6 (19.4)

Nodule type

 Solid 4 (6.6) 11 (35.5)  < 0.001

 Part-solid 42 (68.9) 18 (58.1)

 Non-solid 15 (24.6) 2 (6.5)

Other semantic phenotype

 Lobular 35 (57.4) 20 (64.5) 0.653

 Spiculated 20 (32.8) 7 (22.6) 0.344

 Juxtapleural 9 (14.8) 10 (32.3) 0.061

 Pleural tag 10 (16.4) 2 (6.5) 0.326
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feature performed well at differentiating patients with 
cancer from cancer-free patients, especially when com-
bined with the energy feature (Fig.  2b). Compared with 
nodule diameter, the change in LongHEM was more sen-
sitive to the time interval between baseline and repeat 
screenings in patients with cancer (Fig. 2c). The sensitiv-
ity to temporal change was further validated by examin-
ing the CT images of a nodule detected in the upper left 
lung of a male patient aged 74  years at detection, who 
underwent two repeat screenings after 630 and 768 days 
and was diagnosed with lung cancer at age 77  years. 
The relative change in LongHEM was more marked 
and occurred earlier than that of the nodule’s diameter 
(Fig. 2d).

Predictive performance of the radiomics biomarker
Figure  3 presents the radiomics biomarker’s time-
dependent performance. For prediction of lung cancer 
diagnosis within 3, 6, and 12 months, respectively, the 

biomarker had AUCt values of 0.837, 0.887, and 0.928 
on the training dataset and 0.740, 0.852, and 0.888 
on the test dataset; all p < 0.050. The biomarker per-
formed much better than nodule diameter; the latter 
showed AUCt values of 0.616, 0.578, 0.569 on the train-
ing dataset and 0.673, 0.641, 0.683 on the test dataset 
for prediction of lung cancer diagnosis within 3, 6, and 
12 months, respectively; all p > 0.050.

The biomarker’s performance was robust in exten-
sive cross-validations (Additional file  1: Table  S2). For 
instance, the median (interquartile range) of AUCt at 
12  months was 0.870 (0.750, 0.919) in a tenfold cross 
validation, indicating a small chance of over-fitting. 
No improvement was observed, for example, by fur-
ther adding the semantic phenotypes (AUCt = 0.879 
at 12  months), nodule location (0.859), demographic 
information (0.866), or a combination of these non-
radiomic variables (0.857), irrespective of the request 
for additional input from radiologists and participants.

Initial: 310 candidate radiomic features

23 features
stable to image noise:

repeat measure ICC>0.8

76 features that are 
noise-sensitive

11  features 
highly correlated 
with selected 
features

2 features
weakly/uncorrelated: 

Spearman |r|<0.80

17 features*
 correlated: 

Spearman |r|>0.80

Time-
dependent 
predictive 
accuracy

Relevance
with semantic
phenotypes

Stability to 
image noise

Non-
redundancy 

Feature selection process Criteria

Final: 8 selected features  independent: VIF<10

1 shape 
features

3 intensity 
features

3 texture 
features

1 wavelet 
feature

19 features
Nodule phenotype-related:

Wilcoxon test P<0.05

4 features that are 
unrelated with clinical 
phenotypes below: 
nodule type, lobular, 
speculated, juxtapleural, 
pleural tag

81 features
highly predictive 
max{AUCt}≥0.7

65 features
stably predictive 
min{AUCt}≥0.6

47 features
both conditions 

satisfied

Fig. 1  Radiomic feature selection. Performed in a training set (67% of the participants). Max and min {AUCt} denote the maximum and 
minimum values of the time-dependent area under curve, respectively, across 12 time cutoffs ranging 1–12 months (defined as 30.5–366 days). 
max{AUCt} ≥ 0.7 indicates high predictive accuracy of lung cancer, and min {AUCt} ≥ 0.6 indicates stable predictive accuracy over time. ICC denotes 
the intraclass coefficient between feature values extracted from the original images and those extracted from noised images. ICC < 0.8 indicates 
non-robustness of the radiomic feature. *The 17 features were categorized into 6 groups, within which the features are highly correlated (pairwise 
Spearman r > 0.80). VIF denotes the variance inflation factor. VIF < 10 indicates a lack of collinearity between the finally selected features (i.e., that 
they are independent characterizations of the nodule)
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Clinical utility of the proposed nodule management 
schedules
The time to diagnosis of lung cancer differed significantly 

between the three patient subgroups (p < 0.001; Fig.  4). 
All but 1 of the 26 patients (96.1%) with nodules clas-
sified as high-risk were diagnosed within 10  months 

Nodule type Cancer status Feature

a b c

d

Fig. 2  Potential value of a radiomic feature for interpreting CT images in lung cancer screening. LongHEM: long-run high gray-level emphasis 
mean. In (a), the distributions of LongHEM was compared between nodules with different types. In (b), the status of the nodules was classified 
by the end of the study. In (c), the regression slope is 0.610 vs. 0.034 increase per log[day] for the relative change in LongHEM vs. diameter. One 
influential data point (1.71, 21.52) for the temporal change in LongHEM is not shown, which corresponds to a relative change of 21.52 in LongHEM 
in 51 days from baseline to the first repeat screen in a patient finally diagnosed with lung adenocarcinoma. In (d), the temporal changes of 
LongHEM and diameter of a malignant nodule were compared

Fig. 3  Time-dependent performance of a radiomics biomarker in training and test datasets. The training and test datasets had 62 and the 30 
observations, respectively. AUCt (95% CI), time-dependent area under the curve (95% confidence interval)
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after the baseline screening. Similarly, all but 1 of the 
24 patients (95.8%) with nodules classified as low-risk 
remained cancer-free by the end of the study. When 30 
and 75 were used as the biomarker cutoff values to strat-
ify the patients, the time-dependent sensitivity (95% CI) 
was 0.968 (0.896, 1.000) at 3 months, and the specificity 
(95% CI) was 0.975 (0.919, 1.000) at 12 months.

Benchmark against existing protocols
We benchmarked the radiomics-based follow-up sched-
ule against those recommended by five expert consen-
sus-based guideline protocols (Table  2). If the AATS 
Guideline protocol [17] had been followed, delayed 
diagnosis would have occurred in over 90% of patients 
with lung cancer who were actually diagnosed within 
3  months, as that protocol tended to be conservative 
and recommended follow-ups “in 3–6  months” or “in 
6 months” more frequently than an immediate diagnostic 
workup or earlier follow-up. If the ACCP [16] or China 
Guideline [7] protocols had been used, there would have 
been a substantial number of unnecessary early follow-
up screens (i.e., nearly 90% of the cancer-free patients 
would have been recommended for a follow-up “within 
3  months”). The Lung-RADS [15] or NCCN Guideline 
[6] protocols frequently recommend diagnostic workup 
such as contrast CT and/or PET/CT even for nearly 60% 
of the cancer-free patients; in addition, cancer diagno-
sis might have been delayed by the recommendation of 
“annual screening” in approximately 25% of patients 
with lung cancer who were actually diagnosed within 
3  months or 12  months. On the basis of the proposed 
radiomics approach, fewer than 5% of the patients with 
lung cancer would have their diagnoses delayed because 
of the recommendation of annual follow-up, and 0% of 

the cancer-free patients with nodules would have unnec-
essarily undergone a diagnostic workup.

Discussion
In this study, we developed a radiomics biomarker on the 
basis of eight predictive, noise-robust, non-redundant 
radiomic features. The clinical usefulness of those fea-
tures as nodule descriptors was justified by their high 
relevance to semantic phenotypes, higher discrimina-
tive value, and greater temporal sensitivity than nodule 
diameter. The biomarker had high time-dependent pre-
dictive accuracy for lung cancer and could well differenti-
ate subgroups of patients with nodules according to their 
distinct times to cancer diagnosis. When benchmarked 
against five current guideline protocols, the proposed 
approach performed best at reducing both delayed and 
over-diagnosis rates, suggesting the great potential of 
applying radiomics to secure a timely cancer diagnosis as 
well as sparing patients with unaggressive nodules from 
unnecessary diagnostic testing in lung cancer screening.

Automatic detection of pulmonary nodules and pre-
diction of their malignancy and benignity have been 
extensively investigated [19–21]. The major differences 
of our study from these works are that we applied radi-
omics to schedule the timeliness of nodule management 
and used a new analysis method to allow for the addi-
tion of the time dimension. There are some advantages 
associated with this change. First, some cancers can be 
diagnosed immediately but some cannot (e.g., as long as 
33.5 months in this study). Compared with treating them 
as one group for prediction, it is more clinically mean-
ingful to determine whether the patient can wait a while 
(e.g., 6 months, 12 months) to make a judgment through 
follow-up. The time-dependent definitions of case and 
control are more pertinent to the longitudinal nature of 

Fig. 4  Distribution of lung cancer diagnosis time in subgroups of patients with nodules stratified by a radiomic biomarker
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lung cancer screening. Second, challenges with defining 
a disease-free group using a “gold standard” arise in the 
screening setting because few cancer-free participants 
undergo histopathology tests [5]. Their time to lung can-
cer diagnosis is censored, as it should be viewed from a 
lifetime horizon. The time-dependent analysis can prop-
erly employ this censored information, whereas simply 
ignoring this idea or treating the cancer-free group as 
non-diseased would result in bias. Third, by incorporat-
ing the temporal information, the proposed method can 
contribute to more precise risk assessment of lung can-
cer. The method can also address screening-related issues 
such as the harms associated with over-diagnosis (e.g., 
repeat exposure to radiation, invasive diagnostic proce-
dures) and delayed diagnosis and intervention [2], all of 
which are core to the interests of screening participants. 
According to a recent review from the Population-based 
Research to Optimize the Screening Process Consortium 

[11], timely follow-up for positive cancer screening 
results remains suboptimal because of the low qual-
ity of available evidence across cancers. The proposed 
approach could outline an important step in addressing 
these challenging issues.

One of the major concerns with radiomics is whether 
radiomic features are as reliable as has been reported 
[22, 23]. In view of this, we adopted very stringent fea-
ture selection criteria. Among the reasons for exclusion 
listed in the flowchart, non-robustness to image noise 
was a particular consideration in our study beyond the 
level that was applied in other studies [18, 24, 25]. Noise-
sensitivity was important in our study because it is a 
unique issue in low-dose CT and could affect the stability 
of the results if different modality parameters or recon-
struction algorithms are adopted [23]. We found that 
the majority of sophisticated radiomic features, such as 
wavelet-based features, are very sensitive to image noise 

Table 2  Benchmark of Proposed Nodule Management Schedule against Existing Protocols

AATS: American Association for Thoracic Surgery; ACCP: American College of Chest Physicians; Lung-RADS: Lung CT Screening Reporting & Data System; NCCN: 
National Comprehensive Cancer Network
a After tentative anti-inflammatory therapy
b Lung-RADS (baseline screening) and NCCN guidelines have only small differences regarding management of perifissural nodules and the diameter criteria for 
different follow-up timings among non-solid nodules, which did not result in a difference in terms of nodule management with our data

Recommendations No. of participants (%, 
by column)

Lung Cancer diagnosed Cancer-free

within 3 mos 
(n = 31)

within 3–12 mos 
(n = 20)

after 12 mos 
(n = 10)

by study end (n = 31)

AATS guideline, 2012

 Diagnostic workup 13 (14.1) 3 (9.7) 0 (0.0) 1 (10.0) 9 (29.0)

 Follow-up in 3 mos 2 (2.2) 0 (0.0) 0 (0.0) 0 (0.0) 2 (6.5)

 Follow-up in 3–6 mos 52 (56.5) 21 (67.7) 15 (75.0) 4 (40.0) 12 (38.7)

 Follow-up in 6 mos 25 (27.2) 7 (22.6) 5 (25.0) 5 (50.0) 8 (25.8)

ACCP Guideline, 2013

 Diagnostic workup 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.2)

 Follow-up at 3 mos 72 (78.2) 23 (74.2) 15 (75.0) 8 (80.0) 26 (83.9)

 Follow-up in 6–12 mos 2 (2.2) 0 (0.0) 0 (0.0) 0 (0.0) 2 (6.5)

 Annual screen 16 (17.4) 8 (25.8) 5 (25.0) 1 (10.0) 2 (6.5)

 No further evaluation 1 (1.1) 0 (0.0) 0 (0.0) 1 (10.0) 0 (0.0)

 China Guideline, 2018

 Follow-up after 1 mosa 32 (34.8) 15 (48.4) 6 (30.0) 0 (0.0) 11 (35.5)

 Follow-up after 3 mos 56 (60.9) 15 (48.4) 13 (65.0) 9 (90.0) 19 (61.3)

 Annual screen 4 (4.3) 1 (3.2) 1 (5.0) 1 (10.0) 1 (3.2)

Lung-RADS, 2019 or NCCN Guideline, 2020b

 Diagnostic workup 42 (45.7) 16 (51.6) 7 (35.0) 1 (10.0) 18 (58.1)

 Follow-up in 3 mos 14 (15.2) 0 (0.0) 3 (15.0) 2 (20.0) 9 (29.0)

 Follow-up in 6 mos 18 (19.6) 7 (22.6) 5 (25.0) 4 (40.0) 2 (6.5)

 Annual screen 18 (19.6) 8 (25.8) 5 (25.0) 3 (30.0) 2 (6.5)

Proposed radiomics approach

 Diagnostic workup 26 (28.3) 19 (61.3) 6 (30.0) 1 (10.0) 0 (0.0)

 Follow-up in 3 mos 42 (45.7) 11 (35.5) 14 (70.0) 9 (90.0) 8 (25.8)

 Annual screen 24 (26.1) 1 (3.2) 0 (0.0) 0 (0.0) 23 (74.2)
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and less relevant to semantic phenotypes, despite the 
fact that some have high predictive value. This finding 
indicates that there may be a balance between complex-
ity, interpretability, and suitability in the search for new 
nodule descriptors. For this reason, we did not resort 
to 3D features, given that the results with 2D features 
were satisfactory and saved computing time for easier 
clinical uptake. Further, in lieu of semantic phenotypes, 
which are subject to moderate–high inter-rater varia-
tion [9, 10], the selected radiomic features could pro-
vide automatic (and thus more reliable) quantification 
of nodule characteristics. Clinical confidence in the use 
of these radiomic features may be improved by consid-
ering the following: first, as shown by our results, they 
were naturally associated with the semantic phenotypes 
commonly used by radiologists. Second, the addition of 
semantic phenotype variables did not improve predictive 
performance, meaning that the radiomic features already 
carry such qualitative information and thus may substan-
tially reduce human labor. Third, the selected radiomics 
features’ clinical value has been suggested in other stud-
ies. For instance, kurtosis and energy, as measures of 
the “tailedness” and homogeneity of the intensity distri-
bution, showed high variable importance in our model 
(Additional file 1: Figure S1) and have been reported to 
be useful for discrimination between benign and malig-
nant nodules [24, 26], helpful for prediction of prognosis, 
and associated with gene expression in lung cancer [27].

Among existing protocols, Lung-RADS has been 
widely accepted as a reliable tool, and its performance is 
especially accurate when previous images are available 
[28]. However, the performance of Lung-RADS has been 
shown to deteriorate on the baseline screening, when 
no priors are available [29]. The proposed radiomics 
approach performed much better than Lung-RADS and 
other protocols at decision making following the baseline 
screen. However, the low frequency of repeated screens 
prevented us from planning subsequent decisions. After 
this proof-of-concept study, we plan to apply the pro-
posed time-dependent analysis framework to serial 
image data (recently termed delta-radiomics [30]) with a 
large sample size. This will hopefully contribute to refin-
ing dynamic management.

This study is limited in several aspects. First, its exter-
nal validity is limited by the narrow spectrum of dis-
eases investigated (particularly, most of the cancers 
were adenocarcinoma, a finding similar to other reports 
from China [20]). Second, the observed temporal data 
could have been affected by delayed or over-diagnosis. 
Third, the extraction of radiomic features is intrinsically 
repeatable, but variability may be introduced by the semi-
automatic segmentation method. Fourth, the cancer-free 

group received significantly fewer follow-up screenings 
than the cancer group, and thus, detection bias may exist.

Conclusions
In this study, we have shown the translational value of 
radiomics in assisting with the timing of management 
of nodules detected with low-dose CT in lung cancer 
screening. Considering the lack of an established evi-
dence-based protocol for establishing such schedules, 
further validation is required to optimize the time targets 
in lung cancer screening.
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