
Mucosal Delivery of Recombinant Vesicular Stomatitis Virus
Vectors Expressing Envelope Proteins of Respiratory Syncytial
Virus Induces Protective Immunity in Cotton Rats

Basavaraj Binjawadagi,a Yuanmei Ma,a Rashmi Binjawadagi,a Kelsey Brakel,a Olivia Harder,a Mark Peeples,b,c Jianrong Li,a

Stefan Niewieska

aDepartment of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
bDepartment of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
cCenter for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA

ABSTRACT Respiratory syncytial virus (RSV) is a major cause of lower respiratory
tract (LRT) infections, with increased severity in high-risk human populations, such as
infants, the immunocompromised, and the elderly. Although the virus was identified
more than 60 years ago, there is still no licensed vaccine available. Over the years,
several vaccine delivery strategies have been evaluated. In this study, we developed
two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates
expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All
vectors were evaluated in the cotton rat animal model for their in vivo immunoge-
nicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) deliv-
ery of rVSV-G and rVSV-F together completely protected the lower respiratory tract
(lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were
required to protect the upper respiratory tract (URT) completely. Reimmunization of
RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, over-
all antibody responses were sufficient for protection, whereas CD4 and CD8 T cells
were not necessary. A prime-boost immunization regimen increased both protection
and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV
vaccine candidates induce protective immunity and therefore represent a promising
immunization regimen against RSV infection.

IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious
RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors
has demonstrated several practical and safety advantages over other virus vector
systems and live attenuated vaccines. In this study, we developed safe and effica-
cious vaccine candidates by expressing the two major immunogenic RSV surface
proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen.
The main immune parameter responsible for protection was the antibody response.
These vaccine candidates induced complete protection of both the upper and lower
respiratory tracts.

KEYWORDS respiratory syncytial virus, cotton rat, vesicular stomatitis virus, fusion
protein, G protein

Worldwide, respiratory syncytial virus (RSV) is the most common viral cause of
bronchiolitis and pneumonia in infants and children under 5 years of age leading

to hospitalization. Apart from disease caused in children and adults, RSV causes pneu-
monia in the elderly, chronically immunocompromised individuals, and those suffering
from cardiopulmonary illnesses such as cystic fibrosis (1, 2). RSV was associated with
hospitalizations 16 times more frequently than influenza virus in children under 1 year
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of age and required more caregiver time and resource utilization than influenza virus
(3). In the postneonatal period, between 1 and 12months of life, RSV is second only to
malaria as a single-agent cause of mortality (4).

The causative agent, human RSV, is an enveloped RNA virus with 15.2-kb negative-
sense genome that is nonsegmented, and it belongs to the family Pneumoviridae (5).
The RSV genome encodes a total of eight structural proteins. The virion envelope has
three glycoproteins, namely, the glycoprotein responsible for attachment (G); the
fusion protein (F) for penetration of the cell membrane; and the small hydrophobic
protein (SH), which inhibits apoptosis caused by tumor necrosis factor beta (TNF-b) (6).
The envelope proteins G and F are the major targets of neutralizing antibodies against
RSV, which makes them suitable antigens for vaccine development (7–10).

Although RSV was discovered and characterized in the mid-1950s, there is still no
licensed vaccine available for human use. In the 1960s, a formalin-inactivated RSV
vaccine (FI-RSV) was developed that led to more severe disease after exposure to
wild-type virus (11, 12). Since then, efforts to develop RSV vaccines have continued,
resulting in recent promising RSV vaccine strategies that have been evaluated both in
animal models and in human clinical trials, such as live attenuated viruses, subunit vac-
cines (13), DNA vaccines, and viral vector-based vaccines (14). However, many of these
attempts have not succeeded in developing a safe and efficacious vaccine candidate
due to limitations such as incomplete attenuation, poor immunogenicity, poor antigen
expression, or safety issues (1, 15, 16).

Among the available vaccine development strategies, expression of viral target anti-
gens in vaccine vectors represents a promising approach to develop a safe and effica-
cious RSV vaccine (17). Several such approaches have been reported with RSV proteins
expressed from Newcastle disease virus (18), Sendai virus (19), parainfluenza virus (20),
vaccinia virus (21, 22), alphavirus (23), adenovirus (24), and vesicular stomatitis virus
(rVSV) (17, 25). Among them, the rVSV vector system has been demonstrated to have
potential as a vaccine expression platform for many viral diseases, such as HIV (26),
influenza virus (27, 28), measles virus (29, 30), and Ebola virus (31), among others.
However, so far only the VSV-based Ebola vaccine (rVSV-ZEBOV) has been approved by
the FDA (32, 33).

VSV is the prototypic virus of the family Rhabdoviridae and is characterized by a
nonsegmented, negative-sense RNA genome with a simple genetic organization
encoding five structural proteins. The recombinant VSV vectors have several practical
advantages over other viral vector systems. Recombinant VSVs can efficiently incorpo-
rate up to 4 kb of foreign DNA into their genome (thus enabling coexpression of multi-
ple heterologous proteins), grow to very high titers in almost all mammalian cell lines
(.109 PFU/ml) and do not undergo genetic reassortment or recombination. In the
human population, the seroprevalence and pathogenicity of rVSV is very low, and
rVSVs are a strong inducer of innate, humoral, and cellular immunity, both systemically
and at mucosal sites (34).

In the present study, we used a recombinant VSV vector to express the full-length
RSV-G or RSV-F genes as an additional gene unit between the rVSV-G glycoprotein and
the large protein (polymerase). To enhance the immunogenicity of the rVSV-G or rVSV-
F vectors, we used an intranasal (i.n.) prime-boost vaccination regimen.

RESULTS
Kinetics of expression of recombinant proteins by recombinant VSVs expressing

RSV-G and RSV-F proteins. We constructed and rescued VSV expressing the RSV-G or
the RSV-F protein in the same manner as that previously described for other VSV
recombinants (35, 36), by inserting these transgenes in the VSV G-L gene junction
(Fig. 1A). The target genes in the recovered viruses were confirmed by reverse tran-
scription-PCR (RT-PCR) and sequence analysis. The kinetics of RSV-G and RSV-F pro-
tein expression by these recombinant VSVs was examined by Western blotting (Fig.
1B). Both proteins were expressed in the infected cells and released into the culture
medium. In the cell lysates, the proteins were detectable as early as 4 h
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postinfection. In the culture medium, RSV-G and RSV-F were detectable at 9 h post-
infection. Cumulative aggregation of a protein band lower than 25 kDa was
observed only in the rVSV-F-infected cells, possibly due to degradation of the F pro-
tein by cellular proteases. In order to assess whether the RSV glycoproteins were
incorporated into the VSV envelope, gradient-purified VSV recombinants were
tested by enzyme-limited immunosorbent assay (ELISA) with an RSV-specific antise-
rum with negative results (data not shown). A single-step growth curve analysis in
BSRT7 cells was performed to compare the kinetics of released infectious VSV
recombinant virus progeny (Fig. 1C). Wild-type VSV (rVSV-Wt) and a control rVSV
expressing HSP70 showed steady increase in progeny release, which peaked at 24 h
postinfection. The growth of rVSV-G and rVSV-F plateaued at 3- to 4-fold lower levels
compared to that of rVSV-wt. Overall, growth kinetics were similar to those of other
reported recombinant VSVs (37).

Mucosal immunization protects the upper and lower respiratory tract of cotton
rats. To determine the ability of these recombinant viruses to induce a protective
immune response, cotton rats were immunized first subcutaneously with 105 PFU of
rVSV-G, rVSV-F, or, as a control, 105 50% tissue culture infectious dose (TCID50) of RSV

FIG 1 Generation and in vitro characterization of recombinant VSV vectors expressing RSV-G or RSV-F protein. (A) The gene coding for the full-length RSV-
G or RSV-F protein was inserted at the junction of VSV glycoprotein and large polymerase genes (G-L junction) in the vector pVSV(1)-GxxL. N, nucleocapsid
gene; P, phosphoprotein gene; M, matrix protein gene; G, glycoprotein gene; L, large polymerase gene. (B) To determine the kinetics of protein expression,
BSRT7 cells were infected with rVSV-G or rVSV-F at a multiplicity of infection (MOI) of 4. Lysates of the cytoplasmic extracts and infected cell culture
medium samples were harvested at the indicated time points postinfection. Equal amounts of total cytoplasmic lysate and culture medium were analyzed
by SDS-PAGE, followed by Western blotting using the antibodies described in Materials and Methods. A representative blot of the b-actin as a control
protein is also shown. (C) To determine the growth curve of the recombinant VSVs, 90% confluent BSRT7 cells were infected with an MOI of 4, and
samples of the culture medium were harvested at the indicated time points. The virus titer was determined by plaque assay on Vero cells. Recombinant
wild-type VSV and an unrelated VSV recombinant expressing HSP70 (36) were used as controls. Titers (PFU/ml) represent the averages of the results of two
independent experiments.
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(Fig. 2A to C). Four weeks later, all animals were infected intranasally with 105 TCID50 of
RSV. At 4 days postchallenge, no infectious RSV was detected in the lungs of rVSV-G-,
rVSV-F-, or RSV-immunized cotton rats (Fig. 2A). The same was true in nasal samples for
RSV-immunized animals. In contrast, the group immunized with rVSV-F was partially
protected, whereas animals immunized with rVSV-G were not (Fig. 2B). The incomplete
protection of the nose by the VSV recombinants correlated with significantly lower
(P, 0.05) serum neutralization titers compared to those of RSV-immunized animals
(Fig. 2C). Similarly, RSV-specific mucosal IgG and IgA in both lung and nasal tissue and
circulatory IgG antibodies levels in rVSV-G-immunized animals were lower than those
in RSV-F- and rVSV-F-immunized animals (data not shown). Following a similar experi-
mental design, cotton rats were immunized with rVSV-G, rVSV-F, or RSV by the intra-
nasal route and infected subsequently with RSV. Intranasal immunization with rVSV-G
or rVSV-F resulted in similar results to subcutaneous immunization (complete protec-
tion of the lung [Fig. 1D] and partial protection of the nose [Fig. 1E]) and increased
induction of RSV-neutralizing antibodies (Fig. 1F). Levels of IgA and IgG in both lung
and nasal tissue were comparable in RSV-, rVSV-G-, and rVSV-F-immunized animals
(data not shown) and were not tested in subsequent studies.

To improve protection after immunization via the intranasal route, increasing doses
of the individual VSV recombinants and combinations of rVSV-G and rVSV-F were
tested (Fig. 3A to C). Cotton rats were immunized once with a low (105 PFU), medium
(106 PFU), or high (107 PFU) dose of either individual rVSV-G or rVSV-F or with com-
bined rVSV-G and rVSV-F (rVSV-G/rVSV-F in equal doses). All doses protected the lungs
of immunized animals against RSV challenge and reduced viral titers in the nose (Fig.
3A and B). However, only the medium and high doses (106 or 107 PFU each, groups 8

FIG 2 One-dose immunization of cotton rats with rVSV-G or rVSV-F. Cotton rats were immunized subcutaneously (A to C) or intranasally (D to F) with 105

PFU of rVSV-G or rVSV-F, or with 105 50% tissue culture infective dose (TCID50) of RSV. Serum samples were collected 28days postimmunization, and cotton
rats were intranasally challenged with 105 TCID50 of RSV. At 4 days postchallenge, animals were euthanized, and lungs and nasal turbinates were harvested.
RSV loads in the lungs (A and D) and in nasal homogenates (B and E) were determined. RSV neutralization antibody (VN) titers were determined in serum
samples (C and F). Each group consisted of four cotton rats (n= 4), and each dot represents the indicated titer from an individual animal. A statistically
significant difference from the naive control group is indicated by * (P, 0.05).
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and 9) of the rVSV-G/rVSV-F combination elicited complete protection of the upper re-
spiratory tract (URT) (Fig. 3B), which correlated with the enhanced titers of neutralizing
antibodies (Fig. 3C). These antibody titers were higher than antibody titers after immu-
nization with rVSV-G or rVSV-F (at a dose of 106 PFU or 107 PFU) alone (Fig. 3C). These
results demonstrated that rVSV-G or rVSV-F induced dose-dependent protection, but
complete protection of the upper respiratory tract was achieved only through a combi-
nation of both. To determine the protective capacity of lower doses of rVSV-G/rVSV-F,
cotton rats were immunized intranasally with 105, 104, 103, 102, or 101 PFU each of
rVSV-G/rVSV-F and challenged after 4 weeks (Fig. 3D to F). The lungs were protected
with a rVSV-G/rVSV-F combination dose as low as 103 PFU (Fig. 3D). In the nose, 105

and 104 PFU led to partial protection (Fig. 3E). Virus-neutralizing antibodies were de-
tectable in animals which received as low a dose as102 PFU of rVSV-G/rVSV-F (Fig. 3F).
These results demonstrate that protection of the lower respiratory tract (LRT) could be
achieved by a dose as low as 103 PFU of the rVSV-G/rVSV-F combination, but a signifi-
cantly higher dose of 106 or 107 PFU of each was required to induce protective immu-
nity in the upper respiratory tract. To further assess the role of G and F proteins of RSV,
we assessed the boosting effect of rVSV-G and rVSV-F in RSV-seropositive animals.
Cotton rats were immunized intranasally with RSV and intranasally boosted after
8weeks with either 107 PFU of rVSV-G or rVSV-F. At 4 weeks postboost, the boost with
rVSV-F increased neutralizing antibody titers to 4,4006 1,442 (versus RSV-immunized
ones at 2456 147). A booster immunization with rVSV-G did not lead to an increase in
neutralizing antibodies (data not shown).

FIG 3 Dose-dependent protection and humoral immune responses induced by rVSV-G and rVSV-F. (A to C) Cotton rats were immunized intranasally with
105, 106, or 107 PFU of rVSV-G, rVSV-F, or rVSV-G/rVSV-F (each). Serum samples were collected 28 days postimmunization, and cotton rats were intranasally
challenged with 105 TCID50 of RSV A2. At 4 days postchallenge, viral titers were statistically significantly different in the immunized versus naive group in
the lungs (A) and nasal homogenates (B) (P. 0.05 and lower). Serum samples were tested for virus-neutralizing antibody (C), and groups marked with an
asterisk (*) had statistically significantly higher levels (P. 0.05). (D to F) Cotton rats were immunized intranasally with 105, 104, 103, 102, or 101 PFU each of
rVSV-G/rVSV-F. Serum samples were collected 28 days postimmunization, and cotton rats were intranasally challenged with 105 TCID50 of RSV A2. At 4 days
postchallenge, viral titers were statistically significantly lower (P. 0.05 and lower) in the lungs of immunized animals (D). Viral titers were statistically
significantly lower in two groups in the nasal homogenates (E) (P. 0.01). Serum samples were tested for virus-neutralizing antibody (F), and groups
marked with an asterisk (*) had statistically significantly higher levels (P. 0.05). Each group consisted of four cotton rats (n= 4), and each dot represents
the indicated titer from an individual animal.
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CD4+ and CD8+ T-cell-mediated immunity induced by rVSV-G and rVSV-F
coimmunization. Although neutralizing antibodies clearly correlated with protection
against RSV infection, we also assessed the T-cell response after immunization. Since
CD41 T cells play an important role in shaping CD81 T-cell and B-cell mediated
responses, and CD81 T cells directly contribute to clearing virus infection, we studied
the role of CD81 T cells alone or in interaction with CD41 T cells. In naive cotton rats,
RSV was cleared 7 days after infection, and CD41 T cell depletion did not affect clear-
ance (Fig. 4A). In contrast, cotton rats depleted of CD81 T cells still had titers of ;104.5

FIG 4 Protection and humoral immune responses in rVSV-G/rVSV-F-immunized cotton rats do not rely on T-cell responses. (A) Naive cotton rats overcome
RSV infection by day 7 in both lung and nasal tissue. Depletion of CD4 T cells does not change viral clearance whereas depletion of CD8 T cells leads to
delayed viral clearance (P. 0.001). (B) Schematic representation of the depletion regimen and animal study design. (C to E) Cotton rats were immunized
intranasally with 107 PFU of rVSV-G, rVSV-F, or rVSV-G/rVSV-F, or with 105 TCID50 of RSV and were depleted of CD81 T cells before RSV challenge 4 weeks
later. (F to H) Cotton rats were immunized intranasally with 107 PFU of rVSV-G/rVSV-F or with 105 TCID50 of RSV and were depleted of both CD4 and CD8 T
cells before RSV challenge 4 weeks later. Four days later, homogenates of lungs (C and F) and nasal turbinates (D and G) were titrated for RSV. Neutralizing
antibodies were measured in serum samples from day 28 after immunization (E and H). Each group consisted of four cotton rats (n= 4), and each dot
represents the indicated titer from an individual animal. Dotted line represents the threshold level of detection. All immunized groups were protected in
lungs and nasal turbinates (P. 0.001). Serum levels of neutralizing antibodies were higher than those in the other immunized groups (D) (P, 0.05).
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TCID50/g tissue in the lungs and nasal tissues (Fig. 4A). To analyze the role of T-cell
responses after immunization, we depleted CD8 T cells or both CD8 and CD4 T cells in
cotton rats immunized with rVSV-F, rVSV-G, or rVSV-F/rVSV-G. Neither depletion of
CD81 T cells (Fig. 4C) nor combined depletion of CD41 and CD81 T cells affected pro-
tection of the lower respiratory tract (Fig. 4F). In the upper respiratory tract, protection
was reduced in three cotton rats immunized with rVSV-G/rVSV-F after depletion of CD4
and CD8 T cells (Fig. 4G). T-cell depletion did not affect the induction of RSV neutraliza-
tion (VN) antibodies (Fig. 4E and H). Thus, these results clearly demonstrated that CD81

T-cell responses are crucial for clearance of virus during primary infection but are not
necessary in vaccinated animals.

Antibodies mediate protection of rVSV-G/rVSV-F-immunized cotton rats. Cellular
(innate) immune parameters other than CD41 and CD81 T cells might also contribute
to the protection against RSV infection. In order to suppress overall cellular immune
responses, we treated cotton rats with cyclophosphamide (38, 39). In unimmunized,
RSV-infected cotton rats, cyclophosphamide treatment resulted in significantly (P, 0.05)
reduced white blood cell counts (on day 7 post RSV infection) (Fig. 5A) and in
extended replication of RSV (Fig. 5B and C). In cotton rats immunized with 107 PFU
each of rVSV-G/rVSV-F, cyclophosphamide treatment had no effect on the protec-
tion of the lungs (Fig. 5D), whereas it had a moderate effect on the protection of
nasal passages of rVSV-G/rVSV-F-immunized animals (Fig. 5E). Cyclophosphamide
treatment did not influence existing titers of neutralizing antibodies (Fig. 5F). These

FIG 5 Protection and humoral immune responses in cyclophosphamide-treated cotton rats immunized with rVSV-G/rVSV-F. (A to C) Cyclophosphamide
treatment leads to a severe reduction in the different leukocyte counts (P. 0.001) (A). Naive cotton rats clear RSV infection by day 6, whereas
cyclophosphamide-treated cotton rats still have high virus loads in lung (B) and nasal tissue (C) on day 6 and 7 (P. 0.001). (D to F) Cotton rats were
immunized intranasally with 107 PFU of rVSV-G/rVSV-F or with 105 TCID50 of RSV and treated with cyclophosphamide or left untreated. Serum samples were
collected 28 days postimmunization, and all of the animals were intranasally challenged with 105 TCID50 of RSV. At 4 days postchallenge, RSV loads
were determined in lungs (D) and nasal turbinates (E), and neutralizing antibody titers were measured (F). Virus titers were significantly reduced in
immunized groups (P. 0.001). Each group consisted of four cotton rats (n= 4), and each dot represents the indicated titer from an individual animal.
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results also demonstrated that, in cotton rats immunized with either RSV or rVSV-G/
rVSV-F, protection was predominantly mediated by antibody responses and that
overall cellular immunity played only a minor role in the protection of the upper re-
spiratory tract.

Moderately enhanced anamnestic protective response upon prime-boost
immunization strategy. In order to further improve the level of virus-neutralizing anti-
body titers and protection, we used a prime-boost immunization strategy with a low
dose (105 PFU) and a high dose (107 PFU) of rVSV-F, rVSV-G, or rVSV-F/rVSV-G (Fig. 6A
to C). Cotton rats were boosted with the same dose 3 weeks after primary vaccination,
and the animals were challenged 3 weeks after the second/booster immunization. All
groups were protected after RSV challenge in the lungs (Fig. 6A), and immunization
with a high dose of rVSV-G/rVSV-F protected the nose. However, the other groups
were only partially protected in the nose (Fig. 6B). Immunization with a high dose
increased antibody titers after the boost more than immunization with a low dose (Fig.
6C). These results indicated that low-dose prime-boost immunization did not protect
the upper respiratory tract, whereas a high dose of rVSV-G/rVSV-F induced protection
of the upper respiratory tract, along with moderately enhanced VN antibody levels.

DISCUSSION

In the past 2 decades, recombinant VSV has been proven to be an excellent in vivo
delivery system. Multiple VSV vector-based biologics are at different stages of preclini-
cal and clinical trials for vaccine administration or cancer therapy (31, 40–43). Notably,
a recombinant VSV vaccine vector expressing a glycoprotein of Ebola virus (VSVDG-
ZEBOV-GP) has been approved for human application and shown to be effective (32,
33). In this study, we expressed RSV-G and RSV-F proteins in VSV vectors and evaluated
the recombinant viruses for their in vitro growth characteristics and in vivo protective
immunogenicity. Similarly to previous studies, insertion of a foreign gene between the
G-L junction of VSV resulted in stable vectors, and their in vitro cytopathic effect and
growth kinetics resembled that of wild-type VSV (37, 44, 45). In terms of protection,
low-dose (105 PFU) immunization with either rVSV-G or rVSV-F protected the lower re-
spiratory tract (LRT), whereas even at a higher dose (107 PFU) immunization did not
protect the upper respiratory tract (URT) in all the immunized animals. This is in align-
ment with several studies which suggest that protection of the LTR is more easily

FIG 6 Protection and humoral immune responses induced by prime-boost immunization regimen of the VSV recombinants. (A to C) Cotton rats were
immunized twice intranasally, with a 21-day interval between doses of 105 or 107 PFU of rVSV-G, rVSV-F, or rVSV-G/rVSV-F (each). Serum samples were
collected on the day of booster immunization (day 21) and on the day of challenge (day 42), and all the animals were intranasally challenged with 105

TCID50 of RSV. At 4 days postchallenge, all the animals were euthanized, and lungs and nasal turbinates were harvested. Challenge RSV loads were
determined in the lungs (A) and nasal homogenates (B), and endpoint RSV neutralization antibody (VN) titers were determined in serum samples (C). Each
group consisted of four cotton rats (n=4), and each dot represents the indicated titer from an individual animal (for line diagrams, each dot represents the
mean VN titer of the group). An asterisk (*) represents a statistically significant (P, 0.05) difference between the indicated groups.
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achieved than protection of the URT (46, 47). In contrast, in a previously reported study
in cotton rats, low-dose (104 PFU) immunization with a parainfluenza virus 5 (PIV5)
vector expressing RSV-G protein elicited partial protection in the lower respiratory
tract and complete protection in the upper respiratory tract in the absence of de-
tectable VN antibodies (48). The protection was attributed to nonneutralizing anti-
bodies (48–51). However, when the related recombinant PIV 3 (rPIV3) vector system
was used, the RSV-F protein induced complete protection in the LRT and partial pro-
tection in the URT (52). In alignment with these findings are our data, which found
rVSV-G and rVSV-F administration by the intranasal route to be superior to that by
the subcutaneous route. For human immunization, an advantage of the i.n. route
would be that it circumvents the neutralizing effects of serum-derived maternal anti-
bodies on the vaccine virus, which can greatly reduce vaccine efficiency in high-risk
infants (53, 54). Furthermore, VSV mRNA persists longer (beyond 20 days) after i.n.
inoculation than after intramuscular inoculation (4 to 10 days) (55), suggesting that
protracted antigen presentation by the i.n. route could contribute in further enhanc-
ing ongoing antiviral immune response, especially in inducing a strong T-cell
response. For translation of VSV as a biologic into clinical application, not only the
efficacy but also the safety of VSV vectors has to be taken into account. The intra-
nasal application of vaccines is not current clinical practice and might raise safety
concerns, given that VSV is neurotropic in mice (56), although these findings could
not be replicated in nonhuman primates (57, 58). A number of reports have pro-
vided data on safety of recombinant VSV in pigs (a natural host [59]), as a vector for
oncolytic therapy in dogs (41) and humans (42, 43), and as a vaccine vector (31).
Another issue to consider in RSV vaccine development is the question of which
group (infants, children, the elderly, adults, pregnant mothers, and the immunocom-
promised [60]) may be immunized with which vaccine. It is quite possible that each
of these groups will receive a different vaccine, thus balancing the need for safety
with efficacy of the respective vaccine.

In humans, RSV infection induces predominantly an F-specific antibody response
(61), and several F protein-based vaccine candidates are at various stages of develop-
ment or clinical trials (11, 62, 63). However, in children, the development of G-specific
antibodies correlates with a milder disease. In this context, it is interesting to note
that rVSV-F, but not rVSV-G, was able to induce high levels of neutralizing antibodies
in RSV-immune cotton rats. In our studies, the combination of rVSV-F and rVSV-G was
able to induce the highest level of protection in both the LTR and the UTR but did
not induce neutralizing antibody titers to levels comparable to those elicited by RSV-
A2. This contrasts with a previous study in mice in which intranasal immunization of
rVSV expressing spike protein of severe acute respiratory syndrome coronavirus
(SARS-CoV) type I induced higher level of VN antibodies than wild-type SARS-CoV
(64). In terms of vector development, it may be of interest to express G and F in one
VSV vector, as well as to test variants of the G and F protein for putatively better
immunity.

In this study, the rVSV vectors were used to answer the question of which parts of
the immune system are stimulated by vaccination and are necessary and sufficient to
protect the respiratory tract. The depletion of T cells did not abrogate protection, and
even suppression of other immune cells through cyclophosphamide was not detrimen-
tal. This is remarkable, as cyclophosphamide treatment of naive cotton rats leads to
high level of RSV replication for at least 2 weeks (38). In this study, antibodies seemed
to be the major protective immune parameter, with a strong correlation with neutraliz-
ing antibodies. In patients, the level of protection conferred by anti-RSV neutralizing
antibodies titers varies by study, but neutralizing antibody levels are considered to cor-
relate with protection from severe disease (8, 65). However, a few studies have demon-
strated that nonneutralizing antibodies may also accomplish protection. This was true
in mice that were protected against RSV infection by nonneutralizing antibodies after
immunization with VSV vectors expressing modified RSV-G protein (VSVDG or VSV-
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Gstem) (17, 25). It has also been suggested that G-specific antibodies may not neutralize
in vitro but are able to protect in vivo (17, 50, 66). Similar observations have been
reported previously and attributed to the possibility that protection is correlated more
with ELISA IgG levels than VN titers (25). Similarly, vaccinia virus expressing RSV-G
induced protection with no detectable VN titers, suggesting that direct antibody neu-
tralization is not the sole mechanism of protection (9). Other contributing components
to limit the spread of virus in vivo include complement activation and antibody-de-
pendent cellular cytotoxicity (ADCC). In the current study, antibody levels estimated by
ELISA were comparable or higher in rVSV-G/rVSV-F groups than in RSV-immunized
groups, possibly highlighting the role of other functionalities of antibodies in protec-
tion (67).

In conclusion, recombinant VSV is a suitable vector system to deliver RSV proteins,
as the tested VSV recombinants in this study were well tolerated and induced dose-de-
pendent immunity that could be enhanced by mucosal delivery, coadministration of
rVSV-G and rVSV-F, and a prime-boost regimen. The outcomes were cumulative
enhancement of neutralizing antibody levels and complete protection.

MATERIALS ANDMETHODS
Recombinant vesicular stomatitis viruses. VSV-G and VSV-F were generated using pVSV1(1)-GxxL

as described previously (35, 36). This VSV vector plasmid (based on the VSV Indiana strain) and support
plasmids encoding the VSV nucleoprotein (pN), phosphoprotein (pP), and polymerase (pL) were kindly
provided by Sean Whelan and Gail Wertz (68). The RSV-G and RSV-F genes were amplified by high-fidel-
ity RT-PCR from RSV A2-infected cells and cloned into pVSV1(1)-GxxL at the XmaI and XhoI sites (35, 36).
All of the transgenes contained the VSV gene start and gene end sequences, and all of the resulting con-
structs were confirmed by sequencing.

Recovery and purification of recombinant VSVs. Recovery of the two recombinant VSVs was per-
formed as previously described (35). Briefly, BSRT7 cells were infected for 1 h at a multiplicity of infection
(MOI) of 10 with a recombinant vaccinia virus (vTF7-3 [69]) expressing T7 RNA polymerase. The cells
were washed with Opti-MEM (Gibco) after removing the vaccinia virus vTF7-3 and cotransfected with
pVSV1(1)-GxxL expressing one of the transgenes [pVSV1(1)-G or pVSV1(1)-F] and with support plas-
mids pN, pP, and pL using Lipofectamine 2000 (Invitrogen). After 96 to 108 h posttransfection, the cul-
ture medium was harvested and centrifuged at 1,892� g for 15min at 4°C, and the supernatant was fil-
tered through a 0.2-mm pore-size membrane filter (to separate the recovered viruses from vaccinia virus
vTF7-3). rVSVs were further passaged and plaque purified on BSRT7 cells. Plaque-derived seed stocks
were aliquoted and stored at 280°C. The transgenes were confirmed in the seed stock virus by RT-PCR,
and protein expression was confirmed by ELISA and Western blot analysis.

RT-PCR. Viral RNA from the recovered or seed stock viruses (rVSV-G or rVSV-F) was extracted using
the QIAmp viral RNA extraction kit (Qiagen) according to the manufacturer’s recommendations. RNA
was reverse transcribed, and the inserted genes were confirmed by the OneStep RT-PCR kit (Qiagen)
protocol using two primers complementary to the flanking VSV G gene (59-CGAGTTGGTATTTATCTTTGC-
39; nucleotide position 4524; 214 nucleotides [nt] upstream of the transgene) and the L gene (59-
GTACGTCATGCGCTCATCG-39; nucleotide position 4831; 127 nt downstream of the transgene). The
resulting PCR products were analyzed by gel electrophoresis using 1% agarose gel.

ELISA for envelope glycoproteins. Sucrose gradient-purified RSV (106 TCID50) and recombinant VSV
(106 TCID50) were added in sodium carbonate-bicarbonate buffer (pH 9.6) to wells of an ELISA polysty-
rene 96 flat-well plate and incubated overnight at 4°C. Plates were washed with phosphate-buffered sa-
line (PBS)-Tween 20 (0.05%) (PBS-T). To these wells, an RSV-specific goat-horseradish peroxidase (HRP)
serum (1:1,000 dilution; ViroStat) was added for 1 h. Plates were washed and developed with 3,39,5,59-
tetramethylbenzidine (TMB) substrate, and the color development was stopped after 5 min with 2N
sulfuric acid. Endpoint optical density values were measured at 450 nm (OD450) and corrected for
background.

Western blotting. BSRT7 cells were infected with rVSV-G and rVSV-F at a multiplicity of infection
(MOI) of 4 for 1 h. At the indicated postinfection time points, the cells were lysed in 200ml of radioimmu-
noprecipitation assay (RIPA) cell lysis buffer (Sigma) to extract the cytoplasmic proteins. Culture medium
was centrifuged first at 1,892� g for 15min at 4°C, and the supernatant was subsequently subjected to
high-speed centrifugation (18,213� g for 15min at 4°C). The pellet was dissolved in 200 ml of RIPA
buffer. Cell lysate or purified culture medium (5ml) was separated by 10% SDS-PAGE in a Mini-Protean 3
electrophoresis cell module (Bio-Rad) and transferred to a nitrocellulose membrane (Bio-Rad) in a XCell
IITM blot module (Invitrogen). The blot was probed with specific primary antibodies, followed by spe-
cies-specific secondary antibodies linked to horseradish peroxidase (HRP), as follows: for the RSV-G pro-
tein, rabbit anti-RSV polyclonal IgG (1:1,000; Abcam) and goat anti-rabbit IgG-HRP (Invitrogen); and for F
protein, motavizumab, a humanized anti-F monoclonal IgG (1:10,000), followed by rabbit anti-human
IgG-HRP (1:20,000; Invitrogen). The blot was developed with SuperSignal West Pico chemiluminescent
substrate (Thermo Scientific) and exposed to Biomax MR film (Kodak).
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Growth curves. Confluent cell monolayers of BSRT7 cells were infected at an MOI of 4 with VSV
recombinants for 1 h. Aliquots of the culture medium were collected at various time points, and the titer
of the virus was determined by plaque assay on Vero cells.

Plaque assay for vesicular stomatitis virus. For the plaque assay, Vero cells of 90% density in a 6-
well plate were incubated at 37°C with 10-fold virus dilutions for 1 h. Subsequently, the virus solution
was aspirated, and a 1% ultrapure agarose overlay containing HEPES, penicillin/streptomycin antibiotic,
2� minimal essential medium (MEM), and 10% fetal calf serum (FCS) was applied to each well. Plates
were incubated at 32°C and 5% CO2 for 48 h. Cells were fixed with 10% formalin for 1 h, and then the
agarose overlay was discarded. Cells were stained with 0.067% crystal violet solution with 10% glutaric
dialdehyde, and plaques were counted. To calculate the titer (PFU/ml), the inverse of the dilution of the
first well with a number of plaques of greater than or equal to 5 was used and adjusted for the factors of
dilution.

Animal experiments. For immunization experiments, 4- to 6-week-old specific-pathogen-free and
RSV-seronegative female cotton rats (Sigmodon hispidus) (CR) were used. Cotton rats were provided
water and feed ad libitum. Four cotton rats (n=4) were allocated for each experimental group. For one-
dose immunization studies, the cotton rats were challenged 4 weeks after immunization with the re-
spective vaccine candidate, dose, and route. For two-dose (prime-boost immunization regimen) studies,
the cotton rats were immunized a second time 3 weeks after primary immunization (day 21) and chal-
lenged 3 weeks after the second immunization (day 42). For subcutaneous immunization, 500ml of vac-
cine vector was injected at the flank, and for intranasal immunization, 100ml of vaccine vector was ino-
culated intranasally in isoflurane narcosis. For the challenge experiments, 105 TCID50 RSV-A2 strain (in
PBS) was inoculated intranasally in a 100-ml volume. At 4 days postchallenge, cotton rats were eutha-
nized through carbon dioxide inhalation. A total of nine animal experiments were conducted in this
study. Details of the experimental design of each study are provided in the Results and in respective fig-
ure legends. All animal experiments in this study were approved by the Institutional Animal Care and
Use Committee of The Ohio State University (Columbus, OH).

RSV titration in respiratory tissue. Left lung tissue was collected and homogenized in 2ml of
Advanced MEM (Gibco) in a Precellys Evolution tissue homogenizer (Bertin Instruments, France) using
ceramic beads. Nasal tissue was homogenized in 3ml of Advanced MEM using mortar and pestle. Lung
and nasal homogenates were titrated using a 50% tissue culture infectious dose (TCID50) assay. Briefly,
10-fold dilutions of the homogenates (100 ml/well) were added to an 80 to 85% confluent monolayer of
HEp-2 cells in a 48-well cell culture plate (in 6 replicates) and incubated for 1 h at 37°C. Wells were
washed three times with PBS, and MEM/2% FCS was added. After 5 days, the final titer was determined
according to the TCID50 method (70). Titers were expressed as TCID50/g of lung or nasal tissue.

RSV specific neutralization assay. Serum was separated from blood collected in BD Microtainer
blood collection tubes by centrifugation for 2 min at 18,213� g.

For determination of neutralizing antibodies, serial 2-fold dilutions of serum samples in Advanced
MEM (Gibco) were prepared in a 96-well tissue culture flat-bottomed plate with a starting dilution of
1:10 (50ml/well). Subsequently, 50 TCID50/well of RSV in Advanced MEM (Gibco) was added in equal vol-
ume to each well and incubated for 1 h at 37°C. RSV-A2-hyperimmune serum and RSV-seronegative se-
rum samples served as positive and negative controls, and titer of the virus used for the neutralization
assay was redetermined. After virus incubation with serum, HEp-2 cells (5,000 cells/well in 100 ml of
MEM containing 5% FBS) were added, and the plate was incubated at 37°C and 5% CO2 for 4 days. The
endpoint neutralization titer was determined as the reciprocal of the highest dilution at which 100% in-
hibition/neutralization of RSV-induced cytoplasmic effect (CPE) was observed. Sera without neutralizing
ability at a 1:10 dilution were considered negative.

T-cell depletion and cyclophosphamide treatment. Cotton rats were inoculated intraperitoneally
on days 24, 22, and 2 after infection with 0.5mg of a cotton rat CD8 alpha-specific monoclonal anti-
body alone or in combination with 0.5mg of a cotton rat CD4 monoclonal antibody (18). Mouse IgG2a
a-CRCD8 and mouse IgG1 a-CRCD4 was purchased from Virion Systems, Inc. (Maryland, USA) and puri-
fied via the montage antibody purification protocol (MilliporeSigma, Massachusetts, USA).

For depletion of leukocytes, cotton rats were inoculated intraperitoneally on days 24, 22, 0, 2, and
4 after infection with 150mg/kg of cyclophosphamide (Sigma) (38).

Statistical analysis. The data were expressed as the mean 6 standard deviation (SD) of the mean.
Statistical analysis was performed by one-way analysis of variance followed by Tukey’s multiple-compari-
son post hoc test for the majority of the data analysis, and a P value of less than 0.05 (P, 0.05) was con-
sidered a statistically significant difference. The unpaired Student’s t test was applied for comparison of
depleted or undepleted groups (Fig. 4) and to compare the virus antibody-neutralizing titers or RSV-spe-
cific IgG levels between days 21 and 42 after primary vaccination in prime-boost immunization studies
(Fig. 6).
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