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Abstract
Despite aggressive multimodal treatment approaches, the prognosis for patients with diffuse
gliomas remains disappointing. Glioma cells often extensively infiltrate in the surrounding
brain parenchyma, a phenomenon that helps them to escape surgical removal, radiation
exposure and chemotherapy. Moreover, conventional therapy is often associated with con-
siderable local and systemic side effects. Therefore, the development of novel therapeutic
approaches is essential to improve the outcome of these patients. Immunotherapy offers the
opportunity to specifically target residual radio—and chemoresistant tumor cells without
damaging healthy neighboring brain tissue. Significant progress has been made in recent
years both in understanding the mechanisms of immune regulation in the central nervous
system (CNS) as well as tumor-induced and host-mediated immunosuppression elicited by
gliomas. In this review, after discussing the special requirements needed for the initiation
and control of immune responses in the CNS, we focus on immunological phenomena
observed in glioma patients, discuss different immunological approaches to attack glioma-
associated target structures and touch on further strategies to improve the efficacy of immu-
notherapy of gliomas.
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INTRODUCTION

Gliomas are the most common primary brain tumors in adults.
They are categorized according to the World Health Organization
(WHO) classification, most recently revised in 2007 (162). Most
gliomas, the “diffuse gliomas,” are characterized by extensive infil-
tration of brain parenchyma. The diffuse gliomas can be subtyped
as astrocytic, oligodendroglial and oligoastrocytic tumors, with a
malignancy grade (low grade = WHO grade II; malignant = WHO
grade III; highly malignant = WHO grade IV) assigned to each
tumor (162). The most aggressive, that is WHO grade IV diffuse
glioma, is glioblastoma (GBM). Although GBMs are generally
considered purely astrocytic in nature, they in fact form a heteroge-
neous group of tumors, representing 15%–20% of all intracranial
neoplasms and approximately 50% of the malignant gliomas.
As most studies on the immunobiology and immunotherapy of
gliomas were carried out on diffuse gliomas, especially GBMs, the
present review focuses on these tumors as well. Currently the stan-
dard of care for patients with GBM after maximal tumor resection
is concomitant chemoradiotherapy followed by adjuvant treatment
with temozolomide (TMZ). The median overall survival for
patients with GBM is 14.6 months and the overall survival rate is
27.2% at 2 years. After 3 years, nearly all patients have progressed,
with mortality well over 90% after 5 years (249, 250). Factors
associated with an increased risk of death are increased age, lower

Karnofsky performance score (KPS), corticosteroid use, shorter
time from original diagnosis to recurrence, tumor outside the
frontal lobe, unmethylated O6-methylguanine methyltransferase
(MGMT)-promotor status and the presence of tumor-initiating
glioma stem cells (40, 100, 196, 299). Overall, the prognosis for
patients with GBM remains poor. It is thus essential to consider
novel treatments in the hope of attacking residual radio- and
chemoresistant tumor cells and to improve the survival of glioma
patients. With increasing knowledge of central nervous system
(CNS) immunity, immunotherapeutic approaches are promising
options for the treatment of diffuse gliomas.

CENTRAL ROLE OF DENDRITIC CELLS
(DCs) IN THE ACTIVATION OF
THE IMMUNE SYSTEM
In general, the immune system is based on two distinct types of
responses, the innate and the adaptive immune response. The
innate immune system functions as a first line of defense against
invading microorganisms. It discriminates between the different
microbes by recognizing a set of conserved molecular structures,
so called pathogen-associated molecular patterns (PAMPs), shared
by large groups of microorganisms. Cells that orchestrate the
innate immune response are DCs, macrophages, monocytes,
granulocytes and natural killer (NK) cells. The specific, adaptive
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immune system forms the second line of defense, which depends
on the activity of effector T and B cells. It uniquely distinguishes
distinct microorganisms and confers immunological memory. The
specifity is mediated by membrane receptors bearing a great diver-
sity of antigen binding sites.

DC subsets

DCs are the professional antigen-presenting cells (APCs) of the
immune system that instruct and control primary immune
responses. Two major subtypes of DCs have been defined, myeloid
and plasmacytoid DCs. Both DC subsets differ in morphology,
tissue distribution, expression of markers and function (270). Plas-
macytoid DCs are circulating cells with a plasmacytoid morphol-
ogy that are capable of producing large amounts of type I interfer-
ons upon activation by microbial stimuli (242). In addition, they
can differentiate into DCs that are capable of activating naive T
cells against allo-antigens (91) and exogenous antigens (22).
Myeloid DCs can be further divided into migratory DCs, which
serve as sentinels of the immune system in peripheral tissues and
present foreign antigens to T cells after migration to the draining
lymph nodes, and lymphoid-tissue-resident DCs that capture local
(foreign and self-) antigens and present them to local T cells (238).

Migratory DCs

At an immature stage, myeloid DCs take up tissue antigens, both
soluble and particulate antigens, very efficiently. After challenge
with microbial or inflammatory (“danger”-associated) stimuli,
DCs undergo a process of activation, also known as maturation.
Several environmental stimuli, such as signals from pattern-
recognition receptors (PPR), inflammatory cytokines and members
of the TNF superfamily (eg, CD40L, RANKL) have been shown to
mediate DC activation (246). During DC maturation, captured anti-
gens are processed and bound to both classical major histocompat-
ibility complex (MHC) class I and class II molecules that are trans-
located to the cell surface, accompanied by an increased expression
of costimulatory molecules and the secretion of cytokines that
influence T cell proliferation and differentiation. In response to the
appropriate stimuli, DCs also upregulate CC chemokine receptor-7
(CCR7), a receptor that drives DC migration to the lymphoid
vessels and T cell areas of secondary lymphoid organs (13). There,
DCs are mature and are well-equipped to attract and activate naive
CD4+ and CD8+ T cells (3) In addition, DCs are also able to
directly activate innate lymphocytes such as NK cells or NKT cells
via non-classical (CD1 family) MHC molecules presenting gly-
colipid structures (68, 72), thus providing a link between the adap-
tive and innate immune system (Figure 1).

PPRs expressed by DCs

Four main PPRs expressed by DCs can be distinguished. These
include Toll-like receptors (TLRs), C-type lectins, NOD-like
receptors and cytoplasmic RNA helicases (149, 268).

So far, the best-characterized PPRs are the TLRs (128, 154). The
TLR family in humans consists of 11 transmembrane members that
are located on the cell surface (TLR1, 2, 4, 5, 6, 10 and 11) or
within the endosomal compartments (TLR3, 7, 8 and 9) (Figure 2).
Many specific ligands for TLRs have now been identified. TLR2

recognizes bacterial lipoproteins, peptidoglycan and lipoteichoic
acid from Gram-positive bacteria, and zymosam from fungi, and
can associate with TLR1 and TLR6 for functional responses
to mycobacterial lipopeptides. TLR3 recognizes viral double-
stranded (ds) RNA and synthetic dsRNAs, such as polyinosinic–
polycytidylic acid (Poly I:C). TLR4 binds lipopolysaccharides
(LPS) from Gram-negative bacteria and viral envelope proteins,
whereas TLR5 recognizes flagellin. TLR7 and TLR8 recognize
viral single stranded RNA and synthetic molecules like imidazo-
quinoline or its derivates. TLR9 recognizes unmethylated CpG
motifs within bacterial and viral DNA. The specific ligand of
TLR10 is currently unknown. The recently discovered TLR11 rec-
ognizes uropathogenic bacteria (117, 254). TLR expression by
DCs is dependent on the cellular subset and differentiation state.
Myeloid DCs express virtually all TLRs with the exception of
TLR9, which is selectively expressed by plasmacytoid DCs. In
contrast to humans, TLR9 is expressed both by plasmacytoid and
myeloid DCs in mice (212). Importantly, DC activation and cytok-
ine production are strongly dependent on the type and combination
of the TLRs that are triggered (121, 183). Consequently, the nature
of specific T-cell responses generated also depends on the different
stimuli that a DC encounters locally (244).

T-cell polarization

Inside the lymph nodes, antigen-loaded activated DCs interact with
naive T cells and induce their differentiation into T effector cells. It

Figure 1. Central role of dendritic cells (DCs) in the initiation of an
immune response. DCs are present in virtually all tissues and organs
including the brain and continuously monitor their environment for the
presence of danger, for example, invading microorganisms and tissue
damage. Immature DCs are very efficient in antigen uptake, mediated by
high endocytotic activity and expression of an array of cell surface recep-
tors. Upon recognition of danger signals, DCs undergo maturation and
migrate via lymph vessel (LV) to the draining lymphoid organs. Here,
mature DCs interact with and activate naive lymphocytes specific for
their cognate antigen and initiate a primary immune response. After
expansion, activated T effector cells (Teffs) and natural killer/natural killer
T cells (NK/NKT cells) exit the lymphoid tissue and home back via the
blood stream to the site of antigen deposit to eliminate the threat in the
endangered tissue (eg, brain). Under steady state conditions immature,
non-activated DCs contribute to immune homeostasis by deleting
autoreactive T cells and inducing T-cell tolerance, or leading to the gen-
eration of regulatory T cells (Tregs).
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is a unique feature of DCs to efficiently present captured antigens
on MHC class-II molecules to CD4+ T cells. Naive CD4+ T cells
can be differentiated into either T-helper type 1 (Th1), T-helper type
2 (Th2) or TH17 cells. Th1 cells develop in the presence of interleu-
kin 12 (IL-12) and secrete IFN-g, whereas Th2 cells develop in the
presence of IL-4 and secrete IL-4, IL-5 and IL-13 (191, 256). For
the development of TH17 cells from naive precursors a combina-
tion of IL-6 and TGF-b is required (23). Moreover, IL-1 and IL-21
seem to play important roles in promoting the induction of TH17
cells, whereas IL-23 is vital for the expansion and survival of this
population (24, 143, 148). In contrast to other APCs, DCs are also
capable of presenting captured antigens on MHC class-I molecules
to CD8+ T cells, a process termed “cross-presentation” (5, 132). In
vivo priming of CD8+ cytotoxic T lymphocytes (CTLs) generally
requires the participation of CD4+ T-helper cells, CD40-CD40L
interaction, innate lymphocytes or stimulation via certain TLRs
(121, 160, 233). Besides effector T cells, DCs are also efficient at
activating naturally occurring CD4+ regulatory T cells (Tregs) (14,
130, 295). In addition, DCs are able to induce several subsets of

Tregs capable of controlling effector T cells, including induced
Tregs, type 1 regulatory T cells (Tr1 cells) and Th3 cells. The
regulatory T-cell-polarizing factors are IL-10 and transforming
growth factor-b (TGF-b) (44, 65, 273) (Figure 3).

Naturally occurring CD4+ regulatory T cells

Naturally occurring CD4+ Tregs represent 5%–10% of the overall
CD4+ T cell population and are generated in the thymus (223).
They constitutively express the IL-2 receptor a-chain (CD25),
cytotoxic lymphocyte-associated antigen-4 (CTLA-4) and differ-
ent members of the tumor necrosis factor (TNF) receptor super-
family such as the glucocorticoid-induced TNF related protein
(GITR) or Ox40 (237, 265). Other candidate markers of Tregs have
been described and currently include CD62L, CD103, CD122 and
CD223 (178). So far the most specific marker for naturally occur-
ring CD4+ Tregs is FoxP3, a member of the forkhead family of
DNA-binding transcription factors, which has been shown to be
expressed specifically in mouse CD4+ Tregs and acts as a master
switch in the regulation of their development and function (71,
105). Per se, Tregs are hyporesponsive to T-cell receptor (TCR)
stimulation in vitro, but high amounts of IL-2 or stimuli bypassing
the TCR can overcome their anergic state (224). After polyclonal or
antigen-specific TCR stimulation, Tregs potently suppress the pro-
liferation and cytokine production of effector CD4+ and CD8+ T
cells by inhibiting IL-2 gene transcription. Once activated in an
antigen-specific manner, Tregs also suppress effector T cells, which
are specific for other antigens. Furthermore, Tregs have been

Figure 2. Toll-like receptor (TLR)-mediated recognition of pathogen-
associated molecular patterns (PAMPs) and signaling pathways. TLR1,
2, 4, 5 and 6 are expressed on the surface of dendritic cells, and are
involved in detecting lipids, carbohydrates and protein ligands from
extracellular pathogens. In contrast, TLR3, 7, 8 and 9 are mainly
expressed in intracellular vesicles and function within the acidified endo-
somes to detect nucleic acids derived from viruses and bacteria. TLR2
recognizes bacterial lipoproteins, peptidoglycan and lipoteichoic acid
from Gram-positive bacteria, and zymosam from fungi, and can associ-
ate with TLR1 and TLR6 for functional responses to mycobacterial
lipopeptides. TLR3 recognizes viral double-stranded (ds) RNA and syn-
thetic dsRNAs, such as polyinosinic-polycytidylic acid (Poly I:C). TLR4
binds lipopolysaccharides (LPS) from Gram-negative bacteria and viral
envelope proteins, whereas TLR5 recognizes flagellin. TLR7 and TLR8
recognize viral single-stranded (ss) RNA and synthetic molecules like
imidazoquinoline or its derivates. TLR9 recognizes unmethylated CpG
motifs within bacterial and viral DNA. TLR3 uses Toll/Interleukin-1 recep-
tor (TIR) domain-containing adapter-inducing interferon (TRIF), whereas
all other TLRs use MyD88 as an adapter molecule. Both TRIF and
MyD88-dependent pathways lead to the activation of MAPK kinases
such as p38 and the activation of nuclear factor-kB (NF kB) and interferon
(IFN)-regulatory factors (IRFs) to induce type I IFN and inflammatory
cytokines, respectively.

Figure 3. Dendritic cell (DC)-mediated T-cell polarization. After activa-
tion of Toll-like receptors (TLRs) by pathogens (in green) DCs increase
cell-surface expression of MHC-peptide complexes, upregulate costimu-
latory molecules (eg, CD86) and secrete immunomodulatory cytokines
that direct T-cell polarization. Ligation of distinct TLRs trigger differential
cytokine production in DCs. Production of interleukin-4 (IL-4) promotes
the development of T helper type 2 (Th2) cells, whereas the production
of IL-12 favors the development of Th1 cells. Th2 cells secrete IL-4, IL-5,
IL-10 and IL-13, whereas Th1 cells secrete IL-2 and IFN-g. IL-4 and IL-12
enhance the generation of their own Th-subset and simultaneously
inhibit the generation of the opposing subset. A combination of IL-1 or
IL-6 and TGF-s contributes to the development of Th17 cells from naive
precursors, whereas TGF-s alone promotes the development of regula-
tory T cells (Tregs). Both IL-4 and IFN-g inhibit Th17 development. IL-6
inhibits the development of Tregs. Black arrows indicate promoting
activity, whereas red lines indicate inhibitory activity.
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shown to inhibit the proliferation and antibody production of B
cells and to profoundly suppress NK-cell function (33, 77). Tregs
show their suppressive effects by a complex and overlapping set of
mechanisms (225) (Figure 4).

THE CNS—AN IMMUNOLOGICALLY
SPECIALIZED SITE
In the past, the CNS has been described as an immunologically
privileged site based on the presence of the blood–brain barrier
(BBB), graft acceptance, lack of conventional lymphatics, low
MHC expression and low T cell trafficking (41, 50). However, with
recent advances in understanding CNS immunity it is more accu-
rate to regard the CNS as an immunologically specialized site that
can be divided into three different compartments: the brain paren-
chyma; the ventricles containing choroid plexus and cerebrospinal
fluid; and the meninges. The immune reactivity of the ventricles
and meninges is similar to that of the periphery, whereas immune
responses are delayed or even abrogated within the brain paren-
chyma (17, 248, 280).

Initiation of an immune response in the CNS

Accumulating data suggest that DCs play a central role in the
initiation of immune responses in the CNS (135, 198). DCs can be
found in low numbers in the meninges, perivascular spaces, the

choroid plexus and in the CSF where they reside in an immature
state (169, 172, 197).

Under non-inflammatory conditions, DCs present antigens
derived from tissue debris and apoptotic cells in the absence of
costimulatory molecules. Such antigen presentation by non-
activated DCs induces T-cell anergy, T-cell tolerance or the induc-
tion of Tregs (159, 236, 247). Moreover, it has been reported that
non-stimulated, brain-derived DCs preferentially target B-cell
areas instead of T-cell areas, again skewing the immune system
towards a humoral response (96). Similarly, drainage of brain-
derived antigens was shown not to be sufficient to induce a Th1-
type and CTL response by itself, but leads to tolerance induction or
skewing of the immune response towards a B cell and Th2-type
response (94, 95, 283). However, under a variety of inflammatory
conditions, DCs are quickly recruited to the site of the brain lesion
and appear in both the brain parenchyma and the cerebrospinal
fluid in high numbers (69, 157, 235). Importantly, it was recently
demonstrated that these DCs do not differentiate from CNS-
resident precursors like microglia cells, but are of peripheral origin
(175). At the site of the lesion, inflammatory mediators and danger
signals promote maturation and rerouting of DCs to the secondary
lymphoid organs where they prime antigen-specific immune
responses.

Although conventional lymphatics are missing in the CNS,
antigen-loaded DCs have access to secondary lymphoid organs
through several pathways. The most prominent one is the drainage
of antigen-loaded DCs along the subarachnoid space surrounding
the olfactory bulbs through discrete channels in the cribriform
plate into the lymphatics of the nasal submucosa and, subsequently,
to the cervical lymph nodes. Regional lymph nodes that are associ-
ated with other cranial nerves might also be involved in the CNS
drainage. With access to the cerebrospinal fluid and the perivascu-
lar spaces, antigen-loaded DCs can also migrate out through the
arachnoid villi into the venous blood (103, 208, 282).

These data further support recent analyses demonstrating that
brain-derived antigens can reach the cervical lymph nodes very
quickly, but similar to the skin system, a second wave of incoming
brain-derived APCs, most likely DCs, is necessary for optimal
T-cell activation (80, 119, 135). After clonal expansion, activated
antigen-specific T cells preferentially home back to the site of
antigen deposit in the brain (34, 35).

T cell trafficking into the CNS

In general, the traffic of leukocytes into the CNS is a highly regu-
lated process. Resting T cells fail to enter the CNS, whereas acti-
vated T cells are able to penetrate the BBB under inflammatory
conditions (279, 281). For CD4+ T cells, the activation-stage rather
than the antigen-specificity determines BBB crossing (102). CNS
recruitment of CD8+ T cells is regulated differently than CD4+ T
cells. Recent data show that antigen specificity is a factor that
governs CD8+ T cell infiltration into the brain and that this process
is dependent on luminal expression of MHC class I by cerebral
endothelium, but independent of antigen presentation by perivas-
cular APCs (75).

The current paradigm of blood leukocyte transendothelial
migration involves a sequential, multistep adhesion cascade
between leukocyte and endothelial cell adhesion molecules
(19, 63). T-cell priming in CNS-draining lymph nodes is usually

Figure 4. Regulatory T cells (Tregs) and immune cell suppression. Tregs
are characterized by a set of markers (in blue), suppress different types
of immune cells (red lines) and show their suppressive effects by a
number of different mechanisms (orange box). Tregs have cytolytic activ-
ity and can kill target cells directly in a granzyme/perforin-dependent
manner or induce cytokine deprivation-mediated apoptosis. Two ectoen-
zymes, CD39 and CD73, expressed on activated Tregs, induce the extra-
cellular release of adenosine nucleosides that suppress effector T-cell
functions. Tregs also promote the transfer of the potent inhibitory
second messenger cyclic adenosine monophosphate (cAMP) to effector
T cells. In addition, Tregs can condition DCs, via a CTLA-4:CD80/CD86-
dependent mechanism, to express indoleamine 2,3-dioxygenase (IDO).
Expression of the lymphocyte activation gene 3 (LAG3) on Tregs can
further modulate the maturation and immunostimulatory capacity of
DCs. Finally, potent inhibitory cytokines, produced by Tregs, such as
membrane-bound or soluble TGF-s (mTGF-s; sTGF-s), IL-10 or IL-35,
contribute to their suppressive function.
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associated with a rapid upregulation of a4 and b1 integrin (35).
These a4b1 integrins have been shown to interact with VCAM-1
on cerebral vascular endothelium and this interaction has been
reported to facilitate CNS entry of encephalitogenic or virus-
specific T cells (39, 264). An important function for ALCAM in the
recruitment of CD4+ T cells and monocytes across the BBB endot-
helium has recently been demonstrated (43). After CNS entry,
antigen-specific reactivation of effector T cells by perivascular
APCs is needed for T-cell persistence and amplification of T-cell-
mediated immune responses in the CNS. In general, those T cells
that have encountered their target antigen within the brain are
retained for longer periods within the CNS (168).

After contact with perivascular APCs, effector T cells undergo
rapid reactivation with renewed induction of activation markers
such as CD25 and CD134 (OX-40) (49, 90, 136). Moreover, CD8+
T cells further differentiate in the brain, showing enhanced IFN-g
and granzyme B expression and induction of aEb7 integrin, medi-
ating increased adhesion to the brain parenchyma (168). Finally,
effector T cells migrate to the site of the brain lesion towards a
chemotactic gradient. Chemokines such as monocyte chemoat-
tractant protein (MCP)-1 also induce the expression of matrix
metalloproteinases and other ectoenzymes that enable penetration
of effector T cells into the brain parenchyma (6, 11).

Perivascular macrophages and parenchymal
microglial cells

Next to the DCs, two other major populations of phagocytic cells of
myeloid origin function as APCs in the CNS: perivascular mac-
rophages and parenchymal microglia cells. Based on their mor-
phology and immunophenotype, perivascular macrophages appear
to be very similar to blood-derived macrophages (228). Moreover,
it has been shown that brain perivascular cells contain a population
of replaceable, rather than resident phagocytic cells (18).

Microglial cells are the primary immunocompetent cells in the
brain. In addition to their phagocytic function, they may also par-
ticipate in the regulation of innate and adaptive immune responses.
They show a very low turnover rate and remain in an undifferenti-
ated state with little expression of MHC class II under steady-state
conditions. Upon activation, microglial cells can quickly upregu-
late their antigen presenting capabilities in response to inflamma-
tory or microbial stimuli both in vitro and in vivo; they can also
develop into more DC-like cells (70, 195, 227). However, even
upon full activation, the expression levels of MHC and costimula-
tory molecules on DC-like microglial cells are much lower than
generally found on DCs. Furthermore, CNS-resident microglial
cells purified from the inflamed CNS were found to be largely
incapable of activating either naive or effector T cells (CD4+ T
helper cells), in contrast to peripherally derived myeloid DCs (171,
175). In addition, there are currently no data available on the ability
of microglial cells to migrate out of the CNS in significant numbers
and present antigens in the draining lymph nodes. Instead of T-cell
priming, both cell types might play a direct role in reshaping the
function CD8+ effector T cells or a more indirect role in the condi-
tioning of the DC precursors to differentiate into DCs (136, 168).

Control of immune responses in the CNS

The time of onset, the intensity and duration of immune responses
within the CNS have to be tightly controlled; otherwise permanent

tissue damage can occur. Immunosuppressive Tregs have been
shown to be essential for the control of immune pathology. It has
been reported that, similar to effector T cells, Tregs traffic to the
inflamed site within the CNS, become reactivated, and further
expand in situ. Interestingly, it has been shown that Tregs are not
functional at the disease peak of experimental autoimmune
encephalomyelitis (EAE). However, in the recovery phase, Tregs
regain suppressor activity and potently curb the autoimmune
responses locally (144, 190). Moreover, it was recently demon-
strated that CNS DCs show a dual role during the disease course of
an EAE: these cells promote CNS inflammation at the onset of the
disease, whereas by the peak of the disease, they lose their optimal
T-cell stimulatory capacity and support Treg-mediated immuno-
suppression to limit the extent of CNS inflammation (58).

INTERACTION OF MALIGNANT GLIOMA
AND THE IMMUNE SYSTEM

Immune cell infiltrates

The immune recognition of glial tumors arising within the brain is
usually prevented at the earliest stages of neoplastic transformation
where the tumor cells are totally contained within the normal brain
parenchyma. As such, primary brain tumors present a unique chal-
lenge for CNS immunosurveillance. However, at later stages of
tumor growth, when massive tissue damage with destruction of the
BBB and tumor cell necrosis with antigen drainage to the periphery
occurs, brain tumors become accessible to the peripheral immune
system. In this case, albeit at varying degrees, immune cell infil-
trates can regularly be found within malignant gliomas. The vast
proportion of immune cells, mainly macrophages, microglial cells,
DCs and T cells, is found at perivascular regions, but can also be
observed throughout the tumor bed and within necrotic tissue
regions (110, 199, 216, 272). Attraction of these immune cells is
directed by a number of molecules, which are mainly produced by
oxygen-deprived tumor cells surrounding necrosis. Hypoxia induc-
ible factor-1a (HIF-1a) has been identified as a key factor in
gliomas promoting the release of chemoattractants, such as
CXCL5, CXCL8/IL-8 and CXCL12/SDF-1 (57, 253). Other
chemoattractants, such as CCL2/MCP-1, CCL3/MIP1-a, CCL4/
MIP1-b, CCL22/MDC also contribute to the recruitment of
immune cells to gliomas (56, 118, 252). However, early studies
have already determined that the presence of immune cell infil-
trates usually does not correlate with the clinical course of glioma
patients or may even be a negative prognostic factor (217, 220,
221).

Immunosuppression elicited by malignant
gliomas

Compelling evidence exists that immune activation within malig-
nant gliomas is suppressed by the local tumor microenvironment
(61, 274, 275) (Figure 5). Malignant gliomas are characterized by
the presence of a large number of immunosuppressive soluble
factors, such as vascular endothelial growth factor (VEGF),
IL-10, TGF-b, whereas immunostimulatory molecules, such as
IL-12, IL-18, INF-g, are lacking. In addition, immunosuppressive
enzymes such as indoleamin 2,3-dioxygenase (IDO),
cyclooxygenase-2 (COX-2), arginase and nitric-oxide synthase-2
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(NOS-2) are overexpressed in glioma cells (28, 32, 42, 48, 83,
185). Moreover, many immunoinhibitory molecules are abun-
dantly expressed on the surface of glioma cells. Non-classical
MHC ligands such as HLA-G and HLA-E (286, 290),
co-inhibitory molecules such as PD-L1 (B7-H1) (288, 289), minor
brain gangliosides such as GM2 and GM3 (88), and galectin-1 and
galectin-3, mammalian lectins with specificity to beta-galactosides
have been detected (74, 218). Furthermore, inhibitory cytokine
signaling molecules such as signal transducers and activators of
transcription 3 (Stat3) are known to be constitutively activated in
several human glioma cell lines, promoting tumor cell growth and
survival (2, 142, 207).

As a consequence, differentiation, maturation and function of
tumor-infiltrating DCs and other APCs, as well as the generation
and activation of immune effector cells are all profoundly sup-
pressed in the tumor microenvironment. In addition, the cytolytic
activity of macrophages, NK cells and cytotoxic T cells is deeply
disturbed (81, 111, 179, 239, 241), and other players in tumor-
induced immunosuppression are recruited to the tumor, preventing
tumor-specific immunity. Among those are myeloid-derived sup-
pressor cells, representing a phenotypically heterogeneous cell
population that includes immature myelomonocytic cells, termi-
nally differentiated monocytes and granulocytes (82, 203, 263), but

also mesenchymal stem cells with immunosuppressive functions
(26, 260). Recent studies clearly show that CD4+ Tregs infiltrate
and fbaccumulate within gliomas (62, 125) and profoundly sup-
press antiglioma immune responses. Also, patients with malignant
glioma show an elevated proportion of Tregs in peripheral blood in
the setting of an overall diminished CD4+ T-cell pool (66). This
predominance of Tregs was shown to be responsible for the mul-
tiple immunological defects that have been previously described
in glioma patients, including abnormal delayed hypersensitivity
responses, depressed mitogen responsiveness of T and B cells,
decreased antibody responses, and impaired T-cell cytotoxicity
(60).

GLIOMA-ASSOCIATED TARGET
STRUCTURES FOR IMMUNOTHERAPY
The ultimate goal of glioma immunotherapy is to induce prominent
antitumor immune response leading to the complete eradication of
malignant cells without eliciting serious negative side effects. An
essential step in the development of immunotherapeutic strategies
against malignant gliomas is the identification of suitable target
structures. An ideal target for immunotherapy is an antigen that is
specifically and stably expressed by the tumor, absent from normal
tissues, and crucial for the survival of the cancer cell. Cancer/testis
(CT) antigens have the potential to match such requirements. CT
antigens are encoded by genes that are normally expressed only in
the human germ line, but are aberrantly expressed in various tumor
types. So far, more than 40 CT antigen family members have been
identified, most of them in melanomas. Of note, these antigens are
frequently found in only a relatively small proportion of tumor
cells. Interestingly, cancer germline genes (CGGs) are frequently
co-expressed, and tumors that express them tend to express several
CT antigens (93, 124).

CT antigens

The knowledge of tumor-specific target structures for glioma
immunotherapy is not far advanced. The fact that glial cells and
melanocytes ontogenetically have a common neuroectodermal
origin may explain the finding that melanoma-associated CGGs
such as the melanoma antigen-encoding (MAGE) genes MAGE-1
and MAGE-3, MAGE-E1 or GAGE-1 (151, 229, 230) can also be
detected in malignant gliomas. Other CGGs, such as the expression
of homo sapiens testis (HOM-TES)-14 [also known as stromal
cell-derived protein (SCP)-1], synovial sarcoma X breakpoint
(SSX)-1, SSX-2, SSX-4, HOM-TES-85 and Sry-related high-
mobility group (HMG) box-containing gene (SOX)-6 have also
been described in malignant gliomas, although their antigenic
determinants are not yet known (222, 261). Most studies have
analyzed antigen expression at the mRNA level by reverse tran-
scription polymerase chain reaction (RT–PCR). Protein expression
or immunogenicity of CT antigens have only rarely been investi-
gated in malignant gliomas (158). Efficient immune recognition of
CT antigens on glioma cells may be compromised by low or absent
expression of classical MHC molecules and inefficient processing
and presentation of such antigens (64, 173).

Overexpressed self-antigens

Further potential target structures with restricted protein expres-
sion include overexpressed self-antigens, such as mutated versions

Figure 5. Immune escape mechanisms of diffuse gliomas. Once
antigen-specific effector T cells (Teffs) reach the central nervous system
(CNS) parenchyma through the intact or disrupted blood–brain barrier
(BBB) (1), they may face regulation by CNS-residents cells such as
astrocytes and microglial cells that are able to inhibit T-cell proliferation
and to induce T-cell apoptosis by the secretion of immunosuppressive
molecules and the expression of death receptors ligands such as FasL
(2). Constitutive immunosuppressive factors in the brain parenchyma
such as TGF-s may also impede T-cell differentiation or T-cell effector
functions (3). Within the tumor, Teffs are confronted with different sub-
populations of immune suppressor cells that are attracted to the tumor
site, such as regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs) and mesenchymal stem cells (MSCs). Moreover, tumor-
infiltrating Teffs are exposed to high concentrations of tumor-derived
soluble immunosuppressive factors as well as immunoinhibitory surface
molecules expressed on the tumor cells (4). Finally, efficient immune
recognition of glial brain tumor cells may be compromised by low MHC
molecule expression and inefficient processing and presentation of
tumor-associated antigens (5). Adapted from Walker et al (2002) (274).
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of the epidermal growth factor receptor (EGFR), especially of
variant III (EGFRvIII), the IL-13 receptor a chain 2 (IL-13Ra2)
or the apoptosis inhibitor protein, survivin (109, 133, 287). Other
tumor-associated targets can be detected in malignant gliomas,
such as the squamous cell carcinoma antigen recognized by T cells,
SART1 and SART3 (114, 180). Furthermore, transferrin receptors
that are overexpressed on rapidly dividing cells, most notably on
hematopoietic cells and various tumor cells, including GBM cells,
are identified as target structures (210). Currently, much attention
is drawn to viral antigens unique to human cytomegalovirus, which
are expressed within the vast majority of high-grade gliomas, but
not within surrounding normal brain (176).

Differentiation antigens

Additional potential targets include differentiation antigens that are
normally only seen at particular phases of cell differentiation, such
as tyrosinase related protein (TRP)-1 and TRP-2 or gp100, but also
antigen isolated from immunoselected melanoma (AIM)-2, ADP
ribosylation factor 4-like protein ARF4L, and betaGlcNAc beta1,
3-galactosyltransferase, polypeptide 3 (GALT3). However, as these
antigens often demonstrate a broader tissue expression, their value
as targets for antiglioma therapy might be limited (45, 158, 187,
230, 257).

Stromal antigens

Target structures within the tumor stroma have also been identified.
One of the best examples is tenascin, a polymorphic glycoprotein
of the extracellular matrix, which is expressed in about 80% of
malignant gliomas, especially in GBM (20).

GLIOMA IMMUNOTHERAPY
For treatment strategies of gliomas, passive, adoptive and active
immunotherapeutic approaches have been evaluated.

Passive immunotherapy

To target glioma-specific structures, different monoclonal antibod-
ies (mAbs) have been designed that are coupled to radionucleotides
(radioimmunoconjugates) or exotoxins (immunotoxins) and are
administrated locally. In some studies, a survival benefit in glioma
patients has been documented. However, a disadvantage of this
approach is that the penetration of these molecules into the tumor
tissue is quite limited, because of high interstitial pressures in the
tumor and surrounding tissue. High-flow convention enhanced
methods are needed to efficiently deliver these molecules to the
more peripheral, diffusely infiltrative portions. Moreover, the
effectiveness of the therapy seems to be restricted to those patients
with a low tumor burden (29, 150, 277).

Adoptive immunotherapy

Alternatively, the adoptive transfer of ex vivo generated and acti-
vated effector cells into the resection cavity of patients with
malignant gliomas has been extensively evaluated. Treatment
approaches have differed in the types of cells administered, the
route of administration, and the activation status of the cells. These

approaches offer the advantage of circumventing deficits of antitu-
mor effector cell populations in the host by providing optimal
conditions for the culture and amplification of these cells in vitro,
in the absence of tumor-derived immunosuppressive factors.
However, despite good tolerability, clinical efficacy has rarely been
seen with the local administration of lymphokine-activated killer
cells (LAK-cells) (27, 59, 126), mitogen-activated killer cells
(MAKs) (115, 129), NK cells, tumor-infiltrating lymphocytes
(TILs) and allogeneic or autologous, tumor-specific cytototoxic T
cells (139, 147, 200, 206, 291). Proinflammatory cytokines, such
as IL-2 have been coadministered locally to enhance antitumor
responses, but has induced significant toxicity, particularly in
patients with large tumor loads (16, 98).

Active immunotherapy

Active immunization of patients with malignant gliomas is
regarded as a powerful strategy to induce potent antitumor response
in vivo. As a vaccine, autologous inactivated tumor cells have
been used, either gene-modified or applied together with cytokine-
secreting fibroblasts (193, 245). Alternatively, tumor-specific
peptide vaccines targeting EGFRvIII have been administrated
intradermally along with granulocyte macrophage colony-
stimulating factor (GM-CSF) as an adjuvans (226). One of the
most promising immunotherapeutic approaches to amplify tumor-
specific T-cell responses is to use ex vivo generated, autologous
tumor antigen-loaded DCs as a vaccine (79). Several phase I/II
studies have been carried out with this approach, and although
these clinical trials differed in terms of DC generation, loading of
tumor antigens and the route of application, robust intratumoral
cytotoxic and memory T-cell infiltration could be detected in
patients who underwent resurgery after vaccination. DC vaccina-
tions appeared to be mainly beneficial for patients with younger
age, minimal residual tumor burden and expression of low levels of
TGF-b2 (54, 156, 219, 292, 294, 296, 297). The principles and
results of both peptide-based vaccination and DC therapy against
malignant gliomas are discussed in more detail in the companion
articles of van Gool et al (267) and Choi et al (46).

ENHANCEMENT OF VACCINE
IMMUNOGENICITY
Data from phase I/II studies support the view that strong glioma-
specific immune responses can be induced by a DC vaccine, but
that therapy efficacy is still impeded by rapid tumor progression
and a strong local immunosuppressive environment. To improve
glioma immunotherapy, higher numbers and more potent glioma-
specific effector cells should be induced that home in to the CNS
glioma site, including the peripheral, diffusely infiltrative areas
(Figure 6).

DC maturation

When using ex vivo generated DCs as a vaccine, the induction of
effective immune responses is dependent upon proper DC matura-
tion. The most widely used maturation cocktail in clinical DC trials
consists of four reagents: TNF-a; IL-1b; IL-6; and PGE2, also
known as monocyte-conditioned medium. A major disadvantage
of this maturation cocktail is that the resulting DCs secrete little
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IL-12, most likely as a result of the presence of PGE2 present
during maturation (134, 213). Moreover, cytokine cocktail-
matured DCs were found to be more effective than immature DCs
in expanding a population of immunosuppressive Tregs (55, 259).

An excellent method to enhance the immunogenicity of DCs is
to include immune response modifiers, such as TLR agonists into
the maturation cocktail for optimal DC activation. Several groups
reported that DCs matured with more extensive maturation cock-
tails containing TLR-agonists such as Poly I:C (TLR3) or R848
(TLR7/8) and cytokines such as TNF-a, IL-1b and INF-g show
superior immunogenicity to standard cocktail matured DCs; this
strategy enhanced T-cell and NK-cell responses, while decreasing
the chance to induce Tregs. Addition of TLR-agonists to the matu-
ration cocktail also enabled the use of sufficiently low concentra-
tions of PGE2 that the capacity of DCs to produce IL-12 was not

disturbed. Supplementation with PGE2 was essential to improve
DC handling by reducing cell adherence and enhancing migratory
capacity via upregulation of CCR7. Moreover, TLR triggered DCs
retained a stable phenotype and IL-12 producing capacity, even
when exposed to TGF-b, Th2 or Treg promoting environments (30,
73, 84, 166, 302). At present, a phase I/II-study (NCT00766753)
using TLR-polarized DCs (type-1 aDCs) loaded with glioma-
associated tumor antigens is being carried out in patients with
recurrent malignant gliomas.

The importance of IL-12 for an effective immunotherapy against
gliomas has been demonstrated in several animal and human
studies. Coadministration of IL-12 with a DC vaccine was reported
to enhance antitumor responses resulting in prolonged survival
(116, 137, 293). In addition, IL-12 was shown to directly inhibit
Treg differentiation from naive T cells (278). Collectively, these
data imply that mature DCs with retained capacity to produce
IL-12 are the most promising candidates for glioma immuno-
therapy and point towards an important role for TLR-agonists in
inducing potent anti-glioma responses.

In addition, TLR-agonists can be used as immune adjuvans.
Pretreatment of the injection site with proinflammatory com-
pounds or TLR-agonists such as imiquimode (TLR7) have been
shown to significantly enhance both the persistence and trafficking
of DCs into the draining lymph nodes after vaccination, resulting in
increased priming of tumor-specific T cells (167, 181, 204).

Discovery of major glioma rejection antigens

To create a powerful DC vaccine, it is not only important to use
proper maturation stimuli, but also to efficiently load DCs with
relevant tumor antigens. A major challenge is to discover new,
glioma-specific tumor antigens that can be used for targeted immu-
notherapy without immunological side effects. Particular attention
should be paid to detection of major glioma rejection antigens that
are recognized by tumor-infiltrating lymphocytes during endog-
enous antitumor responses, especially those expressed on tumor-
initiating glioma stem cells. Moreover, immunodominant CD4 and
CD8 epitopes of these antigens should be defined to be able to
generate tumor peptides that are presented both by MHC class I and
class II molecules. Such information could be further used to create
potent antitumor vaccines consisting of synthetic long peptides
in combination with TLR-agonists to elicit strong effector T-cell
responses (25, 243). In addition, large numbers of antigen-specific
effector T cells could be generated ex vivo that are adoptively
transferred into lymphopenic patients followed by peptide-pulsed
DC vaccination. This approach has already resulted in effective
antitumor responses against preestablished intracranial tumors in a
preclinical model (205).

Irrespective of the detection of new glioma-specific tumor anti-
gens, future work should focus on the potential of tumor-initiating
glioma stem cells to provide tumor antigens for vaccination. The
possibility of generating cancer stem cell lines from primary GBM
patients has been demonstrated by several groups (21, 92, 155).
These cancer stem cell lines could be used to specifically target
glioma stem cells, for example, by replacing whole tumor lysate or
total tumor RNA with lysate or RNA from glioma stem cells for
loading DCs.

Further improvement could be obtained by immunizing not only
against tumor cells, but also against the tumor stroma, which is

Figure 6. Principles of dendritic cell (DC) vaccination and further strate-
gies to improve immunotherapy of diffuse gliomas. The most common
method used to generate ex vivo DCs for vaccination is to culture autolo-
gous monocytes obtained from leukapheresis in the presence of granu-
locyte monocyte colony-stimulating factor (GM-CSF) and IL-4. Following
5–7 days in culture, the monocytes differentiate into immature DCs. DC
maturation is induced by culturing immature DCs for an additional 24–48
hours in the presence of a maturation cocktail, most commonly consist-
ing of TNF-a, IL-1b, IL-6 and PGE2, also known as monocyte-conditioned
medium. Tumor antigen loading with tumor lysate, tumor RNA or syn-
thetic tumor-specific peptides occurs at either the immature or mature
DC stage. Finally, mature tumor antigen-loaded DCs are injected back
into patients. Critical issues to enhance the persistence of the vaccine-
induced immune responses for future immunotherapeutic approaches
against diffuse gliomas are to improve the immunogenicity of a DC
vaccine and to break the local immunosuppressive environment of
diffuse gliomas. Toll-like receptor (TLR) agonists, activation of costimula-
tory receptors, blockade of co-inhibitory receptors and/or depletion or
modulation of regulatory T cells (Treg) could all be used to intensify
antiglioma immune responses induced by peripheral DC vaccinations.
In addition, immunosuppressive molecules could be targeted directly
within the tumor microenvironment to enhance treatment efficacy. Peri-
or intratumoral administration of distinct TLR agonists might serve as an
additional option to activate local immune cells and to potentiate antitu-
mor immunity. Abbreviation: BBB = blood–brain barrier; Teff = T effector
cells.
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important for tumor cell growth and survival. Despite the presence
of tumor-specific T cells, tumor cells can escape immune destruc-
tion as a result of inappropriate expression of MHC molecules or
the presence of antigen-loss variants. However, stromal cell sub-
populations that can capture and present tumor-derived antigens
appear to show less immune escape mechanisms, and therefore
might be a better target for immune effector cells (298).

Intensification of T-cell costimulation

A powerful option to enhance the immunogenicity of a vaccine is to
increase T-cell costimulation. This can be achieved by coadminis-
tering agonistic antibodies specific for costimulatory molecules
belonging to the TNF receptor superfamily, such as GITR, OX40
(CD134), 4-1BB (CD137) and RANK (47, 89, 170, 237, 265). In
murine glioma models some of these antibodies have exerted a
promising effect (138, 140).

Alternatively, T-cell costimulation can be increased by coadmin-
istering antagonistic antibodies specific for co-inhibitory mol-
ecules expressed on T cells. For instance, many inhibitory path-
ways within the B7–CD28 family have been described that can
attenuate T-cell responses and promote T-cell tolerance. CTLA-4
and the programmed-death (PD)-1 receptor are two of the key
negative regulators of T cell responses. Anti-CTLA-4 antibodies
have been studied as potential therapeutics for glioma. We and
others have shown that systemic CTLA-4 blockade prolongs sur-
vival in treated mice, without eliciting signs of autoimmunity. Anti-
CTLA-4 treatment reestablished normal CD4 counts and abrogated
increased Treg fractions in the CD4 compartment observed in
tumor-bearing mice. Moreover, the CD4 T-cell proliferative capac-
ity could be restored and glioma-specific antitumor immunity was
enhanced (67, 85).

Recent data suggest that CTLA-4 blockade can result in the
effective treatment of tumors arising in the CNS. It was demon-
strated that the systemic administration of a human mAb directed
against CTLA-4 (Ipilimumab, MDX-010, Bristol-Myers Squibb,
NewYork, NY, USA and Medarex Inc. Princeton, NJ, USA) induced
a significant clinical benefit in a female patient with metastatic
melanoma to the CNS. Pathological examination of the brain
metastasis following Ipilimumab treatment revealed abundant infil-
trates of CD8+ lymphocytes and extensive tumor necrosis (104).

Counteracting Treg-mediated
immunosuppression

The immunogenicity of a vaccine can be further enhanced by
removing suppression of Tregs. Especially in preclinical murine
models, different strategies have been successfully used to elimi-
nate Tregs such as CD25-specific mAbs, immunotoxins or different
chemotherapeutic agents.

We recently showed in a murine glioma model that depletion
of Tregs by systemic administration of CD25-specific mAbs can
elicit an otherwise suppressed immune response against glioma-
specific tumor antigens, leading to the rejection of the tumors.
Additional experiments revealed that combining Treg depletion
with administration of CTLA-4 mAbs further boosted glioma-
specific CD4 and CD8 effector T cells, as well as anti-glioma
IgG2a antibody titers in this model without any signs of autoim-
munity (85). The potency of Tregs to suppress an effective anti-

glioma immune response was further demonstrated by the fact
that mice were not protected from tumor outgrowth when vacci-
nated with tumor-lysate pulsed DCs in a “simultaneous setting”
where tumor cells and DCs are given at the same day. In contrast,
depletion of Tregs before vaccination considerably increased the
ability of vaccinated mice to survive the tumor challenge. More-
over, DC vaccination with anti-CD25 treatment allowed the
development of long-lasting tumor protective immunity (87,
164). These results confirm that counteracting Treg-mediated
immunosuppression is an essential component in the success of
anti-glioma vaccines. However, a disadvantage of CD25 deple-
tion is that treatment of mice with anti-CD25 mAbs is only ben-
eficial within a limited time window and its efficacy is dependent
on tumor burden. Treg depletion after immunotherapy inhibited
clonal expansion of tumor antigen specific T cells and reduced
the efficacy of the vaccine (51).

In humans, several anti-CD25 antibodies such as daclizumab
have been developed and tested for their ability to deplete human
Tregs. However, recent studies demonstrated that these antibodies
failed to eliminate Tregs or did not affect their suppressive function
(145, 271). Currently, two phase I/II randomized studies
(NCT00626483, NCT00626015) are being carried out in patients
with newly diagnosed GBM to determine if daclizumab inhibits the
functional and numeric recovery of Tregs after therapeutic TMZ-
induced lymphopenia.

Besides CD25 mAb, a recombinant IL-2 diphtheria toxin conju-
gate, DAB389IL-2 (also known as denileukin diftitox or ONTAK)
and a CD25-specific immunotoxin (LMB-2), which is formed of
the single-chain Fv fragment of the anti-CD25 mAb with a recom-
binant form of the pseudomonas exotoxin, have been investigated
for the elimination of Tregs. A few studies have shown a reduction
in the number of circulating and tumor-infiltrating Tregs after a
single dose of ONTAK, with a more prominent effect after succes-
sive ONTAK treatments or administrations of LMB-2. Moreover,
ONTAK significantly improved the stimulation of tumor-specific T
cell responses after vaccination with tumor-antigen loaded DCs
(53, 165, 202). However, despite inducing a reduction in Treg cell
numbers in vivo, ONTAK or LMB-2 treatment have only resulted
in limited objective clinical responses so far (146, 202).

Alternate chemotherapeutics are currently being investigated
for their potency to selectively deplete Tregs (10, 76, 78). In a rat
glioma model, oral administration of low-dose metronomic TMZ
has recently been shown to reduce circulating Tregs, associated
with a suppression of their inhibitory functions on effector T cells
in a rat glioma model. In contrast, high-dose TMZ failed to signifi-
cantly modulate Treg numbers or function (15). Similarly, a signifi-
cant reduction of CD4+CD25+ T cells could be demonstrated with
metronomic administration of TMZ in melanoma patients (251).
Therefore, a low dose metronomic TMZ regime in association with
a cancer vaccine could be an attractive strategy for the treatment of
malignant glioma and might be superior in efficacy to conventional
TMZ chemotherapy alone.

Another interesting approach to reduce the number of tumor-
infiltrating Tregs is to selectively block their trafficking to the
tumor site. Treg subsets have been reported to differ in homing
receptor expression and chemokine responsiveness (108, 189,
240). Recently, it was demonstrated that Tregs from GBM patients
express significantly higher levels of CCR4 than those from healthy
controls and they respond to both the recombinant human
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chemokines CCL2/MCP-1 and CCL22/MDC in vitro. Moreover,
chemotherapeutic agents such as TMZ and carmustine [3-bis
(2-chloroethyl)-1-nitrosourea] were shown to reduce the produc-
tion of CCL2 by glioma cells (131). Other inflammatory chemok-
ine receptors involved in the attraction of Tregs are CCR2, CCR5
and CCR8 (113). Gliomas can synthesize and release CXCL12/
SDF-1 in a TGF-b dependent manner (252). Interestingly, we
observed CXCR4 expression on glioma-infiltrating Tregs and its
upregulation during tumor growth. Implementation of CXCR4
inhibitors may thus improve immunotherapeutic strategies against
malignant gliomas (211).

BREAKING THE LOCAL
IMMUNOSUPPRESSIVE ENVIRONMENT
OF GLIOMAS
In order to enhance the persistence of the vaccine-induced immune
responses and to achieve optimal clinical benefit, apart from opti-
mizing antiglioma vaccines, additional treatments need to be
developed to break the local immunosuppressive environment of
gliomas.

Targeting TGF-b

A powerful approach to overcome glioma-induced tolerance
mechanisms involves targeting immunosuppressive molecules
directly within the tumor microenvironment. In malignant gliomas,
the three existing isoforms of TGF-b in mammals, termed TGF-b1,
2 and 3, are differentially expressed. High-grade gliomas mostly
overexpress the TGF-b2 isoform, which is processed and secreted
in large amounts in its active form (141). In recent years, different
strategies have been developed for inhibiting TGF-b. The most
advanced in the clinical application is the use of a
phosphorothioate-modified antisense oligonucleotide (trabeder-
sen, AP 12009, ANTISENSE Pharma GmbH, Regensburg,
Germany), which is complementary to the mRNA encoding
TGF-b2 isoform (122, 123, 232). Several phase I/II-studies have
been carried out applying TGFb2-antisense oligonucleotides
intratumorally through continuous high-flow microperfusion
[(convection-enhanced delivery (CED)] in patients with high-
grade gliomas; these studies confirmed the safety of this approach,
as well as long-term clinical benefit in several individuals (97). A
multinational phase III study (NCT00761280) comparing TGFb2-
antisense-oligonucleotides with standard chemotherapy (TMZ or
BCNU) in adult patients with confirmed recurrent or refractory
anaplastic astrocytoma (WHO grade III) is currently recruiting
patients.

An alternative to the treatment with antisense oligonucleotides is
to prevent downstream signaling by interfering with TGF-b recep-
tor kinase activities. Such kinase inhibitors have already been
successfully tested in preclinical models, resulting in increased
survival of treated animals, associated with pronounced tumor
infiltration by NK-cells, CD8+ T-cells and macrophages (255,
262).

Strategies combining active immunotherapy with local TGF-b
blockade could thus further enhance therapy efficacy. In a preclini-
cal study using a rat glioma model, the combination of intracranial
TGF-b2 antisense oligonucleotide administration and vaccination
with irradiated glioma cells not only inhibited TGF-b protein pro-

duction in vivo, but also significantly prolonged survival times
when compared with either vaccine alone or no therapy (161).

Targeting Stat3 and immunosuppressive
enzymes

There is accumulating evidence from preclinical studies that target-
ing immunosuppressive molecules other than TGF-b improves
antitumor immunity against gliomas as well.

Considering the suppressive role of signal transducers and acti-
vators of transcription 3 (Stat3) in antitumor immunity, selective
inhibitors of Stat3 have been evaluated in murine glioma models
and were shown to activate intratumoral macrophages and micro-
glia, induce apoptosis in glioma cells, and inhibit tumor growth
(112, 120, 300).

With regard to immunosuppressive enzymes, specific IDO
inhibitors such as 1-methyl-l-trypophan have been studied to break
immune resistance of malignant gliomas through T-cell inactiva-
tion caused by tryptophan depletion and metabolite accumulation
(106, 177). Moreover, COX-2 inhibitors have been shown to sig-
nificantly reduce PGE2 levels in Cox2-overexpressing gliomas,
thereby abrogating the induction of IL-10 and TGF-b-secreting Tr1
cells (4). Selective COX-2 inhibitors also show antiproliferative
and apoptosis-inducing effects independent of their COX-2 inhibi-
tory activity, resulting in the reduction or inhibition of glioma
growth in vivo (182, 234). Furthermore, antitumor responses could
also be elicited by blocking arginase expression using COX-2
inhibitors (214, 215). To restore T-effector-cell functions, selective
iNOS inhibitors such as SD-3651 might be attractive for the treat-
ment of gliomas (186).

Local treatment of gliomas with TLR agonists

Local administration of immune response modifiers, such as TLR-
agonists are powerful tools to generate immune responses against
antigens derived from the tumor in vivo. Pioneering experiments
from Carpentier et al have shown that direct injections of synthetic
phosphothioate-stabilized CpG-oligonucleotides (CpG-ODNs) in
neuroblastomas induced complete tumor rejection in the majority
of mice and triggered long-term immunity (37). Further studies
have confirmed the antitumor effects of CpG-ODN in different
intracranial models of syngeneic glioma (38, 174). Recently, we
could show in a murine glioma model that the therapeutic efficacy
of CpG-ODN is predominately mediated through a TLR9-
dependent immune activation leading to intratumoral accumula-
tion of IFN-g producing CD4 and CD8 T cells, a marked increase in
the ratio of CD4 effector T cells to Tregs, and long-term protective
immunity. Moreover, local administration of CpG-ODNs (TLR9
agonist) was most efficient in inducing antitumor immunity as
compared with other TLR-agonists (86).

A phase I trial using convection-enhanced intratumoral delivery
of CPG-ODN (CpG-28) has already been completed in the setting
of recurrent GBM and showed minor responses in two patients
without showing serious adverse events (36). A randomized
phase-II trial with CpG-ODN in GBM is still ongoing
(NCT00190424). However, a major drawback of this approach is
that TLR9 expression in humans is far more restricted and pre-
dominately confined to plasmacytoid DCs and B cells. Therefore,
besides CpG-ODN, it will also be interesting to explore local
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delivery of functionally similar agents, such as TLR7/8-agonists to
break local immunosuppression in glioma patients. Survival
benefit was observed in therapeutic murine glioma models after
intratumoral injection of synthetic TLR7/8-agonists, such as R848
(resiquimod) or protamine-protected mRNA (86, 231). Alterna-
tively, recently identified phosphorothioate-modified immuno-
stimulatory RNA oligonucleotides might be attractive in this
setting, as they proved to be potent inducers of INF-a and TH1
cytokines via TLR 7/8 (secreted by DCs) and triggered an antigen-
specific cytotoxic T-cell and IgG2a response (31).

In the future, it might be worthwhile to apply certain combina-
tions of TLR agonists to further enhance the treatment efficacy.
Synergy between different TLR agonists is now well documented
(183, 276). Recent findings further imply that TLR agonists not
only induce beneficial activating, but also potentially suppressive
effector responses. Therefore, selective inhibition of immunosup-
pressive molecules induced during TLR immunotherapy might
further enhance the efficacy of TLR-agonists as tumor immuno-
therapeutics. Inhibition of IL-10 with an anti-IL-10 receptor anti-
body combined with CpG-ODN activation was shown to reverse
the tolerogenic state of tumor-infiltrating DCs and to augment their
therapeutic efficacy in a mouse tumor model (269). Moreover,
vaccinations with TLR-matured DCs pulsed with tumor antigen
combined with peri- or intratumoral injection of TLR-agonists can
potentiate antitumor immunity, as it was shown to eradicate large
murine tumors resistant to chemotherapy (99).

It will be also interesting to evaluate stimulation of other innate
immune receptors for glioma therapy. Recently, bifunctional RNA
molecules that were designed to target key tumor survival factors
and to activate cytosolic retinoic acid-inducible gene-I (RIG-I)-like
helicases promoted strong antitumor effects in a mouse model of
metastatic melanoma to the lung (201).

To move forward, however, additional studies are needed to
define the protective mechanisms of action of distinct innate
immune receptor agonists and their potential toxicity, because
immune response modifiers that activate a wide range of innate and
adaptive immune cells can have severe adverse effects, especially
in the CNS.

Local glioma treatment with DCs

An alternative strategy to modify the tumor microenvironment is to
inject DCs directly into the tumor bed. Intratumoral injections of
DCs either transduced with INF-a DNA or TLR-polarized DC
have been shown to enhance anti-CNS immunity by promoting
cross-presentation of tumor-associated antigens in draining lymph
nodes and by enhancing CNS tumor homing of antigen-specific
type 1 CTLs through the induction of CXCL10 (73, 258). Further-
more, intratumoral delivery of DCs enhances the antitumor effi-
cacy of peripheral vaccines (73, 152, 194). Preliminary clinical
results also confirm that intratumoral DC application in addition to
intradermal DC injections are more beneficial in the treatment of
glioma patients than intradermal DC injections alone (294).

COMBINATION OF IMMUNOTHERAPY
AND RADIOCHEMOTHERAPY
Recent studies indicate that the clinical responsiveness of patients
with malignant gliomas to chemotherapy is increased after DC

vaccinations. Vaccinated patients receiving subsequent chemo-
therapy showed significantly longer times to tumor recurrence/
progression and longer overall survival after chemotherapy than
those who were treated only with chemotherapy. It has been postu-
lated that therapeutic vaccinations increase the sensitivity to che-
motherapy by eliminating chemoresistant tumor cells (284, 285).

There are a number of reasons to combine immunotherapeutic
strategies with conventional therapeutic methods such as radio-
therapy and chemotherapy (153, 266). Recent data show that tumor
cell death triggered by chemotherapy or radiotherapy initiates an
immunoadjuvant pathway that contributes to the success of cyto-
toxic treatments (301). Numerous endogenous danger signals
transferred by dying tumor cells to innate immune effectors may
account for the immunogenicity of tumor cell death (8). Both
anthracyclines and alkylating chemotherapeutics such as TMZ
have been shown to induce an immunogenic cell death by trigger-
ing innate receptors such as TLRs. As a consequence, the ability of
DCs to present tumor antigens from dying tumor cells to T and B
cells is enhanced (7, 52, 192). Moreover, activation of innate
immune receptors leads to the upregulation of MHC molecules on
tumor cells, thus increasing their sensitivity to T-cell-mediated
killing (86, 184). In addition, radiotherapy and chemotherapy
remove local suppressor cells, such as tumor-specific Tregs or
might affect their function, thus permitting a more effective T-cell
stimulation (188, 251). Furthermore, chemotherapy has been
shown to induce lymphopenia, thereby allowing thymic-
independent antigen-driven T-cell regeneration within the context
of T-cell homeostasis (127, 163). The concept of tumor-specific
immunization at the time of immune reconstitution after chemo-
therapy has been successfully tested in different animal models and
phase I/II clinical studies, demonstrating that the availability of
tumor antigens during homeostatic T-cell proliferation leads to
effective antitumor immunity and enhanced memory T-cell
responses (9, 12, 107, 209).

Combination therapies integrating vaccination strategies into the
standard chemoradiotherapy protocol are currently under evalua-
tion. There is preliminary evidence of successful combination of
immunotherapy and TMZ (101). However, administration of
anti-immunosuppressive therapy together with radiochemotherapy
must be carefully timed so as to optimize the immune response. It is
of critical importance to establish reliable, reproducible and quan-
titative assays to evaluate vaccine-induced immune responses (1,
259). Ideally, pre- and postvaccination samples should be taken
throughout the course of vaccination concomitantly with the evalu-
ation of clinical parameters. Vaccine-induced cellular and humoral
immune responses should be monitored in different compartments,
especially at the tumor site, in the circulation, and at the vaccina-
tion site [delayed-type hypersensitivity (DTH) test biopsies].
Overall, the combination of radiotherapy, chemotherapy and
immunotherapy has the potential for strong antitumoral activity
against malignant glioma, when applied using a well-designed
strategy.

CONCLUSION
Although our understanding of glioma immunobiology is rapidly
growing, the knowledge about the complex pathological interac-
tions within the local tumor microenvironment is still limited.
Further elucidation of the spatiotemporal organization of the
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different players in tumor-induced immunosuppression is of
utmost importance for improving intervention strategies that boost
potent antitumor responses. Current vaccination protocols are still
of limited efficacy for suppressing glioma growth. To achieve
optimal clinical benefit, additional treatments need to be developed
and combined with a vaccine to break the local immunosuppressive
environment of gliomas without inducing autoimmunity. This will
enhance the persistence of the vaccine-induced immune responses
and will increase the chance to eliminate diffusely infiltrating
tumor cells embedded within the normal brain parenchyma. More-
over, understanding the details of immune evasion in individual
patients is critical, because it will ultimately enable the develop-
ment of tailored therapies that specifically overcome these mecha-
nisms of resistance. Keeping in mind that many of these immune
evasion strategies used by gliomas are also part of the regular
defense mechanism of the brain to prevent autoimmunity, such
therapies have to be monitored carefully to detect and limit immune
responses that are harmful to normal brain tissue. With further
unraveling of glioma immunobiology, immunotherapeutic strate-
gies have the opportunity to become a standard component in the
multimodal treatment of malignant gliomas.
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