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A B S T R A C T   

The objective of the research article is to propose and validate a combination of machine learning and radiomics 
features to detect COVID-19 early and rapidly from chest X-ray (CXR) in presence of other viral/bacterial 
pneumonia and at different severity levels of diseases. It is vital to assess the performance of any diagnosis 
method on an independent data set and at very early stage of the disease when the disease severity of is very low. 
In such cases, most of the diagnosis methods fail. A total of 378 CXR images containing both normal lung and 
pneumonia (both COVID-19 and others lung conditions) were collected from publically available data set. 71 
radiomics features for each lung segment were chosen from 100 extracted features based on Z-score heatmap and 
one way ANOVA test that can detect COVID-19. Three best performing classical machine learning algorithms 
during the training phase - 1) fine Gaussian support vector machine (SVM), 2) fine k-nearest neighbor (KNN) and 
3) ensemble bagged model (EBM) trees were chosen for further evaluation on an independent test data set. The 
independent test data set consists of 115 COVID-19 CXR images collected from a local hospital and 100 CXR 
images collected from publically available data set containing normal lung and viral/bacterial pneumonia. 
Severity was scored between 0 to 4 by two experienced radiologists for each lung with pneumonia (both COVID- 
19 and non COVID-19) for the test data set. Ensemble Bagging Model Trees (EBM) with the selected radiomics 
features is the most suitable to distinguish between COVID-19 and other lung infections with an overall sensi-
tivity of 87.8% and specificity of 97% (95.2% accuracy and 0.9228 area under curve) and is robust across 
severity levels. The method also can detect COVID-19 from CXR when two experienced radiologists were unable 
to detect any abnormality in the lung CXR (represented by severity score of 0). Once the CXR is acquired and lung 
is segmented, it takes less than two minutes for extracting radiomics features and providing diagnosis result. 
Since the proposed method does not require any manual intervention (e.g., sample collection etc.), it can be 
straightway integrated with standard X-ray reporting system to be used as an efficient, cost-effective and rapid 
early diagnosis device.   

1. Introduction 

COVID-19 is currently a major health crisis that the world is expe-
riencing (Chan et al., 2020; Zhu et al., 2020). According to the World 
Health Organization (WHO) the disease is highly infectious and around 
1 out of every 5 people who gets COVID-19 caused by 2019 novel 
coronavirus (2019-nCoV) needs to be hospitalized due to breathing 
difficulty (WHO, 2020). To avoid burden on the healthcare system and 
to reduce the spread of the disease, it is vital to carry out fast and 

accurate diagnosis of COVID1-9. In clinical practice, real time poly-
merase chain reaction (RT-PCR) is considered as gold standard in 
COVID-19 diagnosis. Though the specificity of RT-PCR test is high, the 
sensitivity varies between 71 to 98% depending on sample collection 
site and sample quality (Bwire, Majigo, Njiro, & Mawazo, 2020; W. 
Wang et al., 2020; Watson, Whiting, & Brush, 2020), stage of disease 
(Sethuraman, Jeremiah, & Ryo, 2020) and degree of viral multiplication 
or clearance (Wolfel et al., 2020). Other different types of samples (e.g., 
blood, urine, stool etc.) were also used for COVID-19 detection with 
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variable results (Xiaolong, 2020). 
It has been reported that chest CT demonstrates higher sensitivity for 

the diagnosis of COVID-19 compared to initial RT-PCR tests of pharyn-
geal swab samples (Ahmed, Yap, Tan, & Hasan, 2020; Hu et al., 2020). 
Another study pointed out that chest CT scans suggested presence of 
COVID-19 related pneumonia for 81% of the patients who were tested 
negative with RT-PCR. (Ai et al., 2020). According to the Radiological 
Society of North America (RSNA), the sensitivity of CT to detect COVID- 
19 infection was 98% compared to RT-PCR sensitivity of 71%  (Fang 
et al., 2020). Thus, CT could be considered as a primary tool for COVID- 
19 detection, unless the patient cannot be moved (RSNA Press Release, 
2020). On the other hand, chest X-ray (CXR) has been considered as an 
insensitive method specially in the detection of COVID-19 at early dis-
ease. Because of lower spatial resolution compared to CT, CXR has a 
reported low sensitivity of 59% for initial detection and may appear 
normal until 4-5 days after the start of symptoms (Guan et al., 2020; Y. 
Wang et al., 2020). Because of availability and portability, it can be 
utilized as both baseline and follow up imaging method for monitoring 
disease progression (Simpson et al., 2020).Other than availability and 
portability, CXR has several advantages over other conventional COVID- 
19 diagnostic tests, e.g., short examination time, low cost and can be 
sterilized easily and quickly (Sarkodie, Osei-Poku, & Brakohiapa, 2020). 

Several deep neural network based machine learning approaches 
were proposed to detect COVID-19 directly from CXR. The reported 
sensitivity and specificity vary from 85.35 to 96.7% and 90 to 100% 
respectively based on methods, disease types and classification of the 
diseases (Ahmed et al., 2020; Asif, Wenhui, Jin, Tao, & Jinhai, 2020; 
Basu, Mitra, & Saha, 2020; Chowdhury et al., 2020; Ozturk et al., 2020). 
The detail of each method is provided in supplementary Table 1. To 
obviate the challenges of limited CXR COVID-19 data, transfer learning 
along with data augmentation was implemented which allows to in-
crease the diversity of the data. However, it is to be noted that data 
augmentation can only increase the data via geometric transformation 
of the images and cannot increase the number of images with different 
COVID-19 conditions. 

On the other hand, machine learning techniques that depend on 
handcrafted features extraction and selection approaches can be trained 
with smaller data set. In depth analysis of different first, second and 
third order statistical features known as radiomics have been success-
fully utilized for decoding the radiographic phenotype in cancer (Aerts 
et al., 2014; van Griethuysen et al., 2017). Recent studies prove the 
potential of differentiating glioblastomas (GBM) from metastatic brain 
tumors (MBTs) on contrast-enhanced T1 weighted imaging with radio-
mics based machine learning method (Chen, Ou, Wang, Guo, & Ma, 
2019). However, only one study so far has reported achieving 93% 
sensitivity and 90% specificity in detecting COVID-19 by applying 
different machine learning algorithms on textural features extracted 
from CXR (Cavallo et al., 2020). 

The training and performance evaluation of most of these methods 
were carried out by randomly splitting the data into training, validation 
and test sets. The performance was also not assessed on an independent 
data set. Another vital point to be noted that the performance of any 
diagnosis method is very much dependent on the level of disease 
severity. However, the sensitivity and specificity of all previously pro-
posed methods were not separately evaluated for different level of 
severity. 

In this study, we are proposing a radiomics based machine learning 
approach to detect COVID-19 from CXR. The approach includes selec-
tion strategy to pick the most suitable features for binary classification 
using classical machine learning algorithms. The sensitivity and speci-
ficity of the method was verified on a completely independent test data 
containing both normal, viral and bacterial pneumonia and confirmed 
COVID-19 with different levels of severity determined by two experi-
enced radiologists. 

2. Materials and methods 

2.1. Training data set and radiomics features extraction 

In the proposed approach, each lung is first manually delineated 
from training CXR image set. No image smoothing or processing tech-
nique was applied before radiomics features extraction. The training 
dataset was created from three different publically available data re-
pository containing normal and different types of lung conditions. Since 
the objective is to detect COVID-19 from other lung conditions, all CXR 
images were grouped into two classes (COVID-19 and non-COVID-19). 
The details of the training data is provided in Table 1. 

To avoid bias in class distribution for training, Adaptive Synthetic 
(ADASYN) oversampling approach was implemented on non COVID-19 
dataset to balance the imbalanced dataset. ADASYN synthetically cre-
ates new samples in between difficult-to-classify samples from the mi-
nority class (Haibo, Yang, Garcia, & Shutao, 2008). For the manual 
segmentation of lung on all the CXR images except the normal ones, 
MATLAB 2019b Image Segmenter app was used (Brown, Wilson, Doust, 
Gill, & Sun, 1998). For the normal cases, the available lung masks were 
used [39]. 100 radiomics features were then extracted using the 
segmented lung and PyRadiomics tool with Python 3.7.6 for each lung 
separately (van Griethuysen et al., 2017). This yielded 18 first-order 
statistics, 9 2D shape-based, 22 Gray Level Co-occurrence Matrix 
(GLCM), 16 Gray Level Run Length Matrix (GLRLM), 16 Gray Level Size 
Zone Matrix (GLSZM), 5 Neighboring Gray Tone Difference Matrix 
(NGTDM) and 14 Gray Level Dependence Matrix (GLDM) features. 

Among these features, first order features describe the distribution of 
voxel intensities within the ROI. Shape based features represent 2D size 
and shape of the ROI, e. g., perimeter, elongation, sphericity etc. The rest 
five feature matrices represent textural appearance. GLCM records the 
probability of occurrence of a pixel pair. The number of connected 
voxels within a distance δ that are dependent on the center voxel is used 
to generate GLDM. GLRLM is defined as the length in number of pixels 
having the same gray level value. On the other hand, GLSZM defines a 
zone of connected voxels with the same gray level intensity. GLSZM 
quantifies gray level zones within a ROI in an image. The number of 
connected voxels that share the same gray level intensity defines a gray 
level zone. NGTDM quantifies the difference between a gray value and 
the average gray value of its neighbours within distance δ. 

2.2. Radiomics features selection 

To select the features that have better classification ability between 
COVID-19 and others, two methods were implemented. The first method 
is a heatmap of Z-scores to identify features that can classify these two 
groups. The second method is the one-way ANOVA test to find the fea-
tures that have a statistically significant difference between the means of 
the two classes with the criteria p<0.05. It was found that only 71 
features out of 100 radiomics features show statistically significant 

Table 1 
Training data description  

Disease Type Description No of 
CXR 

Source 

non-COVID-19 
(Total 152 
images) 

Normal 50 JSRT ( 
Shiraishi et al., 
2000) 

Viral/bacterial pneumonia 50 Kaggle ( 
Kaggle, 2020) 

Other lung conditions (ARDS (4), 
SARS (15), Pneumocystis (12), 
Streptococcus (13), Chlamydophila 
(1), E. Coli (4), Klebsiella (1) and 
Legionella (1)) 

52 GitHub ( 
Github, 2020) 

COVID-19 COVID-19 226 GitHub ( 
Github, 2020)  
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difference and therefore, these features were only used for training the 
machine learning algorithms. Out of these 71 features 13 are first order, 
3 2D shape based, 20 GLCM, 8 GLDM, 10 GLRLM, 13 GLSZM and 4 
NGTDM extracted features. 

2.3. Training of machine learning algorithms 

A number of classical supervised and unsupervised machine learning 
algorithms were evaluated using the Classification Learner App of 
MATLAB 2019b. To optimize the parameter of the machine learning 
algorithms to classify between COVID-19 and other cases, 10 fold cross 
validation approach was implemented (Refaeilzadeh, Tang, & Liu, 
2009). The overall process is shown in Fig. 1. 

Area under receiver operating characteristic (AUC-ROC) curve as 
well as sensitivity, specificity, and accuracy were calculated to evaluate 
the ability of the classifier to discriminate the COVID-19 CXR cases from 
the other cases. Sensitivity, specificity and accuracy were calculated as: 

Sensitivity =
TP

TP + FN  

Specificity =
TN

TN + FP  

Accuracy =
TP + TN

TP + FN + TN + FP  

where TP, TN, FP and FN refer to true positive, true negative, false 
positive and false negative respectively. 

The three best performing classifiers during the training phase - 1) 
fine Gaussian support vector machine (SVM), 2) fine k-nearest neighbor 
(KNN) and 3) ensemble bagged model (EBM) trees were chosen for 
further evaluation on the test data. Among different classical machine 
learning algorithms, SVM is suitable for both linear and nonlinear binary 
classification tasks. It is also one of the mostly used automatic classifiers 
in healthcare (Cervantes, Garcia-Lamont, Rodríguez-Mazahua, & Lopez, 
2020; Huang et al., 2018; Yu, Liu, Valdez, Gwinn, & Khoury, 2010). In 
comparison, KNN is a simpler technique that stores all existing instances 
and then classifies any new instance based on a user defined similarity 
measure. However, its performance very much dependent on the size of 
training examples (Thanh Noi & Kappas, 2017). On the other hand, EBM 
trees classifier is used due to its stability and found uses in many ap-
plications like credit card fraud detection (Zareapoor & Shamsolmoali, 

2015). 

2.4. Test data set 

Test CXR data set used in this study is an independent data set and 
consists of 165 CXR images (330 lungs) containing 25 normal, 25 viral/ 
bacterial pneumonia and 115 COVID-19 cases. The 115 COVID-19 CXR 
images of 25 patients were acquired at local hospital. COVID-19 was 
confirmed with standard RT-PCR test. The details of the test data is 
shown in Table 2. 

Multiple chest X-ray were taken for all the 25 patients. Out of 25 
patients 15 patients passed away and 10 patients were released cured 
from the hospital. Different levels of severity have been observed on 
each of the different CXR image of the same patient. Even for the same 
CXR, the severity between the two lungs are sometimes different ac-
cording to the visual assessment of the radiologists. To evaluate the 
robustness of machine learning algorithms, the severity of each lung of 
each CXR for both COVID-19 and viral/bacterial pneumonia was scored. 
All CXRs were performed in a frontal projection in a posteroanterior 
view if the patient was able to stand; otherwise, an anteroposterior view 
in the sitting or supine position was acquired. The CXRs were inde-
pendently evaluated by two experienced radiologists. In case of 
discrepant interpretations, the findings were resolved by consensus. 

The radiologists rated pulmonary parenchymal involvement on CXR 
using a semiquantitative severity score (score 0 to 4) depending on the 
visual assessment on the extent of involvement by ground glass opacities 
(GGO) (i.e., hazy opacity not obliterating bronchi and vessels) or con-
solidations (i.e., area of attenuation obscuring airways and vessels). If 
none of these patterns were seen, then the radiologists would select 
score 0 (clear lung). Score 1 = <25%, score 2= 25-50%, score 3 = 50- 
75% and score 4 =>75% involvement. Severity score 0 or 1 corresponds 

Fig. 1. Illustration of the methodology for COVID-19 detection from CXR images.  

Table 2 
Test data description  

Disease type Description No of CXR Source 

non-COVID- 
19 

Normal 25 JSTR (Shiraishi et al., 
2000) 

Viral/bacterial 
Pneumonia 

25 Kaggle (2020) 

COVID-19 COVID-19 115 (25 
patients) 

Local Hospital  
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to early stage of both COVID-19 and non-COVID-19 infections. 
The reason for considering severity is that it is always difficult to 

detect abnormality at low severity as shown in Fig. 2. Normal lung and 
lung with very low severity (scored 0 severity by the radiologists) appear 
similar though the RT-PCR test confirmed COVID-19 positive. Such low 
severity makes it difficult for human observer to detect abnormality in 
the lung in CXR. 

Test data set based on severity is shown in Table 3. This is to be noted 
that during training severity was not taken in to consideration. 

2.5. Validation on test data set 

Similar to the training data set, 100 radiomics features were first 
extracted from each lung segment of each CXR image belonging to the 
test data set. However, only 71 features that showed statistically sig-
nificant difference between COVID-19 and other cases during training 
were used for performance evaluation. The three best performing clas-
sifiers during training were then applied using these 71 features to 
evaluate the classification performance of the machine learning algo-
rithms using sensitivity, specificity and accuracy along with AUC-ROC. 
The performance was also evaluated on each separate lung to investi-
gate the effects of severity 

3. Results 

The list of the 71 radiomics features that are statistically significantly 
different between COVID-19 and non-COVID-19 CXR images are pro-
vided in supplementary Table 2 along with the p-value. Fig. 3 shows the 
Z-score heatmap of the significant radiomics features for each CXR 
image ordered according to the diagnosis class. The selected features 
clearly display the difference between the COVID-19 and other cases. 

The performance of the classifiers during training is shown in 
Table 4. Each performance value shown in the table is the average of the 
10-fold cross-validation results. From the table, we can see that the SVM 
classifier has the highest average sensitivity and AUC-ROC. But the 
lowest specificity. The highest specificity is achieved by fine KNN with 
97.9% but with the lowest average sensitivity 88.9% and AUC-ROC of 
0.9343. The sensitivity, specificity and AUC-ROC for EBM method is 
always more than 90%. 

Table 5 shows the performance results of applying the previously 
trained classifiers to an independent test data set. Fig. 4 shows the AUC 
of all the three machine learning algorithm during training and testing 
phases. 

The SVM classifier was able to correctly predict all the COVID-19 
cases except one with 99.6% sensitivity, while EBM correctly pre-
dicted COVID-19 with 87.8% sensitivity. The sensitivity of the fine KNN 
was the lowest with 73.5%. On the other hand, the two highest speci-
ficity of 98% and 97% were achieved by KNN and EBM respectively, 

while the specificity of the SVM method was the lowest with 85%. The 
highest accuracy and AUC-ROC were achieved by SVM and EBM 
respectively (95.2% and 0.9241). 

The ROC curves of all the classifiers during training and test cases are 
shown in Fig. 4. 

Table 6 and 7 compare sensitivity and specificity of SVM and EBM 
classifiers respectively based on the severity. Since the accuracy and 
AUC-ROC of the fine KNN were less than 90% and 0.9 respectively, it 
was not considered for further investigation. This is to be noted that for 
some COVID-19 patients, some of the lung segments were scored as 0 by 
the radiologists. On the other hand, there were no lung segments with 
severity score 4 for viral/bacterial pneumonia. 

Sensitivity vs. specificity for both SVM and EBM for the whole test 
data and at each severity level is plotted in Fig. 5. 

Overall, SVM can detect COVID-19 with 99.6% sensitivity and 85% 
specificity. On the other hand, the performance of EBM is 87.8% and 
97% respectively. For the EBM method, the sensitivity decreases with 
the increase in severity. On the other hand, the sensitivity of the SVM 
methods is less dependent on the severity level. However, high level of 
fluctuations is observed in terms of specificity. 

This implies that there are certain radiomics features that are 
different for COVID-19 patients and these features are dependent on 
severity level. Appropriate selection of those features also can allow to 
detect COVID-19 from other diseases. 

For the whole test data set, the performance of SVM and EBM was 
comparable. However, KNN performance was much worse compared to 
the training phase. The reason behind it could be that during training 
only average sensitivity and specificity of the 10 fold validation were 
calculated and due to data augmentation via geometric transformation. 

The performance between SVM and EBM methods are more distin-
guishable if severity is taken into consideration. SVM method shows 
very good sensitivity (97.2 to 100%) but the specificity in terms of 
severity is not robust with values ranging from 63.6 to 94%. On the other 
hand, the sensitivity of EBM decreases with the increase of severity. The 
specificity of the EBM method is within 10% range for all levels of 
severity and never falls below 90% (range 90.9 to 100%). 

The proposed method can be considered as a rapid diagnosis tool to 
detect COVID-19 from CXR. Once the CXR is acquired and lung is 
segmented, it takes less than two minutes for radiomics features 
extraction on an Intel Core i7 1.5 GHz 4 cores machine with 16 GB RAM 
and Windows 10 (64-bit) operating system. For classification SVM, KNN 

Fig. 2. Normal CXR (a) and RT-PCR test confirmed COVID-19 positive cases with high (b) and low (c) severity score.  

Table 3 
Number of segmented lungs for each severity  

Severity 0 1 2 3 4 Total 

non-COVID-19 50 17 22 11 0 100 
COVID-19 36 88 71 27 8 230 
Total 86 105 93 38 8 330  
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and EBM take 1.46, 0.86 and 1.94 seconds respectively on the same 
machine. Overall time required is less than 2 minutes and no pre- 
processing steps are involved. 

4. Discussion 

Several studies have been proposed to use different machine learning 
algorithms to detect COVID-19 from CXR images (Ahmed et al., 2020; 
Asif et al., 2020; Ozturk et al., 2020). Most of them have demonstrated 
good accuracy for disease diagnosis. The performance of those methods 
vary depending on the definition of the classes used to determine the 
accuracy. The highest accuracy of 98.08% was achieved by deep 
learning method (Ozturk et al., 2020). However, it only uses two data 

classes - COVID-19 and No-Findings. Inclusion of multiple diseases 
brings the accuracy down to 87.02%. Other studies also reported to 
achieve similar sensitivity (93 to 96.7%) and specificity (90 to 100%) to 
classify between COVID-19 and others class, where other class consists 
of only normal CXR and viral pneumonia. To increase the number of 
images (sometimes as many as 10 times of the original data), all these 
algorithm mainly used geometric transformation for data augmentation. 
Training and test data set were then randomly splited. As a result, it is 
highly likely that the images of the same patients are present in both the 
training and test sets resulting in higher accuracies in detection of 
COVID-19. 

A robust method should be able to detect COVID-19 in presence or 
absence of other possible lung conditions and the performance should 
not fluctuate considerably for any other independent data set. From this 
perspective, the proposed method is robust as it not only includes 
normal and viral pneumonia but also other diseases (e.g., bacterial 
pneumonia, SARS etc.) in the training data as shown in Table 1. The 
performance is also tested on a completely independent data set. The 
other uniqueness of this method is that it can provide similar perfor-
mance irrespective of the severity levels. The authors are not aware of 
any such studies to investigate radiomics features to detect COVID-19 at 
different severity levels. 

Performance evaluation based on severity reveals more insight into 
the radiomics pattern present in CXR images. Visual assessment of 36 
lungs by the radiologists reveals no abnormality and were assigned with 
the severity score of 0. However, RT-PCR test confirmed COVID-19 
positive for these lungs and the proposed method also confirmed 
COVID-19 positive with a sensitivity of 97.2% and 91.7% by SVM and 
EBM method respectively. 

Considering the performance at different severity levels, EBM 
method proves to be the most robust method. However, the sensitivity of 
the EBM method decreases with the increase of severity. One of the 
reasons could be that with the increase of severity, the patterns that 

Fig. 3. Z-score heatmap of 71 radiomics features that yield statistically significant difference between COVID-19 and others. Each row represents one feature and 
each column represents one CXR image used in the training set. 

Table 4 
Performance of the classifiers during training.  

Classifier Sensitivity Specificity Accuracy AUC- 
ROC 

Fine Gaussian SVM 98.2% 88.4% 93.4% 0.9894 
Fine KNN 88.9% 97.9% 93.3% 0.9343 
Ensemble Bagged Model 

Trees (EBM) 
91.6% 92.6% 91.8% 0.9772  

Table 5 
Performance of the classifiers during testing.  

Classifier Sensitivity Specificity Accuracy AUC- 
ROC 

Fine Gaussian SVM 99.6% 85% 95.2% 0.9228 
Fine KNN 73.5% 98% 80.9% 0.8574 
Ensemble Bagged Model 

Trees (EBM) 
87.8% 97% 90.6% 0.9241  
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Fig. 4. ROC plot of the three best performing classifiers during training (left) and during testing (right).  

Table 6 
Sensitivity and specificity based on severity for SVM   

Severity 0 1 2 3 4 Total 

COVID-19 Original 36 88 71 27 8 230 
Detected 35 88 71 27 8 229 
Sensitivity 97.2% 100.0% 100.0% 100.0% 100.0% 99.6% 

Non-COVID-19 Original 50 17 22 11 0 100 
Detected 47 11 20 7 0 85 
Specificity 94.0% 64.7% 90.9% 63.6% 0.0% 85.0%  

Table 7 
Sensitivity and specificity based on severity for EBM.   

Severity 0 1 2 3 4 5 

COVID-19 Original 36 88 71 27 8 230 
Detected 33 78 64 21 6 202 
Sensitivity 91.7% 88.6% 90.1% 77.8% 75.0% 87.8% 

Non-COVID-19 Original 50 17 22 11 0 100 
Detected 50 16 20 11 0 97 
Specificity 100.0% 94.1% 90.9% 100.0% 0.0% 97.0%  

Fig. 5. Sensitivity and specificity for whole test data as well as for each severity level. The size of the filled circles represents severity levels from 0 to 4.  
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serve as radiomics features of COVID-19 vanish and becomes less 
distinguishable compared to other lung conditions. 

Unlike other studies dealing with the diagnosis of COVID-19 from 
CXR, the performance of the proposed method was validated on a 
completely independent data set and considering different levels of 
disease severity. One of the limitations of the study is that the perfor-
mance of the proposed framework was only implemented for RT-PCR 
test confirmed COVID-19 cases. It will be really useful to further 
investigate the performance for cases with RT-PCR being negative at 
early time point but became positive later. 

5. Conclusion 

With appropriate selection of radiomics features and machine 
learning algorithm, it is possible to detect CVOID-19 directly from CXR 
with a sensitivity and specificity comparable or better than other 
available techniques, e.g., RT-PCR. The performance of the proposed 
method with SVM and EBM based machine learning achieved an overall 
sensitivity of 99.6% and 87.8% and specificity of 85% and 97% 
respectively. Though the performance are comparable for both the 
methods, EBM is more robust across severity levels. Since this tool does 
not require any manual intervention (e.g., sample collection etc.), it can 
be integrated with any standard X-ray reporting system as an efficient, 
cost-effective and rapid point-of-care device. 
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