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Abstract

Segmentation of livers and liver tumors is one of the most important steps in radiation therapy of 

hepatocellular carcinoma. The segmentation task is often done manually, making it tedious, labor 

intensive, and subject to intra-/inter- operator variations. While various algorithms for delineating 

organ-at-risks (OARs) and tumor targets have been proposed, automatic segmentation of livers and 

liver tumors remains intractable due to their low tissue contrast with respect to the surrounding 

organs and their deformable shape in CT images. The U-Net has gained increasing popularity 

recently for image analysis tasks and has shown promising results. Conventional U-Net 

architectures, however, suffer from three major drawbacks. First, skip connections allow for the 
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duplicated transfer of low resolution information in feature maps to improve efficiency in learning, 

but this often leads to blurring of extracted image features. Secondly, high level features extracted 

by the network often do not contain enough high resolution edge information of the input, leading 

to greater uncertainty where high resolution edge dominantly affects the network’s decisions such 

as liver and liver-tumor segmentation. Thirdly, it is generally difficult to optimize the number of 

pooling operations in order to extract high level global features, since the number of pooling 

operations used depends on the object size. To cope with these problems, we added a residual path 

with deconvolution and activation operations to the skip connection of the U-Net to avoid 

duplication of low resolution information of features. In the case of small object inputs, features in 

the skip connection are not incorporated with features in the residual path. Furthermore, the 

proposed architecture has additional convolution layers in the skip connection in order to extract 

high level global features of small object inputs as well as high level features of high resolution 

edge information of large object inputs. Efficacy of the modified U-Net (mU-Net) was 

demonstrated using the public dataset of Liver tumor segmentation (LiTS) challenge 2017. For 

liver-tumor segmentation, Dice similarity coefficient (DSC) of 89.72 %, volume of error (VOE) of 

21.93 %, and relative volume difference (RVD) of −0.49 % were obtained. For liver segmentation, 

DSC of 98.51 %, VOE of 3.07 %, and RVD of 0.26 % were calculated. For the public 3D Image 

Reconstruction for Comparison of Algorithm Database (3Dircadb), DSCs were 96.01 % for the 

liver and 68.14 % for liver-tumor segmentations, respectively. The proposed mU-Net 

outperformed existing state-of-art networks.
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I. INTRODUCTION

According to the World Health Organization (WHO), liver cancer is one of the five most 

common causes of cancer-induced deaths in 2018 [1]. Liver and tumor target segmentation 

represent an important step in successful liver radiation therapy and other interventional 

procedures. Liver tumors have a deformable shape and high variability of location, as well as 

poor contrast with respect to the surrounding tissues in CT images. Thus, in current practice, 

segmentation is predominantly done manually, which is time-consuming and suffers from 

inter- or intra-operator variations [2]. Many algorithms for automatic segmentation of livers 

and liver tumors have been studied, such as atlas-based models [3], graphical models [4, 5], 

and deformable models [6, 7]. These model-based methods can offer good quality of 

segmentation results, but often involves the use of some parametric steps, which are patient 

specific and restrict the models from being more commonly used. The learning-based model 

[8] has been proposed for automatic segmentation results based on careful feature 

engineering, but it is not stable enough to deal with all clinical scenarios due to its high 

sensitivity to constructed features. Recently, inspired by the tremendous success of deep 

learning in classification [9, 10], many studies on deep learning in classification [9, 10], 

many studies on deep learning for segmentation have emerged and have been applied for 

liver [11–14], head and neck [15, 16], prostate [17], and brain [18, 19] segmentations, 

respectively. Most of these methods are based on the convolution neural networks (CNNs). 
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In particular, the U-Net has shown greatest performance to date. In general, the results of the 

segmentation depend on the boundary of the input object. U-Net structures have improved 

segmentation performance by incorporating high-resolution low-level features into the 

decoding part of the network. Most recent deep learning-based segmentation works use this 

skip connection to transfer high resolution information across the network. However, one of 

the drawbacks of the skip connection is the duplication of low resolution contents [20]. One 

other drawback is that high resolution edge information of the input is not sufficiently 

represented in high level feature maps extracted by the network. Further, it is generally 

difficult to optimize the number of pooling operations to extract high level global features. 

For example, to maintain the context information of the small object, the number of pooling 

operations used should be less than the number of pooling operations used for the large 

object due to resolution loss after pooling.

This paper proposes an object-dependent up sampling and redesigns the residual path and 

the skip connection to overcome the limitations of the conventional U-Net. The modified U-

Net (mU-Net) adaptively incorporates features in the residual path into features in the skip 

connection, and enables (1) to prevent duplication of low resolution information of features; 

(2) to extract higher level features of high resolution edge information for large objects; and 

(3) to extract higher level global features for small objects by using the optimal number of 

pooling operations. In comparison to the conventional U-Net, the mU-Net can more 

effectively handle edge information and morphologic information of the objects. In the rest 

of this paper, we provide a detailed mathematical description of the mU-Net and report 

results from its application to relevant validation studies.

II. METHODS

A. Backgrounds with mathematical preliminaries

Both CNNs and U-Nets have a convolution layer which is composed of two essential 

operations of convolution and activation combined with pooling or up pooling. The 

convolution layer generates various features in the spatial domain and can also greatly 

reduce the amount of computation complexity by sharing the kernel coefficients for one 

feature map. Each layer has multiple convolution kernels. The activation has a similar role to 

the adaptive filter with respect to the sign of each pixel value of the input generated after 

convolution, which can impose a non-linearity to the network. The output of the convolution 

layer (convolution + activation) and pooling in a fully convolutional network (FCN), 

ci = c1
i , c2

i , ⋯, cKi
i , calculated from convolution with kernel of wi = w1

i , w2
i , ⋯, wKi

i , bias 

value of bi = b1
i , b2

i , ⋯, bKi
i , and activation in the ith layer is defined as follows,

cji = f wji ⊗ D ci − 1 + bj
i ∈ ci, 1 ≤ j ≤ Ki,

ci ≡ Ci D ci − 1 ; θi , 1 ≤ i ≤ l,
(1)

where f(·) is the activation of ·, ⊗ is the convolution operator, D(·) is the pooling or down 

sampling of (·), and θi is the set of all parameters of the ith layer. The pooling operation 

makes the network handle a large receptive field during global feature extraction. 
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Translational invariance from pooling also significantly reduces the number of parameters. 

In this study, parametric rectifier linear unit (PReLU) was applied for the activation and is 

defined as follows [21],

f(x) ≡ max(x, 0) + αmin(0, x), (2)

where α is a parameter, and its range is 0 < α <1. Then, the final output signal, C(I; θ), of 

the feed forward network can be described as follows,

(I; θ) = C2l − 1 ⋯Cl + 1 Cl ⋯C2 C1 I; θ1 ; θ2 ⋯; θl ; θl + 1 ⋯; θ2l − 1 , (3)

where I is the input signal which is equal to D(c0), the parameter set of θ = {θ1, θ2, …, 

θ2l−1}, and Cr that is the output of the convolution layer in the decoding part is defined as 

follows,

cq
r = f wqr ⊗ U cr − 1 + bq

r ∈ cr, 1 ≤ q ≤ Nr,

cr ≡ Cr U cr − 1 ; θr , l + 1 ≤ r ≤ 2l − 1.
(4)

In Eq. (4), U(·) is the up pooling or up sampling of (·) to recover original matrix size, 

wr = w1
r, w2

r, ⋯, wNr
r  is the convolution kernel for the decoding part, br = b1

r, b2
r, ⋯, bNr

r  is 

the bias value for the decoding part in the rth layer, and cr − 1 is equal to cr−1 only if r = l + 1. 

The learning process means that the parameter set of θ is iteratively updated by 

backpropagation based on the gradient descent algorithm [22, 23] to minimize a value of the 

pre-defined loss function as follows,

argminθG(C(I; θ); O), (5)

where O is the desired output or labeled signal, and G(·; ·) is the predefined loss function 

that measures the error between (·) and ( ·). This type of CNN network produces good 

results, however, there is loss of the spatial information to pooling. The U-Net [24] 

overcomes this drawback using skip connections which connects high-resolution low-level 

features to the decoding part of the network, such as the 1st and 2l − 1th layers, 2nd and 2l − 

2th layers, …, and l − 1th and l + 1th layers. So, the U-Net has become the most popular base 

network widely used in biomedical image segmentation [25–27].

B. Limitation of the skip connection in the U-Net and pooling

Segmentation or contouring processes are usually affected by the edge of the object. Despite 

the skip connection in the conventional U-Net more effectively handling edge information, 

there are still some drawbacks of the U-Net. First, as already reported by [20], the U-Net 

architecture duplicates low resolution information (low frequency components) of features. 

After pooling (down sampling), low resolution information of features pass on to the 

convolution layer in the next stage. However, these low resolution information of features 

are transferred by the skip connection of the U-Net as well, as shown in Fig. 1(a). 

Duplication of low resolution information may then cause smoothing of the object boundary 
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information in the network, which is more serious in the case of fuzzy object boundaries. 

Another drawback of the U-Net architecture is that it may not sufficiently estimate high level 

features for high resolution edge information of the input object. The U-Net can use the skip 

connection to transfer high resolution information. However, unlike low resolution features 

after pooling, high resolution edge information does not pass through any convolution layers 

during transfer by the skip connection, as shown in Fig. 1(a). Thus, higher level feature maps 

learned by the network do not contain enough of the input-object’s high resolution edge 

information. The input signal, pl+1, before convolution in l + 1th layer at the decoding part in 

Fig. 1(a) can simply describe the drawbacks of the U-Net as follows,

pl + 1 = cl − 1 ⊕ U cl = cl − 1 ⊕ U Cl D cl − 1 ; θl . (6)

From Eq. (6), ⊕ concatenates two signals before and after the operator. The signal, pl+1, has 

duplicated information of D(cl−1), because (cl−1) already contains its low resolution 

information of D(cl−1) which is propagated from the further convolution layer of C1. High 

resolution edge information included only in (cl−1) do not pass through many convolution 

layers. In contrast, D(cl−1), which is low resolution information of (cl−1), passes through 

more convolution layers, described in Eq. (6), e.g., Cl. Thus, in the conventional U-Net, high 

level features are extracted disproportionately from low resolution information.

C. Proposed mU-Net architecture

The proposed network uses a residual path to avoid duplication of low resolution feature 

map information. But, unlike the previous study from [20], the proposed network places the 

residual path on right after pooling, as shown in Figs. 1(b-d). By doing so, conceptually, 

high resolution edge information of the feature maps passing through the skip connections 

are controlled adaptively and are finally combined with additional convolution layers in the 

skip connection, as shown in Figs. 1(b-d). To assess the performance of this adaptive filter, a 

permeation rate was defined, as follows,

Permeation rate

=
−0.5, if FMb(x, y) < 0.01,

∑x, y ∈ object label(x, y)FMa(x, y)
∑x, y ∈ object label(x, y)FMb(x, y) , otherwise,

(7)

where FMa is the normalized feature map in the skip connection right after the residual path, 

FMb is the normalized feature map right before the residual path, and label means the binary 

mask of the object (liver or liver tumor). Each normalized feature map has a range of [0, 1]. 

We set the permeation rate to −0.5 when FMb(x, y) < 0.01, which implies that there are no 

meaningful features for the skip connection.

A small number of pooling layers might be enough to extract global features of the small 

object due to loss of spatial information after pooling, as shown in Fig. 1(b). We defined an 

object whose size is less than 65 pixels (28×28 mm2) at stage 4 as a small object, as the 

network does not keep any information less than this size at this stage (Fig. 2). More 

efficient feature extraction in the case of small objects occurs when less information is lost 
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due to pooling. We can achieve this by blocking the features at the deconvolution layer in the 

residual path to preserve the small object information and by placing more convolution 

layers in the skip connection to extract higher level features, as shown in Fig. 1(b). This 

modification allows permeation rates of small object features to remain high at early stages 

(Fig. 2) maintaining information that might be lost after further poolings. Small object 

information is eventually lost as the stage increases, which is shown in Fig. 2 with 

permeation rates of −0.5. To improve the efficiency of feature extraction for large objects, 

features of a large object in the skip connection should be restricted to edge information, as 

shown in Fig. 1(c). There is less need to extract the low resolution information as it already 

propagated to later stages, as described in Fig. 1(a).

In the proposed network (mU-Net), up sampling implemented by a deconvolution layer 

(transposed convolution and activation) in the residual path and a residual operation at the 

skip connection adaptively filter out the information based on the object size, as shown in 

Fig. 1(d). cul + 1 that is a signal after proposed object-dependent up sampling in the residual 

path, and csl + 1 that is a signal after additional convolution layer in short cut by the skip 

connection are defined, respectively, as follows,

cu, vl + 1 = f wu, vl + 1 ⊗T D cl − 1 + bu, v
l + 1 ∈ cul + 1,

cul + 1 ≡ Cu
l + 1 D cl − 1 ; θu

l + 1 ,
(8)

cs, tl + 1 = f ws, tl + 1 ⊗ cl − 1 − cul + 1 + bs, t
l + 1 ∈ csl + 1,

csl + 1 ≡ Cs
l + 1 cl − 1 − cul + 1; θs

l + 1 ,
(9)

where ⊗T, W u, v
l + 1, bu, v

l + 1, and θu
l + 1 are the transposed convolution, the vth kernel weighting, 

the vth bias value, and set of all parameters for up sampling process in the residual path that 

is connected to the skip connection combined with (l + 1)th layers, respectively. W s, t
l + 1, 

bs, t
l + 1, and θs

l + 1 in Eq. (9) are the tth kernel weighting, the tth bias value, and set of all 

parameters for convolution layer in short cut by the skip connection combined with (l + 1)th 

layers, respectively. Then, the signal, pproposed
l + 1 , before the convolution operation in (l + 1)th 

layer at the decoding part in Fig. 1(d) can be described as follows,

pproposed
l + 1 = csl + 1 ⊕ U cl

= Cs
l + 1 cl − 1 − cul + 1; θs

l + 1 ⊕ U Cl D cl − 1 ; θl .
(10)

From Eq. (10), feature information in the residual path is adaptively filtered by cl − 1 − cul + 1

unlike the conventional U-Net in Eq. (6). To simplify, let’s assume that adaptive up sampling 

results in an interpolation for features from the large object and an annihilation filtering for 

features from the small object at the early stage so that permeation rates are high for a small 

object and low for a large object, as shown in Fig. 2. Then, the effects of the proposed 

network are as follows,
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(Features from a large object)
pproposed

l + 1 = Cs
l + 1 cl − 1 − clow

l − 1; θs
l + 1 ⊕ U Cl D cl − 1 ; θl ,

where cul + 1 = U D cl − 1 ≡ clow
l − 1 .

(11)

(Features from a small object)
pproposed

l + 1 = Cs
l + 1 cl − 1; θs

l + 1 ⊕ U Cl D cl − 1 ; θl ,

where cul + 1 = 0.
(12)

Here, feature maps of large objects generated after the residual pass in the skip connection 

have edge-like information, as shown in Fig. 3. The proposed network preferentially extracts 

edge information for large objects, which is matched to cul + 1 = cl − 1 − clow
l − 1 in Eq. (11). In 

contrast, feature maps of small objects do not suffer the same resolution losses as in 

conventional U-net architectures (i.e., no loss from pooling and deconvolution) and are 

better in extracting global features, which are matched to cul + 1 = cl − 1 in Eq. (12) and shown 

in Fig. 3 with red arrows. In addition, both cl − 1 − clow
l − 1 and cl − 1 in Eqs. (11) and (12) pass 

the additional convolution layer of CS
l + 1 in the skip connection to extract higher level 

features.

To improve accuracy, the proposed network also uses batch normalization [28], dropout 

[29], and weight decay [30]. The loss function, G, for the proposed network is defined as the 

mean square error (MSE) between estimated and desired outputs for multi-class 

segmentation.

D. Image dataset and data preparation

This study used the public dataset for the liver and liver-tumor segmentation that was 

obtained from Liver Tumor Segmentation Challenge (LiTS-ISBI2017). The dataset was 

acquired from 130 abdomen contrast computed tomography (CT) scans. Input size is 

512×512, and in-plane resolution has a range from 0.98×0.98 mm2 to 0.45×0.45 mm2. The 

number of slices has a range from 75 to 987 with thickness from 5 mm to 0.45 mm. Data 

from Forty patients were used for training (total 22,500 images) and five patient data (total 

2,550 images) were used for validation. The other thirty-five patient data (total 16,125 

images) were used for test. More details of the dataset can be found online. The 3D Image 

Reconstruction for Comparison of Algorithm and DataBase (3Dircadb) was also employed 

to validate the performance of the proposed mU-Net. Here, input size is 512×512, and in-

plane resolution has a range from 0.86×0.86 mm2 to 0.56×0.56 mm2. The number of slices 

ranges from 74 to 260 with thickness from 4 mm to 1 mm. In this case, data from fifteen 

patients were used for training (total 2,295 images), and the other five patients’ data (total 

525 images) were used for testing. For the proposed method, no preprocessing was 

performed except scaling of the intensity range from −250 to 250. The URLs for both 

datasets are provided in the Data Availability section.
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E. Learning parameters and training details

A huge amount of parameters for training were initialized using a truncated normal 

distribution with mean of 0, standard deviation of 0.05, and constant bias values of 0.1. 

Then, parameters were updated by the adaptive moment (Adam) algorithm [31] with an 

adaptive learning rate to improve learning efficiency. The starting value of the learning rate 

was empirically chosen as 0.0001 to avoid divergence and to improve the speed of 

convergence, and it was scaled by 0.9 for every 5,000 epochs. A kernel size of 3×3 size for 

convolution and deconvolution layers in the residual and the skip connection was chosen 

with a stride of 1 and 2, respectively. Each skip connection has one convolution layer 

without change of the number of feature maps. The base hyperparameters of the networks 

that corresponded to the U-Net were consistent with the original U-Net structure [24]. Table 

I shows the network dimension of the proposed network in detail. Decay of moving average 

for batch normalization was set to 0.9. Weight decay and probability of dropout for 

regularization was 0.003 and 0.8, respectively. The proposed method used not a patch, but a 

full image for input. The stage in Fig. 4 shows the number of pooling operations, which was 

5. In this paper, the number of layers are same as the number of activations. The size of each 

batch was 15 and was selected by considering memory constraints and learning time. The 

batch was shuffled during every iteration for training. Residual learning [32] was also 

applied to the proposed method for improving the network performance. All computations 

for learning were performed on a DGX Station from NVIDIA running Linux operating 

system with an Intel Xeon E5–2698 v4 2.2 GHz (20-Core) CPU and two of four total Tesla 

V100 (32 GB memory for each GPU) GPUs. The network architecture was implemented in 

the well-known deep learning framework, Tensor flow [33].

F. Performance evaluation

To verify the performance between the ground truth and test results of the proposed network, 

a total of five objective and common metrics for evaluating segmentation models were 

utilized. With the labeled data as the ground truth, dice similarity coefficient (DSC) was 

calculated between binary segmentation masks and is defined as follows,

VOE(A, B) = 1 − A ∩ B
A ∪ B × 100 (%) . (14)

The relative volume difference (RVD) is the metric for the relative difference of two object 

volumes and is defined as follows,

RVD(A, B) = B − A
A × 100 (%) . (15)

Both VOE and RVD are 0 % when A and B have the same segmentation region. Average 

symmetric surface distance (ASSD) and maximum symmetric surface distance (MSSD) 

were also calculated for the distance error [34]. The proposed network was compared to four 

state-of-art networks based on CNNs and U-Nets, all of which were built to cope with 

resolution loss of pooling. Two of comparison methods were tested with respect to the 

number of network parameters as well. To increase the number of parameters, new layers 
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were added in between the original layers in the state-of-art networks designed by Qin et al., 
[12] and Han et al., [20], as shown in Fig. 5(a), so that they could have deeper architecture 

for performance optimization. The number of stage was not changed to avoid loss of context 

information (i.e., the same number of stages in the original papers). The number of original 

layers of Men’s [35] network, which has a pyramid pooling structures, and Li’s [36] 

network, which has a hybrid DenseU-Net structure with the most superior performance of 

liver segmentation so far, already much exceeded that of the proposed method, so they were 

not included in this test about increasing parameters. For expansion to tumor segmentation 

from Qin’s method [12], the output class was increased from three to five (liver boundary, 

liver, tumor boundary, tumor, and background). All processing for data analysis were 

implemented using MATLAB (9.4.0.813654, R2018a, The MathWorks Inc., Matrick, MA).

III. RESULTS

Figure 5(b) shows the DSC performance of liver segmentation with respect to the number of 

layers (parameters). From the training data set used in this study, the number for the best 

DSC performance from Qin et al. [12] and Han et al. [20] was 12 and 29, respectively. With 

a well-trained model of each network, performances were measured for the segmentation. 

Figure 6 shows the segmentation results from a thin slice (0.8 mm) and a thick slice (5 mm). 

Absolute difference maps (error maps) between segmentation results of each method and 

ground truth are also illustrated in Fig. 7. Figure 8 shows contouring using the results of Fig. 

6. For a thin slice, the segmentation and contouring results of the proposed network are the 

most accurate, however, other methods for comparison offer quite similar results for both 

liver and liver-tumor segmentation with high accuracy as well. Unlike the results from the 

thin slice, in the thick slice case, the proposed network has obviously excellent segmentation 

and contouring results of both liver and liver tumor in comparison to other methods. When 

verifying the results from all slices, 3D volumes of the segmentation results from the thick 

slice are visualized, as shown in Fig. 9. Volume of liver and liver-tumor segmentation 

obtained from the proposed network is most similar to that from the ground truth. Figure 10 

also shows the overlaid images including liver and liver-tumor segmentation results of the 

mU–Net and the ground truth, acquired from various test cases. The quantitative analysis 

from all test cases in Tables II and Table III also show the scores consistent with the results 

in Figs. (6-10). The proposed mU-Net also attained higher scores than listed in other public 

databases like 3Dircadb, as listed in Table III and Table IV. Training time/epoch and 

evaluation time are listed in Table IV as well. The fastest network was Qin’s network, 

because it is based on the CNN without data concatenation from the skip connection and 

without up sampling. The training time/epoch of Li’s networks were the longest, and the 

evaluation was more than 3 sec.

IV. DISCUSSION

In this study, we proposed the mU-Net for fully automatic liver and liver-tumor 

segmentation. In general, deep-learning based segmentation methods estimate local and 

global features during training by taking advantage of a priori information learned from a 

large data population. There are a lot of networks for deep learning, and the U-Net has 

become the most popular network for biomedical image segmentation because it 
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compensates loss of spatial information. However, the U-Net has noteworthy drawbacks for 

segmentation. One is duplication of low resolution information, and the other is insufficient 

feature extraction for high resolution edge information. In addition, the number of poolings 

needed to extract high level global features from large objects may not be appropriate for 

small objects. Thus, the conventional U-Net cannot effectively use boundary and small 

object information, despite being able to compensate by transferring high resolution 

information from the encoding to the decoding sides of the network. In the proposed 

network, the residual path that prevents the duplication of low resolution information is 

directly connected to the skip connection with an object-dependent up sampling. This 

object-based up sampling adaptively incorporates features in the residual path into features 

in the skip connection. So, in case of the large object, only high resolution edge information 

of features are transferred on to the skip connection and, in case of the small object, full 

feature information is transferred. Then, by adding a convolution layer to the skip 

connection, higher level features can be estimated from high resolution edge information of 

features from the large object, and higher level global features of the small object can also be 

extracted. Thus, the proposed network can more efficiently use high resolution edge and 

small object information, which is related to the segmentation performance of the object.

Partial volume effect in the input image from thick slices, as shown in Fig. 6(h), appears to 

be severe. Since, there are lots of mixture information in a single slice, boundary of the liver 

and its tumor is not obvious, as compared to thin slices. So, partial volume effect causes blur 

to the object boundary. Other networks, which cannot use edge and small object information 

effectively, are susceptible to unclear boundaries in thick slices. Men et al. [35] and Li et al. 
[36] offer more improved results, in comparison to those from Qin et al. [12] and Han et al. 
[20], but it is too much of a burden to the network in terms of memory (more than 100 

layers). For liver cases, it is relatively easier to make a segmentation mask because it has a 

more obvious shape and coherent intensity level than those of live tumors, as shown in Figs. 

8(a) and 8(c). Thus, the accuracy of segmentation for livers was usually higher than that for 

liver tumors. Although, liver tumors illustrated in Figs. 8(b) and 8(d) have uncertain 

boundaries and poor contrast with normal tissues, the proposed network also offers the most 

accurate segmentation results even if it does not have complex network structure in 

comparison to pyramid-structure- and DenseNet-based networks. Qin’s network [12] offers 

inaccurate results for the liver-tumor segmentation, because superpixels are inadequate to 

small and poor contrast areas despite adding an unclear boundary class for classification. 

The proposed network has few false negative as well as false positive segmentation errors 

for both livers and tumors, as shown in Fig 10.

Although the proposed network is computationally more intensive, it offers the accurate 

segmentation results during prediction. The proposed network is particularly beneficial for 

segmentation of the objects with fuzzy boundary and small targets. The proposed network 

might be used for the detection of breast cancer in mammography or for cartilage 

segmentation of musculoskeletal (MSK) images as well as for planning radiation therapy 

treatments. Often, it is difficult to directly compare performance between different deep 

learning networks, as the performance of each network is generally affected by the number 

of layers, training dataset, size of kernels, etc. In this study, when all other hyperparameters 

(size of the convolution kernels, the number of features in each layer, etc.) are fixed, the 
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performance of networks by Qin et al. [12] and Han et al. [20] is improved slightly as the 

number of the convolution layers is increased to 12 and 29, respectively, as shown in Fig. 

5(b). Because the structures of these networks are relatively simple, there is room to improve 

by extracting more features with additional convolution layers. The number of convolution 

layers in each stage was increased as opposed to adding new stages in order to avoid loss of 

spatial information by the pooling, as shown in Fig. 5(a). On the other hand, the networks by 

Men et al. [35] and Li et al. [36] are already highly complex with many convolution layers, 

thus all hyperparameters were set to the original values reported in [35] and [36].

The current approach may have some limitations that can be further improved. First, the 

proposed network was designed for effective training of high resolution edge information, 

but MSE was applied to the proposed network as the loss function of the network due to its 

fast computation and multi-class segmentation. The calculation for the derivative of MSE for 

backpropagation is simple, however, it may not adequately capture structure-similarity 

information. If a loss function can consider high frequency information with a simple 

derivative such as soft-dice loss [37], the segmentation performance can be improved. 

Second, the proposed network also has a common drawback of deep learning, i.e., less 

generalizability. To achieve the best results, the proposed network should be applied to the 

same input and output image parameters that were used during training. Finally, due to 

memory limitations, the current segmentation was performed by slice-by-slice during 

training. Volume-by-volume training can reveal potential benefits for learning 3D shape 

features.

V. CONCLUSION

In conclusion, this paper presents a more robust deep learning network for segmentation, 

which could offer more accurate results than other networks in both liver and tumor regions 

even where the boundary is not obvious and the target object is small. By including the 

residual path and a design of object-dependent up sampling, the proposed network avoids 

duplication of low resolution information, estimates higher level feature maps that better 

represent high resolution edge information of larger object inputs, and learns to extract even 

higher level global features for small object inputs. The proposed method does not require 

any preprocessing, so it could be generally applied to other organs or other images with poor 

contrast. It might also be extended to medical images acquired from other imaging 

modalities such as MRI, PET, or ultrasound.
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Fig. 1. 
Schematic diagram of (a) conventional U-Net and (b-d) the proposed mU-Nets. (a) In the 

case of the conventional U-Net, full information of features passes through the skip 

connection and only the low resolution information is transferred to the next stage. Spatial 

information of small objects often disappears due to resolution loss after pooling. (b) In the 

mU-Net case for small objects, higher level global features can be extracted without loss of 

resolution by pooling. Spatial information of small objects is maintained by blocking the 

deconvolution path, which allows small object features to pass into the skip connection 

without being removed by pooling. (c) In the mU-Net case for large objects, feature 

information in the skip connection is restricted to edge information to avoid duplication of 

low resolution information. (d) A schematic diagram of the proposed network is shown. The 

deconvolution and activation in the residual path adaptively incorporate features of the 

residual path into features of the skip connection depending on the object size.
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Fig. 2. 
Permeation rate of the mU-Net with respect to stages. In this work, the stage is related to the 

matrix size of features. i.e., the same matrix size of features is extracted in the same stage. 

Blue dashed lines correspond to the size of 28×28 mm2 at each stage.
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Fig. 3. 
Feature maps passing through the skip connection of the conventional U-Net (left) and 

feature maps passing through the skip connection before the additional convolution layer of 

the mU-Net (right). Red arrows show that, unlike large objects, the features of small objects 

are preserved in the mU-Net. The tumor sizes are represented in the label image.
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Fig. 4. 
The proposed network architecture.
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Fig. 5. 
(a) Adding a new layer in the original ones. (b) The DSC results of liver segmentation in the 

test cases with respect to the number of layers. The digits below each graph represent the 

number of layers of each network.
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Fig. 6. 
Target thin slice. Segmentation results from (b) Qin et al. [12], (c) Han et al. [20], (d) Men et 

al. [35], (e) Li et al. [36], (f) the proposed network, and (g) ground truth. (h) Target thick 

slice. (i-n) were acquired by the methods corresponded to (b-g), respectively. Gray regions 

mean liver and white regions mean liver tumor.
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Fig. 7. 
Absolute difference map between segmentations obtained from (a) Qin et al. [12], (b) Han et 

al. [20], (c) Men et al. [35], (d) Li et al. [36], (e) the proposed network and ground truth for 

thin slice. (f-j) were absolute difference map between the methods corresponded to (a-e) and 

ground truth, respectively, for thick slice. Difference from ground truth is represented with 

yellow color.
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Fig. 8. 
Contouring results of each method. (a) Liver contouring and (b) liver-tumor contouring from 

thin slice. (c) and (d) from thick slice correspond to (a) and (b), respectively. Blue, yellow, 

purple, red, white, and green lines are acquired from ground truth, Qin et al. [12], Han et al. 

[20], Men et al. [35], Li et al. [36], and proposed network, respectively. Each brown-square 

region is also magnified.
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Fig. 9. 
3D visualization results of (a) Qin et al. [12], (b) Han et al. [20], (c) Men et al. [35], (d) Li et 

al. [36], (e) proposed network, and (f) ground truth from segmentation results in Fig. 5. 

Liver and liver tumor are represented by pink and green color, respectively. Distance of liver 

tumor from surface is represented by brightness of green color.
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Fig. 10. 
The example of segmentation results of the mU-Net. First row shows the target slices of (a), 

(b), and (c). Segmentation results are shown in the second row. Yellow and white regions 

denote false positive error for liver and liver tumor, respectively. In contrast, gray and blue 

regions denote false negative error for liver and liver tumor, respectively. Third row 

represents the images overlaid from first and second row.
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TABLE II

QUANTITATIVE SCORES OF THE LIVER-SEGMENTATION RESULTS (LITS DATASET). ALL METRIC IS DESCRIBED IN DETAIL IN 

[34].

Liver

DSC (%) VOE (%) RVD (%) ASSD (mm) MSSD (mm)

Qin et al. [12] 97.18 ± 1.22 5.81 ± 2.48 0.91 ± 0.19 1.80 ± 0.55 12.48 ± 5.12

Han et al. [20] 97.36 ± 1.29 5.05 ± 2.29 0.72 ± 0.14 1.81 ± 0.56 13.75 ± 5.38

Men et al. [35] 97.50 ± 1.06 3.94 ± 2.17 0.45 ± 0.12 1.47 ± 0.38 10.35 ± 3.78

Li et al. [36] 98.05 ± 1.01 3.31 ± 2.00 0.32 ± 0.10 1.16 ± 0.35 9.17 ± 3.64

mU-Net 98.51 ± 1.02 3.07 ± 2.01 0.26 ± 0.10 0.92 ± 0.37 8.52 ± 3.65
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TABLE III

QUANTITATIVE SCORES OF THE LIVER-TUMOR-SEGMENTATION RESULTS (LITS DATASET). ALL METRIC IS DESCRIBED IN DETAIL 

IN [34].

Liver tumor

DSC (%) VOE (%) RVD (%) ASSD (mm) MSSD (mm)

Qin et al. [12] 39.82 ± 24.79 61.39 ± 29.04 −5.34 ± 0.87 4.70 ± 1.49 13.81 ± 4.72

Han et al. [20] 55.42 ± 26.37 50.73 ± 23.06 −0.82 ± 0.18 1.54 ± 0.43 5.99 ± 3.09

Men et al. [35] 83.14 ± 6.25 29.73 ± 16.31 −0.62 ± 0.14 0.96 ± 0.24 5.01 ± 1.98

Li et al. [36] 86.53 ± 5.32 24.46 ± 14.43 −0.53 ± 0.13 0.83 ± 0.22 4.74 ± 1.97

mU-Net 89.72 ± 5.07 21.93 ± 13.00 −0.49 ± 0.15 0.78 ± 0.20 4.53 ± 1.95
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TABLE IV

QUANTITATIVE SCORES OF THE LIVER-SEGMENTATION RESULTS (3DIRCADB DATASET). ALL METRIC IS DESCRIBED IN 

DETAIL IN [34].

Liver

DSC (%) VOE (%) RVD (%) ASSD (mm) MSSD (mm)

Qin et al. [12] 93.88 ± 1.28 12.15 ± 3.62 −1.06 ± 0.24 5.29 ± 1.32 13.87 ± 4.82

Han et al. [20] 94.05 ± 1.20 10.94 ± 3.50 0.84 ± 0.17 4.17 ± 1.20 14.34 ± 4.93

Men et al. [35] 94.32 ± 1.13 10.16 ± 3.24 0.52 ± 0.15 3.84 ± 1.01 11.04 ± 4.57

Li et al. [36] 95.11 ± 1.04 9.88 ± 2.83 0.39 ± 0.11 3.52 ± 0.88 9.35 ± 3.95

mU-Net 96.01 ± 1.08 9.73 ± 2.91 0.38 ± 0.12 3.11 ± 0.84 9.20 ± 3.43

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 May 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seo et al. Page 28

TABLE V

QUANTITATIVE SCORES OF THE LIVER-TUMOR-SEGMENTATION RESULTS (3DIRCADB DATASET). ALL METRIC IS 

DESCRIBED IN DETAIL IN [34].

Liver tumor

DSC (%) VOE (%) RVD (%) ASSD (mm) MSSD (mm)

Qin et al. [12] 32.66 ± 20.92 68.26 ± 24.21 −10.83 ± 1.42 7.49 ± 2.17 16.73 ± 6.49

Han et al. [20] 48.13± 18.44 54.09 ± 21.71 −1.11 ± 0.30 2.39 ± 0.84 7.24 ± 2.54

Men et al. [35] 64.02 ± 7.18 41.37 ± 17.58 −0.90 ± 0.27 1.86 ± 0.60 6.42 ± 2.16

Li et al. [36] 66.47 ± 6.54 39.83 ± 13.43 −0.74 ± 0.18 1.71 ± 0.52 5.96 ± 2.10

mU-Net 68.14 ± 6.40 36.25 ± 13.82 −0.72 ± 0.18 1.58 ± 0.51 5.91 ± 2.07
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TABLE VI

TOTAL NUMBER OF PARAMETERS (LAYERS), TRAINING TIME FOR AN EPOCH, AND TEST TIME OF EACH METHOD.

Number of parameters Training time/epoch (sec) Evaluation time (sec)

Qin et al. [12] 1,754,780 (layer: 12) 97 0.84

Han et al. [20] 3,858,420 (layer: 29) 2910 1.10

Men et al. [35] 123,559,040 (layer: 121 6405 1.86

Li et al. [36] 205,934,600 (layer: 232) 10970 3.25

mU-Net 4,086,690 (layer: 30) 3050 1.14
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