Skip to main content
. Author manuscript; available in PMC: 2021 May 4.
Published in final edited form as: IEEE Trans Med Imaging. 2019 Oct 18;39(5):1316–1325. doi: 10.1109/TMI.2019.2948320

TABLE I.

Architecture of the proposed network. All convolutional layers include the dropout and batch normalization. Note that “3×3|64” corresponds to 3×3 kernel generating 64 features and tconv means the transposed convolution.

Stage Encoding part Object-dependent up sampling Skip connection Decoding part Fully connected
1 [3×364conv,ReLU3×364conv,ReLU]
[2×2maxpool]
[3×364tconv,ReLU [3×364conv,ReLU [2×2deconv]
[3×364conv,ReLU3×364conv,ReLU]
[1×1conv]
2 [3×3128conv,ReLU3×3128conv,ReLU]
[2×2maxpool]
[3×3128tconv,ReLU [3×3128conv,ReLU [2×2deconv]
[3×3128conv,ReLU3×3128conv,ReLU]
-
3 [3×3256conv,ReLU3×3256conv,ReLU]
[2×2maxpool]
[3×3256tconv,ReLU [3×3256conv,ReLU [2×2deconv]
[3×3256conv,ReLU3×3256conv,ReLU]
-
4 [3×3512conv,ReLU3×3512conv,ReLU]
[2×2maxpool]
[3×3512tconv,ReLU [3×3512conv,ReLU [2×2deconv]
[3×3512conv,ReLU3×3512conv,ReLU]
-
5 [3×31024conv,ReLU3×31024conv,ReLU] - - - -