View full-text article in PMC IEEE Trans Med Imaging. Author manuscript; available in PMC: 2021 May 4. Published in final edited form as: IEEE Trans Med Imaging. 2019 Oct 18;39(5):1316–1325. doi: 10.1109/TMI.2019.2948320 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. PMC Copyright notice TABLE I. Architecture of the proposed network. All convolutional layers include the dropout and batch normalization. Note that “3×3|64” corresponds to 3×3 kernel generating 64 features and tconv means the transposed convolution. Stage Encoding part Object-dependent up sampling Skip connection Decoding part Fully connected 1 [3×3∣64conv,ReLU3×3∣64conv,ReLU][2×2maxpool] [3×3∣64tconv,ReLU [3×3∣64conv,ReLU [2×2deconv][3×3∣64conv,ReLU3×3∣64conv,ReLU] [1×1conv] 2 [3×3∣128conv,ReLU3×3∣128conv,ReLU][2×2maxpool] [3×3∣128tconv,ReLU [3×3∣128conv,ReLU [2×2deconv][3×3∣128conv,ReLU3×3∣128conv,ReLU] - 3 [3×3∣256conv,ReLU3×3∣256conv,ReLU][2×2maxpool] [3×3∣256tconv,ReLU [3×3∣256conv,ReLU [2×2deconv][3×3∣256conv,ReLU3×3∣256conv,ReLU] - 4 [3×3∣512conv,ReLU3×3∣512conv,ReLU][2×2maxpool] [3×3∣512tconv,ReLU [3×3∣512conv,ReLU [2×2deconv][3×3∣512conv,ReLU3×3∣512conv,ReLU] - 5 [3×3∣1024conv,ReLU3×3∣1024conv,ReLU] - - - -