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A B S T R A C T

About a year into the pandemic, COVID-19 accumulates more than two million deaths worldwide. Despite
non-pharmaceutical interventions such as social distance, mask-wearing, and restrictive lockdown, the daily
confirmed cases remain growing. Vaccine developments from Pfizer, Moderna, and Gamaleya Institute reach
more than 90% efficacy and sustain the vaccination campaigns in multiple countries. However, natural
and vaccine-induced immunity responses remain poorly understood. There are great expectations, but the
new SARS-CoV-2 variants demand to inquire if the vaccines will be highly protective or induce permanent
immunity. Further, in the first quarter of 2021, vaccine supply is scarce. Consequently, some countries that are
applying the Pfizer vaccine will delay its second required dose. Likewise, logistic supply, economic and political
implications impose a set of grand challenges to develop vaccination policies. Therefore, health decision-makers
require tools to evaluate hypothetical scenarios and evaluate admissible responses.

Following some of the WHO-SAGE recommendations, we formulate an optimal control problem with mixed
constraints to describe vaccination schedules. Our solution identifies vaccination policies that minimize the
burden of COVID-19 quantified by the number of disability-adjusted years of life lost. These optimal policies
ensure the vaccination coverage of a prescribed population fraction in a given time horizon and preserve
hospitalization occupancy below a risk level. We explore ‘‘via simulation’’ plausible scenarios regarding
efficacy, coverage, vaccine-induced, and natural immunity.

Our simulations suggest that response regarding vaccine-induced immunity and reinfection periods would
play a dominant role in mitigating COVID-19.
1. Introduction

In late December 2019, the public health officials of Wuhan City,
China, reported the emergence of a pneumonia illness of an unknown
etiology (COVID-19). The virus (caused by SARS-CoV2) rapidly spread
through many countries around the world, causing severe problems on
their health systems. The first-line defense against the virus included
several non-pharmaceutical interventions (NPIs) such as quarantine,
isolation, and social distancing, being the main ones. Additionally,
some drugs such as baricitinib, combined with remdesivir have been
used in the U.S. to treat suspected or laboratory-confirmed COVID-
19 hospital patients [1]. Despite such measures, the pandemic has not
been controlled in most places. According to the WHO Dashboard [2],
more than 111.5 million people have been infected, and 2.4 million
ndividuals died around the world at the end of February 2021.

∗ Corresponding author.
E-mail addresses: adrian.acuna@unison.mx (M.A. Acuña-Zegarra), saul.diazinfante@unison.mx (S. Díaz-Infante), david.baca@itson.edu.mx

D. Baca-Carrasco), daniel.olmos@unison.mx (D. Olmos-Liceaga).

After COVID-19 became a Pandemic in March 2020, the World
Health Organization (WHO) organized a group of specialists dedi-
cated to immunization against COVID-19: the SAGE Working Group
on COVID-19 vaccines [3]. In July 2020, WHO SAGE published in [3]
the document entitled ‘‘Prioritized infectious disease and economic
modeling questions’’.

Here we attempt to answer some of the questions regarding the
design of vaccination policies: when and how to administrate vaccine
doses optimally.

Fortunately, the unprecedented efforts of many scientists have
succeeded in developing vaccines to protect against COVID-19. When
writing these sentences (February 2021), Mexico signed contracts that
promise vaccine supply doses from Pfizer-BioNtech, AstraZeneca,
CanSinoBio firms, and Gamaleya center. Besides, other vaccines prob-
ably get approval this year by the health authorities.
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Although there are approved COVID-19 vaccine developments, its
ffective and fair administration implies enormous challenges. Health
uthorities will administrate more than one development. Each vaccine
evelopment requires different logistics, management, and adminis-
ration training. For example, the Pfizer-BioNtech vaccine requires a
igh-tech cold chain for its transportation. In the same way, while most
accines require two doses, others like Johnson & Johnson requires
nly one dose [4].

The significant barrier at the moment is to produce enough doses
o vaccinate more than half the worldwide population in record time.
accines production demands complex processes, so we expect more
ituations like Pfizer’s and AstraZeneca’s announced delays. Conse-
uently, health authorities would review and recalibrate its vaccination
olicies according to dynamic information.

In mathematical epidemiology, the modeling of vaccination poli-
ies reached vast and impressive advances. Some approaches range
rom deterministic to stochastic, discrete or continuous, and based on
rdinary or partial derivatives [5,6]. The new tendency also points
owards statistical data analysis, optimization, and combinations of
ll mentioned techniques [7]. However, the previous studies provide
imited insights into the particularities of SARS-CoV-2.

Despite new information emerges as the current pandemic evolves,
he immunological responses of COVID-19 remains poorly understood.
ssential and conclusive information about natural and vaccine-induced
mmunity remains under development [8,9]. The variants of the SARS-
oV-2 would impact the vaccine efficacy—as in United Kingdom’s
eported case with AstraZeneca [10]. Further, Johnson & Johnson
eports in [4] that its vaccine efficacy differs across geographical
egions.

Clearly, COVID-19 vaccination policies should endure complex and
igh uncertain issues. Thus, optimize the impact of the scarce vaccine
upply is mandatory.

Our main objective is the formulation of optimal schedules for
accine administration that ensure:

• To cover a target population fraction in a fixed time horizon.
• To minimize COVID-19 burden quantified in Disability-Adjusted

Life Years (DALYs).
• To preserve hospitalization occupancy below a required bound.

According to Toner et al. [11], the last influenza vaccination pro-
ram may share some similarities with COVID-19 in the USA, but the
atter demands new requirements. Further, health authorities would
eed to revise and adapt current vaccination policies as the pan-
emic evolves. Consequently, vaccination policies design and calibra-
ion should consider other NPIs in parallel.

Iboi et al. [12] model the effect of the combined NPIs strategies
nd vaccination and conclude that both are essential to mitigate the
ctual state of COVID-19 in the USA. Recently, [13] discusses this
onducted strategy across groups differentiated according to mask-
earing. Makhoul et al. [14] analyze the impact of SARS-CoV-2 vac-

ination in age-stratified groups and vaccination strategies, according
o reduction of susceptibility, infectiousness, duration of infection, and
itigation of severe cases.

Previous COVID-19 Kermack-McKendrick type models, as reported
n [15,16], aim to forecast the number of cases, deaths, or hospital
ccupancy. Other COVID-19 models explore the impact of NPIs as lock-
own and exit strategies [17–21], or the effect of optimal serological
ests as shielding [22].

To the best of our knowledge, the most popular way to model
isease control strategies with optimal control is the so-called Lenhart’s
pproach (see, for example, [23]). Mainly, the literature report models
hat differ only in the compartmental model or functional cost. Al-
hough optimization problems in Engineering with mixed constraints—
s boundary conditions or path restrictions—are routine, in Mathemat-

cal Epidemiology are uncommon [24].

2

The preprints [25–27] address the prioritization of the COVID-19
vaccine across five or more risk groups and optimize vaccine allocation.
Their approaches face different prioritization policies according to
vaccine efficacy and its availability. Buckner et al. [27] apply dynamic
optimization with a time resolution of one month. Previous models
based on dynamical optimization mainly focus on NPIs [28,29] and just
a few address optimal vaccination schedules [30].

According to real pharmaceutical profiles, our contribution employs
dynamic optimization to compute optimal vaccination policies with a
time-dependent vaccination rate. We model vaccination strategies as an
optimal control problem with mixed restrictions. Our setup allows us
to minimize the burden of COVID-19 in years of life lost and satisfying
constraints of hospitalization occupancy, vaccination coverage, and
time horizon of doses administration. Such strategies are aligned to
the policies of the WHO strategic advisory group of experts (SAGE)
on COVID-19 vaccination [3]. We run numerical experiments to ex-
plore hypothetical scenarios conforming to four main topics: optimal
schedules, vaccine efficacy, natural and vaccine-induced immunity.

The present work explores hypothetical scenarios conforming to:

• optimal vaccine administration schedules modulated by time-
dependent vaccination rate

• different vaccine profiles as efficacy and immunization periods
• natural and induced-vaccine immunity responses

The present work helps to set the basis to investigate possible future
scenarios with vaccination policies. For example, the implementation of
optimal strategies when considering more than one vaccination dose.
Particularly to explore the consequences in the vaccination policies
when varying the inter-dose interval. Another implication is related to
find optimal strategies for a second immunization program once the
induced immunization period, of the first vaccination campaign, has
expired.

Section 2 formulates our vaccination model. Section 3 discusses a
vaccine reproduction number. In Section 4, we establish our optimal
control problem. Section 5 displays numerical experiments regarding
optimal vaccination policies. Section 6 presents our discussions. We end
with a conclusions section.

2. Formulation of mathematical model

We use an extension of the classical Kermack–McKendrick model.
Our formulation considers vaccination and vital dynamics. To this
end, for fixed time 𝑡, we split the total population 𝑁(𝑡), according to
the following compartments: susceptible (𝑆(𝑡)), exposed (𝐸(𝑡)), symp-
omatic infectious (𝐼𝑆 (𝑡)), asymptomatic infectious (𝐼𝐴(𝑡)), recovered
𝑅(𝑡)), dead (𝐷(𝑡)) and vaccinated (𝑉 (𝑡)). Our formulation requires the
ollowing hypotheses:

(H-1) The vaccine is administered to all individuals exempting those
with symptoms. Therefore, only individuals in the 𝑆, 𝐸, 𝐼𝐴 and
𝑅 classes are candidates for vaccination.

(H-2) The vaccine only has effects on the susceptible individuals. Thus,
susceptible individuals become vaccinated at 𝜓𝑉 rate.

(H-3) The vaccine only protects against COVID-19.
(H-4) Individuals get vaccinated only once during the epidemic.
(H-5) Once an inoculated individual gets vaccine-induced immunity,

returns to the 𝑆 class after a period of time (waning immunity
period).

(H-6) The vaccine is imperfect. A fraction of individuals in 𝑉 may
become infected, with a lower probability than those in the 𝑆
class.

(H-7) After a natural immunity period, the recovered population re-

turns to the susceptible class.
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Fig. 1. Compartmental diagram of COVID-19 transmission dynamics which including vaccination dynamics. Here, there are seven different classes: Susceptible (𝑆), exposed (𝐸),
ymptomatic infected (𝐼𝑆 ), asymptomatic infected (𝐼𝐴), recovered (𝑅), death (𝐷) and vaccinated (𝑉 ) individuals.
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Since we will explore disease dynamics that lasts from six months
o one year, the model includes vital dynamics. We consider a constant
opulation (𝑁(𝑡) = 𝑁). Thus, we assume that birth and natural death
ates are the same and represented by 𝜇. All births lie into the 𝑆 class
nd all but class 𝐷 experience natural death. Class 𝐷 does not intervene
n the transmission dynamics and counts reported deaths.

The infection dynamics are as follows: Susceptible individuals (𝑆)
ecome infected, but not infectious, when in contact with infectious
ndividuals 𝐼𝑆 and 𝐼𝐴. Exposed individuals (𝐸) remain in their class
ntil they become infectious and move to either 𝐼𝑆 or 𝐼𝐴. Individuals
n class 𝐼𝑆 either die by disease complications or recover, whereas
ndividuals in class 𝐼𝐴 move to the 𝑅 class after a some time. Finally,
s the vaccine is considered imperfect, individuals in 𝑉 move to the

class by interacting with infectious individuals 𝐼𝑆 and 𝐼𝐴 at a lower
ate than 𝑆 individuals. Fig. 1 shows the compartmental model diagram
hich summarizes hypotheses mentioned above.

The model is given by the following ordinary differential equations
ystem

𝑆′(𝑡) = 𝜇�̂� − 𝑓𝜆𝑆 − (𝜇 + 𝜓𝑉 )𝑆 + 𝜔𝑉 𝑉 + 𝜎𝑅𝑅

𝐸′(𝑡) = 𝑓𝜆
(

𝑆 + (1 − 𝜀𝑉 )𝑉
)

− (𝜇 + 𝜎𝐸 )𝐸

𝐼 ′𝑆 (𝑡) = 𝑝𝜎𝐸𝐸 − (𝜇 + 𝛼𝑆 )𝐼𝑆
𝐼 ′𝐴(𝑡) = (1 − 𝑝)𝜎𝐸𝐸 − (𝜇 + 𝛼𝐴)𝐼𝐴
𝑅′(𝑡) = (1 − 𝜃)𝛼𝑆𝐼𝑆 + 𝛼𝐴𝐼𝐴 − (𝜇 + 𝜎𝑅)𝑅

𝐷′(𝑡) = 𝜃𝛼𝑆𝐼𝑆
𝑉 ′(𝑡) = 𝜓𝑉 𝑆 − (1 − 𝜀𝑉 )𝑓𝜆𝑉 − (𝜇 + 𝜔𝑉 )𝑉

(1)

here the infection force is defined by

𝜆 ∶=
𝛽𝑆𝐼𝑆 + 𝛽𝐴𝐼𝐴

�̂�
. (2)

Here, �̂�(𝑡) = 𝑆(𝑡)+𝐸(𝑡)+𝐼𝑆 (𝑡)+𝐼𝐴(𝑡)+𝑅(𝑡)+𝑉 (𝑡). For system in Eq. (1)
all the variables are taken normalized by the constant total population
𝑁 . Therefore �̂� +𝐷 = 1. Let

𝛺 = {(𝑆,𝐸, 𝐼𝑆 , 𝐼𝐴, 𝑅,𝐷, 𝑉 ) ∈ [0, 1]7 ∶ 𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝐴 + 𝑅 +𝐷 + 𝑉 = 1}.

The dynamics in Eq. (1) is positively-invariant on 𝛺 (see Appendix B).
Additionally, the equations

𝑋′(𝑡) = 𝜓𝑉 (𝑆 + 𝐸 + 𝐼𝐴 + 𝑅)
′ (3)
𝑌𝐼𝑆 (𝑡) = 𝑝𝜎𝐸𝐸, o

3

Table 1
Parameters definition of system in Eq. (1).

Parameter Description

𝜇 Natural death rate

𝛽𝑆 (𝛽𝐴) Symptomatic (Asymptomatic) transmission contact rate

𝜓𝑉 Vaccination rate

𝜔𝑉 Waning rate of vaccine. 1∕𝜔𝑉 is the average time to lose
vaccine-induced immunity

𝜀𝑉 Vaccine efficacy

𝜎𝐸 Latency rate. 1∕𝜎𝐸 is the average latency period

𝑝 Exposed individuals’ fraction who become symptomatic
infectious

𝛼𝑆 Transition rate from symptomatic to recover or death. 1∕𝛼𝑆
is the average output time of symptomatic individuals class

𝜃 Proportion of symptomatic individuals who die due to the
disease

𝛼𝐴 Recovery rate of asymptomatic individuals. 1∕𝛼𝐴 is the
average time which asymptomatic individuals leave being
infectious

𝜎𝑅 Rate of loss of natural immunity. 1∕𝜎𝑅 is the natural
immunity period

count the cumulative administered vaccines doses until time 𝑡 as the
product 𝑁 × 𝑋(𝑡). Also, the cumulative incidence of reported cases is
iven by 𝑁 × 𝑌𝐼𝑆 (𝑡).

emark 1. Vaccine is administered to individuals in classes 𝑆, 𝐸, 𝐼𝐴
nd 𝑅. The amount of given vaccines is quantified by Eq. (3). However,
s we assume the vaccine has preventive nature only, there is no change
rom classes 𝐸, 𝐼𝐴, and 𝑅 to 𝑉 due to vaccination.

The parameters of model Eq. (1) are described in Table 1.

.1. Calibration of baseline parameters

Multiple COVID-19 studies have shown important differences in
ransmission contact rates values across countries. For this reason, we
stablish a set of baseline parameter values for our geographic region
f interest: the area constituted by Mexico-City and Mexico-State.
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Fig. 2. Fitting death curve of the COVID-19 outbreak in Mexico-City and Mexico-State. Panel A shows new reported deaths per day. Panel B represents cumulative deaths per
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Table 2
Estimated range for some parameters of system in Eq. (1) without vaccination dynamics

Parameter Estimated range Calibrated

𝛽𝑆 [0.058 262, 0.544 492] 0.363282
𝛽𝐴 [0.101 754, 0.441 215] 0.251521
𝑝 [0.111 348, 0.249 985] 0.1213

Mexico’s COVID-19 database provides detailed information on re-
orted cases, hospitalized, ambulatory and deaths. Following the ideas
f [15], we consider COVID-19 confirmed deaths data to calibrate
oth transmission contact rates and exposed individuals proportion
ho become symptomatic infectious.

To address this problem, we employ a MCMC method. As observa-
ion model, we use a negative binomial distribution with mean given
y

�̂�(𝑘) = 𝐷(𝑘) −𝐷(𝑘 − 1) = ∫

𝑘

𝑘−1
𝜃𝛼𝑆𝐼𝑆 (𝑡)𝑑𝑡, (4)

where �̂�(𝑘) represents the daily deaths incidence at the 𝑘th day, and
𝐷(𝑘) is the solution of the sixth equation of the system in Eq. (1)
without vaccination dynamics at the 𝑘th day. Fig. 2 shows fitting curves
with their respective confidence bands. Estimation process considers
data from February 19, 2020, to October 31, 2020. Like other stud-
ies [17,18], it is considered perturbations on both transmission contact
rates due to implementing or breaking mitigation measures. For more
information about the parameter estimation process, see Appendix A.
Table 2 summarizes our parameter calibration.

3. Vaccine reproduction number

In this section, we present a formulation for the vaccine reproduc-
tion number. Using the definitions of Van den Driessche and Watmough
[31], the basic reproductive number for our dynamics without vaccina-
tion (𝑅0) and the vaccine reproduction number (𝑅𝑉 ) are calculated for
Eq. (1). Since 𝑅𝑉 can be rewritten in terms of 𝑅0, this representation
will allow us to formulate disease control strategies.

Considering dynamics (1) without vaccination, the basic reproduc-
tive number results:

𝑅0 =
𝑝𝜎𝐸𝛽𝑆

(𝜇 + 𝜎𝐸 )(𝜇 + 𝛼𝑆 )
+

(1 − 𝑝)𝜎𝐸𝛽𝐴
(𝜇 + 𝜎𝐸 )(𝜇 + 𝛼𝐴)

. (5)

ote that each term of 𝑅0 represents the contribution of the symp-
omatic and asymptomatic infectious, respectively, to the spread of the
isease.

On the other hand, the vaccine reproduction number for Eq. (1) is
iven by (see Appendix B)

= 𝑅 + 𝑅 , (6)
𝑉 𝑆 𝐴

4

able 3
ixed parameters values of system in Eq. (1). The parameters corresponding to
accination are established in each scenario.
Parameter Value 95% CI Reference/Source

𝛼𝑆 0.092 506 9 [0.043 233, 0.181 159] [17]
𝛼𝐴 0.167 504 [0.086 355, 0.198 807] [17]
𝜎𝐸 0.196 078 [0.182 815, 0.231 481] [33]
𝛽𝑆 0.363 282 a Calibrated
𝛽𝐴 0.251 521 a Calibrated
𝑝 0.1213 a Calibrated
𝜎𝑅 0.002 739 73 Assumed
𝜇 0.000 039 138 9 Assumed
𝜃 0.11 b From data

aConfidence intervals for parameters 𝛽𝑆 , 𝛽𝐴 and 𝑝 in Table 2 and Appendix A.
bMedian estimated from Mexico data.

where,

𝑅𝑆 =
𝑝𝛽𝑆𝜎𝐸 (𝜇 + 𝜔𝑉 + (1 − 𝜀𝑉 )𝜓𝑉 )
(𝜇 + 𝜎𝐸 )(𝜇 + 𝜔𝑉 + 𝜓𝑉 )(𝜇 + 𝛼𝑆 )

, and

𝐴 =
(1 − 𝑝)𝛽𝐴𝜎𝐸 (𝜇 + 𝜔𝑉 + (1 − 𝜀𝑉 )𝜓𝑉 )
(𝜇 + 𝜎𝐸 )(𝜇 + 𝜔𝑉 + 𝜓𝑉 )(𝜇 + 𝛼𝐴)

.

Let

𝑓𝑉 =
𝜀𝑉 𝜓𝑉

(𝜇 + 𝜔𝑉 + 𝜓𝑉 )
.

This factor encloses parameters corresponding to the vaccine profile
(efficacy, waning), and vaccination rate. According to this factor and
following the ideas of Alexander et al. [32], the expression (6) can be
rewritten as

𝑅𝑉 = 𝑅0
(

1 − 𝑓𝑉
)

. (7)

Note that
(

1 − 𝑓𝑉
)

< 1. Observe that if 𝑅0 < 1, then 𝑅𝑉 < 1. Otherwise,
if 𝑅0 > 1 and the following conditions hold

𝜓𝑉 >
(𝑅0 − 1)(𝜇 + 𝜔𝑉 )
(𝜀𝑉 − 1)𝑅0 + 1

,

𝜀𝑉 > 1 − 1
𝑅0

,
(8)

then 𝑅𝑉 value is lower than one. Thus, for a waning rate given, there
exist an adequate efficacy and vaccination rate to control the disease.
However, if the conditions in (8) is not satisfied, it will not be possible
to reduce the value of 𝑅𝑉 below 1.

To illustrate the aforementioned, Fig. 3 shows the regions where it
is possible to reduce the value of 𝑅𝑉 . In this case, we set all the system
parameters as given in Table 3 and fixed 𝜔𝑉 = 1∕180, leaving 𝜀𝑉 and
𝜓 free.
𝑉
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Fig. 3. Feasibility region for vaccine reproduction number. The vaccine reproduction number 𝑅𝑉 is plotted as a function of vaccine efficacy (𝜀𝑉 ) and vaccination rate (𝜓𝑉 ). Gray
shaded region, corresponds to 𝑅𝑉 > 1. White region, denotes when 𝑅𝑉 < 1. Red region is biologically unfeasible.
3.1. Baseline vaccination rate

Vaccination policies to reach a given coverage of a certain percent-
age of the population in a given period is of great importance. In this
sense, we refer to this vaccination constant rate as the base vaccination
rate, denoted by 𝜓𝑉 𝑏𝑎𝑠𝑒.

Let 𝑊 (𝑡) be the normalized unvaccinated population at time 𝑡. If no
individual has been vaccinated at 𝑡 = 0, then 𝑊 (0) = 1. Assuming that
we vaccinate individuals at a constant rate 𝜓𝑉 𝑏𝑎𝑠𝑒, proportional to the
actual population, we have that 𝑊 (𝑡) satisfies the equation

�̇� (𝑡) = −𝜓𝑉 𝑏𝑎𝑠𝑒𝑊 (𝑡) with 𝑊 (0) = 1,

that is 𝑊 (𝑡) = 𝑒−𝜓𝑉 𝑏𝑎𝑠𝑒𝑡. It implies that the number of vaccinated
individuals (𝑊 (𝑡)) at time 𝑡 is given by 𝑊 (𝑡) = 1 − 𝑒−𝜓𝑉 𝑏𝑎𝑠𝑒𝑡. Therefore,
to vaccinate a fraction 𝑧 of a population in the given time horizon 𝑇 ,
it follows that 𝜓𝑉 𝑏𝑎𝑠𝑒 satisfies the equation

𝑧 = 1 − exp(−𝜓𝑉 𝑏𝑎𝑠𝑒 𝑇 )

thus

𝜓𝑉 𝑏𝑎𝑠𝑒 =
− ln (1 − 𝑧)

𝑇
. (9)

Observe that in the calculation of 𝜓𝑉 𝑏𝑎𝑠𝑒, it is considered all the
population to be vaccinated. For our study, vaccination is not applied
to symptomatic infectious individuals. Therefore, Eq. (9) represents an
approximation of our vaccination coverage (𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) at constant rate.

Fig. 4 shows the contour curves for 𝑅𝑉 as a function of the vaccine
efficacy (𝜀𝑉 ) and vaccination rate (𝜓𝑉 ). The green line corresponds
to vaccination rate 𝜓𝑉 𝑏𝑎𝑠𝑒 equal to 0.000 611. With this vaccination
rate, it is not possible to reduce the value of 𝑅𝑉 below one. The
intersection of the red lines correspond a vaccine efficacy equals to 0.8
and the corresponding vaccination rate such that 𝑅𝑉 = 1. Note that this
vaccination rate values below 0.007 implies 𝑅𝑉 greater than 1. Thus,
accination rate has to be greater than 0.007 in order drives 𝑅𝑉 lower

to 1. Further, a vaccine efficacy of 50% or more is required so that, with
an adequate vaccination rate, the 𝑅𝑉 value can be reduced below one.

In the next section, the optimal control theory will be applied
o propose optimal vaccination policies that minimize the COVID-19
urden.

. Optimal vaccination policies

In the remains of this manuscript, we use the following definitions.
5

Definition 1 (Constant Vaccination Policy). Consider the model in
Eqs. (1) and (3). A constant vaccination policy (CP) is a policy where
the vaccination rate 𝜓𝑉 remains constant for all time 𝑡 ∈ [0, 𝑇 ]. Thus
the number of administered vaccine doses at time 𝑡 with this CP results

𝜓𝑉
(

𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝑅(𝑡)
)

𝑁. (10)

Our main idea is taking 𝜓𝑉 as Eq. (9) and modulating it additively
by a time function 𝑢𝑉 (𝑡). We impose that 𝑢𝑉 (𝑡) ∈ [−𝑚1𝜓𝑉 , 𝑚2𝜓𝑉 ],∀𝑡 ∈
[0, 𝑇 ], 𝑚1 ∈ [0, 1], 𝑚2 ∈ Q+, then term

𝜓𝑉 + 𝑢𝑉 (𝑡), (11)

amplifies or attenuates the constant vaccination rate 𝜓𝑉 . If 𝑚1 ∈ (0, 1],
then control signal 𝑢𝑉 (𝑡) attenuates the vaccination rate 𝜓𝑉 . Meanwhile,
if 𝑚2 > 0, then control signal 𝑢𝑉 (𝑡) amplifies this vaccination rate.

We modify components equations corresponding to 𝑆, 𝑉 , 𝑋 in
Eqs. (1) and (3) by

𝑆′(𝑡) =𝜇�̂� − 𝑓𝜆𝑆 −
(

𝜇 + (𝜓𝑉 + 𝑢𝑉 (𝑡))
)

𝑆

+ 𝜔𝑉 𝑉 + 𝜎𝑅𝑅

𝑉 ′(𝑡) =
(

𝜓𝑉 + 𝑢𝑉 (𝑡)
)

𝑆 − (1 − 𝜀𝑉 )𝑓𝜆𝑉

− (𝜇 + 𝜔𝑉 )𝑉

𝑋′(𝑡) =
(

𝜓𝑉 + 𝑢𝑉 (𝑡)
)

(𝑆 + 𝐸 + 𝐼𝐴 + 𝑅).

(12)

Then our controlled dynamics reads

𝑆′(𝑡) = 𝜇�̂� − 𝑓𝜆𝑆 − (𝜇 + 𝜓𝑉 + 𝑢𝑉 (𝑡))𝑆 + 𝜔𝑉 𝑉 + 𝜎𝑅𝑅
𝐸′(𝑡) = 𝑓𝜆(𝑆 + (1 − 𝜀𝑉 )𝑉 ) − (𝜇 + 𝜎𝐸 )𝐸
𝐼 ′𝑆 (𝑡) = 𝑝𝜎𝐸𝐸 − (𝜇 + 𝛼𝑆 )𝐼𝑆
𝐼 ′𝐴(𝑡) = (1 − 𝑝)𝜎𝐸𝐸 − (𝜇 + 𝛼𝐴)𝐼𝐴
𝑅′(𝑡) = (1 − 𝜃)𝛼𝑆𝐼𝑆 + 𝛼𝐴𝐼𝐴 − (𝜇 + 𝜎𝑅)𝑅
𝐷′(𝑡) = 𝜃𝛼𝑆𝐼𝑆
𝑉 ′(𝑡) = (𝜓𝑉 + 𝑢𝑉 (𝑡))𝑆 −

(

(1 − 𝜀𝑉 )𝑓𝜆𝑉 + 𝜇 + 𝜔𝑉
)

𝑉
𝑋′(𝑡) = (𝜓𝑉 + 𝑢𝑉 (𝑡))(𝑆 + 𝐸 + 𝐼𝐴 + 𝑅)
𝑌 ′
𝐼𝑆
(𝑡) = 𝑝𝜎𝐸𝐸,

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼𝑆 (0) = 𝐼𝑆0 ,
𝐼𝐴(0) = 𝐼𝐴0

, 𝑅(0) = 𝑅0, 𝐷(0) = 𝐷0,
𝑉 (0) = 0, 𝑋(0) = 0, 𝑌𝑆 (0) = 𝑌𝑆0
�̂�(𝑡) = 𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝐴 + 𝑅 + 𝑉 .

(13)

Formally we define a controlled vaccination policy as follows.

Definition 2 (Controlled Vaccination Policy). Conforming the model in
Eq. (13) we say that

𝜓 + 𝑢 (𝑡), 𝑡 ∈ [0, 𝑇 ],
𝑉 𝑉
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Fig. 4. Contour plot of 𝑅𝑉 , as a function of vaccine efficacy (𝜀𝑉 ) and vaccination rate (𝜓𝑉 ) for the case where the average vaccine-induced immunity period is six month. Dark
green line represents the value of 𝜓𝑉 𝑏𝑎𝑠𝑒 = 0.000 611, corresponding to a coverage 𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 0.2 and a time horizon 𝑇 = 365 days. Red lines show a scenario in which it is possible
o reduce the 𝑅𝑉 value below one, considering a vaccine efficacy of 0.8 and a vaccination rate of 0.007.
(A
(A
(A
(A

𝐽
D
s

s a controlled vaccination policy (CVP). Then,

𝜓𝑉 + 𝑢𝑉 (𝑡))
(

𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝑅(𝑡)
)

𝑁,

enote the number of doses at time 𝑡 according to the modulated
accination rate (𝜓𝑉 + 𝑢𝑉 (𝑡)).

We aim to obtain time-control functions 𝑢𝑉 (⋅) that hold natural
odeling constraints—as a fixed bound for hospitalized prevalence and

overage at the final time—and optimize a conveniently cost functional.
o this end, we have to assure our optimal controlled model solution,
o we consider the functional space

 [0, 𝑇 ] ∶=
{

𝑢𝑉 ∶ [0, 𝑇 ] → R,

such that 𝑢𝑉 (⋅) bounded and
piecewise continuous} .

(14)

Let 𝑥(𝑡) ∶= (𝑆,𝐸, 𝐼𝑆 , 𝐼𝐴, 𝑅,𝐷, 𝑉 ,𝑋, 𝑌𝐼𝑆 )
⊤(𝑡) and control signal 𝑢𝑉 (⋅)

∈  [0, 𝑇 ]. Following the guidelines of WHO-SAGE modeling ques-
tions [3], we quantify the burden of COVID-19, according to the DALY
indicator. Adapting DALY’s definition reported in [34], we optimize the
number of years of life lost with a controlled vaccination policy. Our
formulation calculates a minimum of the penalization functional

𝐽 (𝑢𝑉 ) = 𝑎𝐷(𝐷(𝑇 ) −𝐷(0)) + 𝑎𝑆 (𝑌𝐼𝑆 (𝑇 ) − 𝑌𝐼𝑆 (0)). (15)

Here, 𝑎𝑆 and 𝑎𝐷 are parameters related to the definition of the Years
of Life Lost (YLL) due to premature mortality and the Years Lost due
to Disability (YLD). We estimate 𝑎𝐷 as the average remaining life
expectancy at the age of death, and according to the union of Mexico-
City and Mexico-State data, we set 𝑎𝐷 = 7.5 years. Parameter 𝑎𝑆 is the
product of a disability weight (DW) and the average duration of cases
until remission or death in years, that is, 𝑎𝑆 = 𝐷𝑊 × 𝛼−1𝑆 . Here we
postulate the disability weight as the arithmetic average of disability
weight regarding comorbidities reported in [35]. Our simulations em-
ploy 𝑎𝑆 = 0.008 418 473 years. Thus, functional 𝐽 penalizes the pandemic
burden—in Years of Life Lost—due to mortality or disability.

To describe vaccination coverage, we ask the terminal condition

𝜑(𝑥(𝑇 )) = 𝑋(𝑇 ),

𝑆(𝑇 ) + 𝐸(𝑇 ) + 𝐼𝑆 (𝑇 ) + 𝐼𝐴(𝑇 ) + 𝑅(𝑇 ) + 𝑉 (𝑇 ) +𝐷(𝑇 ) = 1,

𝑋(𝑇 ) = 𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒,
(16)
𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∈ {Low(0.2),Mid(0.5)} . s

6

That is, given the time horizon 𝑇 , we set the vaccination coverage to
20% or 50% of the total population, and the rest of final states free.
Likewise, we impose the path constraint

𝛷(𝑥, 𝑡) ∶= 𝜅𝐼𝑆 (𝑡) ≤ 𝐵, ∀𝑡 ∈ [0, 𝑇 ], (17)

to ensure that critical symptomatic cases will not overload healthcare
services. Here 𝜅 denotes hospitalization rate, and 𝐵 is the load capacity
of the health system.

Definition 3 (Admissible Control Vaccination Policy). Let (𝑥(⋅), 𝑢𝑉 (⋅)) be
a pair satisfying the ODE (13). Consider  [0, 𝑇 ] as in (14). If

C-1) 𝑢𝑉 (⋅) ∈  [0, 𝑇 ]
C-2) 𝑢(𝑡) ∈ [−𝑚1𝜓𝑉 , 𝑚2𝜆𝑉 ], ∀𝑡 ∈ [0, 𝑇 ], 𝑚𝑖 ∈ Q
C-3) 𝑥(𝑇 ) = (⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, 𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, ⋅)⊤

C-4) 𝜅𝐼𝑆 (𝑡) ≤ 𝐵, ∀𝑡 ∈ [0, 𝑇 ]

holds, then the CVP 𝜓𝑉 + 𝑢𝑉 (⋅) is admissible.

In other words, an admissible vaccination policy (AVP) is a CVP that
satisfies the coverage and hospitalization constraints imposed on model
(13). Furhter, if an AVP optimizes functional cost (15), then this AVP is
an optimal vaccination policy (OVP). Formally we have the following
definition.

Definition 4 (Optimal Vaccination Policy). Let (𝑥(⋅), 𝑢𝑉 (⋅)) a pair that
satisfies the ODE (13) such that (AC-1)–(AC-4) of Definition 3 holds.
Let cost functional 𝐽 as in (15). If

𝐽 (𝑢𝑉 ) = min
𝑢∈ ⋆

𝐽 (𝑢),

 ⋆ ∶=  [0, 𝑇 ] ∩ {𝑢(⋅) ∶ (ADC-1)–(ADC-4) holds},
(18)

then 𝜓𝑉 + 𝑢𝑉 (⋅) is an optimal vaccination policy.

Remark 2. Optimal vaccination amplifies or attenuates the esti-
mated baseline 𝜓𝑉 in an interval [𝜓min

𝑉 , 𝜓max
𝑉 ] to optimize functional

(⋅)—minimizing symptomatic incidence and death reported cases in
ALYs and satisfying hospitalization occupancy and coverage con-

traints.

We aim to minimize the cost functional (15)—over an appropriated
pace—subject to the dynamics in Eq. (13), coverage related to the
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oundary condition (16), and path constraints (17). We call this kind
f policies as optimal vaccination policies (OVP). That is, we seek
accination policies that solve the following problem.
Optimal Control Problem (OCP): Find the optimal vaccination rate

(𝜓𝑉 + 𝑢∗𝑉 ) such that,

𝐽 (𝑢∗𝑉 ) = min𝑢𝑉 ∈ ⋆ 𝐽 (𝑢𝑉 )
𝐽 (𝑢𝑉 ) ∶= 𝑎𝐷(𝐷(𝑇 ) −𝐷(0)) + 𝑎𝑆 (𝑌𝐼𝑆 (𝑇 ) − 𝑌𝐼𝑆 (0))

subject to
𝑓𝜆 ∶= 𝛽𝑆𝐼𝑆+𝛽𝐴𝐼𝐴

�̂�
𝑆′(𝑡) = 𝜇�̂� − 𝑓𝜆𝑆 − (𝜇 + 𝜓𝑉 + 𝑢𝑉 (𝑡))𝑆 + 𝜔𝑉 𝑉 + 𝜎𝑅𝑅
𝐸′(𝑡) = 𝑓𝜆(𝑆 + (1 − 𝜀𝑉 )𝑉 ) − (𝜇 + 𝜎𝐸 )𝐸
𝐼 ′𝑆 (𝑡) = 𝑝𝜎𝐸𝐸 − (𝜇 + 𝛼𝑆 )𝐼𝑆
𝐼 ′𝐴(𝑡) = (1 − 𝑝)𝜎𝐸𝐸 − (𝜇 + 𝛼𝐴)𝐼𝐴
𝑅′(𝑡) = (1 − 𝜃)𝛼𝑆𝐼𝑆 + 𝛼𝐴𝐼𝐴 − (𝜇 + 𝜎𝑅)𝑅
𝐷′(𝑡) = 𝜃𝛼𝑆𝐼𝑆
𝑉 ′(𝑡) = (𝜓𝑉 + 𝑢𝑉 (𝑡))𝑆 −

(

(1 − 𝜀𝑉 )𝑓𝜆𝑉 + 𝜇 + 𝜔𝑉
)

𝑉
𝑋′(𝑡) = (𝜓𝑉 + 𝑢𝑉 (𝑡))(𝑆 + 𝐸 + 𝐼𝐴 + 𝑅)
𝑌 ′
𝐼𝑆
(𝑡) = 𝑝𝜎𝐸𝐸,

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼𝑆 (0) = 𝐼𝑆0 ,
𝐼𝐴(0) = 𝐼𝐴0

, 𝑅(0) = 𝑅0, 𝐷(0) = 𝐷0,
𝑉 (0) = 0, 𝑋(0) = 0, 𝑌𝑆 (0) = 𝑌𝑆0 , 𝑋(𝑇 ) = 𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒,
𝑢𝑉 (⋅) ∈ [𝑢min, 𝑢max],
𝜅𝐼𝑆 (𝑡) ≤ 𝐵, ∀𝑡 ∈ [0, 𝑇 ],
�̂�(𝑡) = 𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝐴 + 𝑅 + 𝑉 .

(19)

ig. 5 illustrates the main ideas of the above discussion. Table 4 enclose
arameter information of the functional cost and constraints.

Existence of solution to our (OCP) in Eq. (19) drops in the theory
eveloped by Francis Clark [see e.g.36, Thm. 23.11]. Since we aim to
imulate hypothetical scenarios, we omit here a rigorous proof. Instead,
e refer interested readers to [23] and the reference therein.

. Numerical experiments

.1. Methodology

We apply the so-called transcript method to solve our (OCP). This

ethod transforms the underlying problem of optimizing functional I

7

overned by a differential equation into a finite-dimensional optimiza-
ion problem with restrictions. To fix ideas, let 𝑥, 𝑢 respectively denote
tate and control, and consider the optimal control problem

min 𝐽 (𝑥(⋅), 𝑢(⋅)) = 𝑔0(𝑇 , 𝑥(𝑇 )) Functional cost
�̇� = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ [0, 𝑇 ], Dynamics
𝑢(𝑡) ∈  [0, 𝑇 ]for a.e. 𝑡 ∈ [0, 𝑇 ] Admissible controls
𝑔(𝑥(𝑡), 𝑢(𝑡)) ≤ 0 Path constrain
𝛷(𝑥(0), 𝑥(𝑇 )) = 0 Boundary conditions.

hen, transcription methods transform this infinite-dimensional opti-
ization problem into a finite dimension problem (NLP) via discretiza-

ion of dynamics, state, and control. For example, if we employ the
uler method with a discretization of 𝑁 constant steps with size ℎ, then
e can solve
min 𝑔0(𝑡𝑁 , 𝑥𝑁 )

𝑥𝑖+1 = 𝑥𝑖 + ℎ𝑓 (𝑥𝑖, 𝑢𝑖), 𝑖 = 0,… , 𝑁 − 1

𝑢𝑖 ∈  , 𝑖 = 0,… , 𝑁

𝑔(𝑥𝑖, 𝑢𝑖) ≤ 0, 𝑖 = 0,… , 𝑁

𝛷(𝑥0, 𝑥𝑁 ) = 0, 𝑖 = 0,… , 𝑁,

(20)

here 𝑥𝑖 ≈ 𝑥(𝑡𝑖), 𝑢𝑖 ≈ 𝑢(𝑡𝑖) in the grid

𝑡0 = 0, 𝑡𝑖 = 𝑖ℎ (𝑖 = 1,… , 𝑁 − 1), 𝑡𝑁 = 𝑇
}

.

et 𝑌 = {𝑥0,… , 𝑥𝑁 , 𝑢0,… 𝑢𝑁}. Thus Eq. (20) defines a nonlinear
rogramming problem on the discretized state and control variables of
he form

min𝐹 (𝑌 )

such that
𝐿𝐵 ≤ 𝐶(𝑌 ) ≤ 𝑈𝐵.

(21)

he numerical analysis and design of transcript methods is a well-
stablished and active research numerical field. There is a vast liter-
ture about robust methods, and recently, implementations have been
eveloped in vogue languages like Julia [38], Python [39], and others.

Our simulations rely on the Bocop package [40] to solve our OCP.
ocop is part of the development of the INRIA-Saclay initiative for open
ource optimal control toolbox and supported by the team Commands.
OCOP solves the NLP problem in Eq. (21) by the well-known software

popt and using sparse exact derivatives computed by ADOL-C.
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Table 4
Parameters regarding the constraints conditions and cost functional of the OCP (19).
Symbol Description Value Ref

𝑎𝐷 Penalization weight due to premature
mortality (YLL) and estimated from
Mexico-City an Mexico-State data

7.5 years [34,37]

𝑎𝑆 Penalization weight due to disability (YLD) 0.008 418 473 years [35]

𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 Covering constraint at time horizon 𝑇 [3]

𝜅 Hospitalization rate 0.05 Estimated

𝐵 Health service capacity in number of beds 9500 Estimated
Table 5
Setup parameters for counterfactual and response scenarios. See Table 2 for the rest of parameters.
Simulation scene Description Set-up (𝑥𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , 𝑇 , 𝜀𝑉 , 𝜔−1

𝑉 , 𝜎
−1
𝑅 )

(SCN-1) Likening between optimal and constant
vaccination policies.

(20%, 180 days, 70%, 730 days, lifelong )

(SCN-2) Vaccine efficacy blow (50%, 365 days, {50%, 70%, 90%}, 730 days, 180 days )
(SCN-3) Vaccine-induced immunity period (50%, 365 days, 90%, {180 days, 365 days, 730 days}, 365 days)
(SCN-4) Natural immunity period (50%, 365 days, 90%, 730 days, {90 days, 180 days, 365 days})
(

f
C
q
d
O
N
h

V

C
T
v

a

We provide in [41] a GitHub repository with all regarding Bocop
ources.

.2. Hypothetical scenarios

Following the guidelines reported by the WHO Strategic Advisory
roup of Experts (SAGE) on Immunization Working Group on COVID-
9 Vaccines modeling questions presented in [3]. We simulate scenarios
o illustrate vaccination policies’ response with a preventive vaccine.

e aim to contrast the impact on the burden of COVID-19, according
o

SCN-1) Optimal versus constant vaccination policies
SCN-2) Vaccine efficacy
SCN-3) Induced vaccine immunity
SCN-4) Natural immunity

We consider vaccine efficacies and doses compatible with the firms
ansinoBio and Johnson & Johnson [42]. Although other firms such as
fizer-BioNTech, Moderna, Astra-Zeneca, Gamaleya Research Institute,
inovac Biotech, among others, require two doses [10,43,44], as a first
pproximation, our model simulates their total efficacy in a single dose.
urther, since reinfection and vaccine-induced immunity parameters
emain unavailable, we see it pertinent to explore the effect of plausible
ettings.

emark 3. Optimal vaccination policy implies that number of doses
per unit time described by

(𝜓𝑉 + 𝑢𝑉 (𝑡))(𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝑅(𝑡))𝑁

mitigates the outbreak in optimal form, where optimal is defined in
terms of function 𝐽 (⋅) (see Eq. (15)), that is minimizing years of life lost
in DALYs. Counterfactual scenarios implies 𝜓𝑉 + 𝑢𝑉 (𝑡) = 0, ∀𝑡 ∈ [0, 𝑇 ].
Constant vaccination policy means 𝑢𝑉 (⋅) = 0.

Remark 4. We assume positive prevalence of all epidemiological
classes according to the following hypothesis:

IC)-1 The implemented initial conditions for our numerical experi-
ments are hypothetical and do not reflect the actual data re-
ported by Mexico-City and Mexico-State health authorities. The
initial conditions are taken such that an outbreak is on its growth
phase.

IC)-2 We suppose that around of 30% of the population is under
Lockdown and is enclosed along with recovered class 𝑅. That is,
𝑅(0) encircle mainly children, senior, home office, people with
low mobility and COVID-19 recovered individuals.
 C

8

Table 6
Fixed parameters values of system in Eq. (19).

Parameters values

(SCN-1)–(SCN4)

𝛽𝑆 , 𝛽𝐴, 𝛼𝑆 , 𝛼𝐴, 𝜎𝐸 , 𝜇, 𝜃, 𝑝 Table 2
𝑎𝐷 , 𝑎𝑆 , 𝜅, 𝐵 Table 4

(SCN-1) (SCN-2)–(SCN-4)

𝜓𝑉 0.001 239 69 0.001 899 03
𝑢𝑚𝑖𝑛 −0.5𝜓𝑉 −0.5𝜓𝑉
𝑢𝑚𝑎𝑥 5𝜓𝑉 2.5𝜓𝑉

IC)-3 Our numerical results are of qualitative nature and not nec-
essarily sustain forecasting or follows the actual profile of the
underlying COVID-19 pandemic data.

Table 5 encloses a brief description and parameter values regarding
each scenario. The reader can also access the web Chart Studio
Graph of each figure regarding data and plotly [45] visual repre-
sentation.

To perform the simulations corresponding to the scenarios presented
in Table 5, we fix the parameter values as in Table 6.

Optimal versus constant vaccination policies: (SCN-1)

To fix ideas, we display in Figs. 6 and 7 the counterfactual sce-
nario regarding no intervention, constant vaccination policy (CP), and
optimal vaccination policy (OVP) with a vaccine profile of efficacy
𝜀𝑉 = 70%, vaccine-induced immunity 𝜔−1

𝑉 = 730 days and a campaign
or 20% of coverage at 180 days. Fig. 6 suggests that the OVP improves
P response and counterfactual scenario given by the disease burden
uantified in DALYs. Fig. 7 confirms this improvement by comparing
isease dynamics with and without vaccination. We observe CP and
VP reduce the symptomatic prevalence and the cumulative deaths.
ote that despite OVP requires less doses amount than CP at the time
orizon (see Fig. 6B), the OVP performs better than CP (see Fig. 7).

accine efficacy (SCN-2)

In February 2021, multiple vaccines have been rolled out to prevent
OVID-19 disease. Table 7 summarizes some of these vaccine efficacies.
o encompass these scenarios we focus on the 50%, 70% and 90%
accine efficacies.

Figs. 8 and 9 display the optimal vaccination policy’s response
ccording to the vaccine efficacies above mentioned. Fig. 8A displays

OVID-19 burden in DALYs for the different vaccine efficacies and
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Fig. 6. Effect of the vaccination policy on the burden COVID-19 for a 20% coverage at time horizon of half year. (A) Vaccination policies’ response regarding constant (𝜓𝑉 ) and
ptimal (𝜓𝑉 + 𝑢𝑉 (𝑡)) vaccination rates in the burden of COVID-19 quantified in DALYs. (B) Evolution of the vaccination covering according to each policy. (C) Vaccination schedule
or each vaccination policy. Blue line corresponds to policies with constant vaccination rate 0.001 239 69. Green line corresponds to optimal vaccination policy. For counterfactual
eference (panel A), black line represents the burden of COVID-19 without vaccination. See https://plotly.com/~MAAZ/366/ for plotly visualization and data.
Fig. 7. Effect of the vaccination policy on outbreak evolution. Optimal policy versus no vaccination (first column), constant policy versus no vaccination (second column) and
ptimal versus constant policy (third column). Upper row shows the symptomatic prevalence per 100 000 inhabitants. Lower row illustrates cumulative deaths (per 100 000 inhabitants).

The shaded area represents the improvement of one policy over its corresponding. Data and web visualization in https://plotly.com/~MAAZ/474/.
Table 7
Vaccine efficacy of some of the approved developments for emergency use.

Developer Vaccine name Vaccine efficacy %, (95% CI) Reference

Pfizer-BioNTech BNT162b2 95 (90.3–97.6) [46]
Gamaleya Institute Sputnik V 91.6 (85.6–95.2) [44]
Oxford University-AztraZeneca AZD1222 74.6 (41.6-88.9) [10]
Johnson & Johnsona Ad26.COV2.S 57%, 66% or 72% [4]
Sinovac Biotecha CoronaVac 50.4% [42]

aNo available information about the confidence intervals.
ithout vaccination dynamics. Clearly, the higher the vaccine efficacy,
he lower the DALYs become.

Figs. 8B–C also illustrate the effect of vaccine-efficacies on coverage
nd optimal vaccination policy, respectively. We observe that vaccine
fficacy influences the design of an optimal policy. For this scenario
he higher vaccine efficacy, the earlier is its massive implementation.
ccording to 50% coverage at a time horizon of 1 year, Fig. 9 displays an
9

improvement from 1.5 to 3 times regarding the counterfactual scenario
for the cumulative deaths at time horizon. Also, there is a notorious im-
provement in the hospital occupancy. For the no vaccination dynamics,
the hospital occupancy exceeds the 90% of beds (dashed red line in
Fig. 9). In contrast, for the considered controlled dynamics, the higher
hospital occupancy lowers to about 63% of beds (see Fig. 9A ).
1

https://plotly.com/~MAAZ/366/
https://plotly.com/~MAAZ/474/
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Fig. 8. The response of COVID-19 burden on vaccine efficacy. (A) COVID-19 burden response quantified in DALYs per 100 000 inhabitants to vaccines with efficacy of 50% (blue),
70% (red) and 90%(green). (B) Coverage evolution to reach 50% of the total population vaccinated. (C) Optimal vaccination doses schedule according to the different efficacies.
See https://plotly.com/~MAAZ/358/ for visualization and data.
Fig. 9. Effect of vaccine-efficacy on hospital occupancy and on the number of saved lives compared to no vaccination dynamics. Vaccine-efficacy of 50% (blue), 70% (red) and
90% (green). Dotted red line represents 90% of hospital beds per 100 000 inhabitants. See https://plotly.com/~MAAZ/470/ for data and visualization.
Vaccine-induced immunity (SCN-3)

Vaccine response and its induced immunity are strongly related on
the mitigation prevalence. However, vaccine-induced immunity period
remains poorly understood [8]. Here, we contrast three vaccines with
different induced-immunity. Let denote by 𝑣𝑎𝑥1, 𝑣𝑎𝑥2, 𝑣𝑎𝑥3 vaccines
with an induced-immunity period of a half, one, and two years, re-
spectively, and common efficacy of 90%. Consider a vaccine campaign
of time horizon of one year and 50% coverage. Taking the same
initial conditions, and parameters values, as in Table 2, we explore
the vaccines’ consequences versus the counterfactual scenario with
𝑅0 = 1.794 93. Vaccine reproduction number, at the initial time of
the optimal policy, for each vaccine results in 𝑅[𝑣𝑎𝑥1]

𝑉 = 0.917 813 4,
𝑅[𝑣𝑎𝑥2]
𝑉 = 0.655 909 4, 𝑅[𝑣𝑎𝑥3]

𝑉 = 0.462 048 9 for vaccine-induced immunity
periods of a half, one, and two years, respectively. We display in Fig. 10
the response of the vaccines 𝑣𝑎𝑥1, 𝑣𝑎𝑥2 and 𝑣𝑎𝑥3. Since optimal vacci-

nation policies are similar, Fig. 10C suggests that the vaccine-induced

10
immunity rate is not determinant in the vaccination schedule design.
Fig. 11 shows a wide reduction of prevalence and cumulative deaths
concerning the uncontrolled outbreak. This reduction is consistent with
the vaccine reproductive number values corresponding to each vaccine-
induced immunity. Thus, vaccine reproductive number values highlight
the importance of having an adequate vaccine profile and adequate
vaccine schedule to control the epidemic outbreak.

Natural immunity hypothesis (SCN-4)

‘‘Reinfections raise questions about long-term immunity to COVID-
19 and the prospects for a vaccine’’, reported Heidi Ledford in [47].
Following this line, we display in Figs. 12 and 13 the vaccine’s response
with 90% efficacy and contrasting with natural immunity periods of
90 days, 180 days, and 365 days. Here, the adjective ‘‘natural’’ denotes the
immunity that an individual develops after recovering from a previous

bout of COVID-19 without vaccination. Fig. 12A shows that, if natural

https://plotly.com/~MAAZ/358/
https://plotly.com/~MAAZ/470/
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Fig. 10. Vaccine-induced immunity effect on the COVID-19 burden. (A) Effect on the burden of COVID-19 quantified in DALYs per 100 000 inhabitants due to vaccine-induced
immunity of 180 days (green), 365 days (red) and 730 days (blue). (B) Coverage evolution to reach 50% of the total population vaccinated. (C) Optimal vaccination doses schedule
according to the different vaccine-induced immunity periods. Visualization and data in https://plotly.com/~MAAZ/407/.
Fig. 11. Effect of vaccine-induced immunity on mitigation and saved lives of COVID-19 outbreak. Upper row shows the improvement of optimal vaccination policy over no
accination dynamics on the symptomatic prevalence per 100 000 inhabitants. Lower row shows a comparison of the saved lives (per 100 000 inhabitants) between optimal policies
nd no vaccination dynamics. Optimal policy with vaccine-induced immunity of a half year versus no vaccination dynamics (first column), optimal policy with vaccine-induced
mmunity of a year versus no vaccination dynamics (second column), and optimal policy with vaccine-induced immunity of two years versus no vaccination dynamics (third
olumn). See https://plotly.com/~MAAZ/465/ for data and visualization.
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mmunity lasts one year, then burden of COVID-19 falls until around
20DALYs. We confirm this fall in the reduction of the symptomatic
revalence cases and cumulative deaths, as displayed in Fig. 13. When
atural immunity is 365 days, the benefit in reducing symptomatic
revalence concerning a natural immunity of 90 days is at least 100
imes. The number of deaths with a natural immunity of 90 days reaches
45 cases per 100 000 inhabitants, in contrast, to 206 cases when natural
mmunity is 365 days. Thus, this scenario suggests that natural immunity
lays an essential role in controlling the outbreak, consistent with the
onclusions reported in [8].
 w

11
. Discussion

In February 2021, at least four vaccination developments support
he primary pharmaceutical measure to recover life’s style before the
andemic. Although the leading pharmaceutics firms report high vac-
ine efficacy, its implementation implies new challenges as its distribu-
ion, stocks, politics, logistic, among others, emerge. A fair distribution
nd application strategy is imperative to manage the available re-
ources. Despite that vaccine-immunization response remains under
tudy, vaccination campaigns recently started. Thus evaluating the
mpact of different vaccine profiles and natural immune responses
ould be crucial to calibrate vaccination policies. Further, since the

https://plotly.com/~MAAZ/407/
https://plotly.com/~MAAZ/465/
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9

Fig. 12. Effect of natural immunity on the burden of COVID-19. (A) Effect on the burden of COVID-19 quantified in DALYs per 100,000 inhabitants due to natural immunity of
0 days (red), 180 days (blue) and 365 days (green). (B) Coverage evolution to reach 50% of the total population vaccinated. (C) Optimal vaccination doses schedule according

to the different natural immunities. https://plotly.com/~MAAZ/402/.
Fig. 13. Effect of natural immunity on COVID-19 outbreak. (A) Effect of natural immunity over the symptomatic prevalence per 100 000 inhabitants. (B) Improvement of natural
immunity over the cumulative deaths per 100 000 inhabitants. Plotly visualization and data in https://plotly.com/~MAAZ/451/.
vaccine doses are scarce at the beginning of the COVID-19 vaccination
campaigns optimize their administration subject to its availability,
minimizing deaths and preserving health systems is mandatory.

We aim to compare different vaccine profiles in computing op-
timal vaccination policies for COVID-19 and evaluate the impact of
hypothetical reinfection and immunization responses. Our simulations
suggest that an optimal strategy design is influenced by vaccine profile
and natural immunity period. Likewise, we observe that natural and
vaccine-induced immunity would play an essential role in reducing
COVID-19 disease mortality and prevalence levels. Poland et al. [48]
stress that understanding immune responses to SARS-CoV-2 are crucial
to developing vaccines. Our simulation faces different vaccine-induced
and natural immunization profiles, allowing the study of these vari-
ables’ effects and developing optimal dose administration schedules.
Further, our optimal solution satisfies modeling constraints to obtain
the desired vaccination coverage and avoid health system overload. We
12
optimized vaccination strategies by minimizing the COVID-19 burden
quantified in DALYs.

Note that the elderly population has been the most affected in terms
of deaths due to the disease. Thus, the average remaining expectancy of
lives could be explained by this population. It is well know that strat-
ification becomes important when vaccination strategies prioritize risk
groups to reduce burden. Although our model lacks an age-stratified
structure, these results would apply to situations where the population
has homogeneous characteristics. This kind of population’s designs
arises, for example, in places like factories, offices, or even schools. The
question ‘‘who vaccinate first?‘‘ has been faced as an optimal allocation
problem in [25–27]. Our optimal solutions have a complementary
objective—while we answer when and how to administrate vaccine
doses, the mentioned references answer who vaccinate first.

In [30] the authors answered when to vaccinate optimally. They
used a signal that switches between not vaccination and immunization

https://plotly.com/~MAAZ/402/
https://plotly.com/~MAAZ/451/
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,

of all susceptible individuals. Since the vaccine is scarce, this control
signal would be unrealistic in some situations. Our results improve
this strategy by modulating a base vaccination rate in a more realistic
bound. Further, we consider more detailed dynamics: our model in-
cludes exposed and dead classes and differences between symptomatic
infectious kinds.

We relate vaccination rate with the available vaccine stock and
health system response—limited by logistics, management, politics,
and other issues related to each vaccine development. So, our con-
tribution can help decision-makers to design vaccination schedules of
homogeneous populations.

When writing this article, the vaccine-induced immunity period
and SARS-CoV-2 transmission capacity from a vaccinated individual
remain unexplained [48]. The conclusive answer inevitably will drive
the development of COVID-19 vaccines and their policies. Experts
estimate that around 7 800 billion immunization doses are required to
reach herd immunity. This number, with the approved developments,
is far away to accomplish in one year. However, we expect that more
vaccines finish their third trial phase and also get approval. Thus,
vaccination policies also have to contemplate two o more vaccine
profiles, perhaps with different efficacy o number of recommended
doses.

These issues also have to balance the health services and other
resources optimally.

7. Conclusions

The absence of proven highly effective treatments against COVID-19
has led the world’s population to pin their hopes on vaccines. However,
due to the limited stock of vaccines, the question arises as to which is
the best vaccination strategy. Thus, different researchers have sought to
answer this question from different perspectives. In the present work,
we address this question through an optimal control approach. Our
results show the importance of how and when to vaccinate on reducing
disease levels.

The scarce information regarding immunity periods and the wide
efficacy range of the approved vaccines highlights the importance
of exploring scenarios with different vaccination profiles. This study
observes the importance of knowing the vaccine profile and the nat-
ural immunity period to design an optimal vaccination strategy. For
example, SCN-2 and SCN-4 scenarios show that an optimal vaccination
strategy does not necessarily imply massive vaccination at the begin-
ning. For the former, the vaccine efficacy level (Fig. 8) is a responsible
factor to determine the beginning time of the massive vaccination
strategy whereas for the latter is the natural immunity period (Fig. 12).

Nowadays, several countries have problems with vaccine stocks.
In addition, the uncertainty regarding induced immunity and natural
immunity has forced governments to implement vaccination programs
aimed at specific populations such as medical personnel, elderly pop-
ulation, teachers, etc., with similar characteristics to each other. Our
work can be useful in decision-making for the design of vaccina-
tion programs targeted to this populations types, since it considers
stock constraints and explores different vaccination profiles and natural
immunity to design optimal vaccination strategies.

At the date of writing this manuscript, several questions about
vaccines and COVID-19 disease have not been addressed thoroughly.
How often shall we need to get vaccinated, once in a lifetime or yearly?
Do all the vaccines’ acquired immunity last equally? If the latter is false,
what are the consequences of implementing campaigns with different
vaccines? Would the vaccines be produced on a much larger scale than
now? If the latter is true, when, how, and to whom should vaccines
be given to obtaining greater reductions on incidence levels? What
effect will the new COVID-19 variants have on the vaccines developed?
Would the vaccines’ effectiveness significantly decrease? If the latter
is true, then would be necessary more doses for each vaccine? All

these questions will eventually become daily concerns in society as time

13
passes by. Thus, optimal vaccination strategies take more relevance to
address some of these questions.

Motivated by the above, as future work, we analyze extending our
study when considering a stratified population problem and more than
one vaccine with different efficacies and number of doses. We aim to
answer some of the previously raised questions over non-homogeneous
populations.
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Appendix A. Parameter estimation

Parameter estimation is based on reported data of deaths by COVID-
19 of Mexico-City and Mexico-State. We considered the first 256 days
of the pandemic, from February 19, 2020, to October 31, 2020 (see
Fig. A.14). Database is found on [37].

We employ statistical inference by the MCMC via a computer pack-
age (STAN R-package). This package has already been used on similar
works [49,50]. For the numerical implementation, we follow the ideas
in [49], and the code is available in [41].

In the estimation process, we use model in Eq. (1) with no vaccina-
tion dynamics (𝜓𝑉 = 0 and 𝑉 (0) = 0), time-dependent transmission
contact rates and negative binomial distribution as an observation
model. Our estimations are focused on three parameters: 𝛽𝐴, 𝛽𝑆 and
𝑝. However, it is important to mention that as a consequence of,
for example, behavior all changes, implementation/breaking of mit-
igation measures, or superspreading events, the transmission contact
rates’ baseline values can be reduced or increased. For this reason, we
consider as an approximation, two reductions in contact rates. These
reductions are also estimated. Other parameter values are assumed or

taken from literature, see Table A.8.

https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ
https://github.com/SaulDiazInfante/NovelCovid19-ControlModelling/tree/master/UNISON-ITSON-VACCINATON-PRJ


M.A. Acuña-Zegarra, S. Díaz-Infante, D. Baca-Carrasco et al. Mathematical Biosciences 337 (2021) 108614

T
F

Fig. A.14. Reported deaths by COVID-19 of Mexico-City and Mexico-State. Data from February 19, 2020, to October 31, 2020.
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able A.8
ixed parameters values of system in Eq. (A.1).
Parameter Value References

𝜎−1𝐸 5.1 days [33]
𝛼−1𝑆 5.97 days [17]
𝛼−1𝐴 10.81 days [17]
𝜎−1𝑅 365 days Assumed
𝜇−1 70 years Assumed

Table A.9
Prior distributions for each parameter and initial conditions.

Parameter Prior distribution Initial condition Prior distribution

𝛽𝑆  (0.5, 0.1) 𝐸(0)  (1, 15)
𝛽𝐴  (0.5, 0.1) 𝐼𝑆 (0)  (1, 5)
𝑝  (0.05, 0.25) 𝐼𝐴(0)  (1, 15)
𝜖1  (0.05, 1)
𝜖2  (0.05, 1)

The system in Eq. (1) becomes:

𝑆′(𝑡) = 𝜇�̂� −
(

𝛽𝑆 (𝑡)𝐼𝑆 + 𝛽𝐴(𝑡)𝐼𝐴
�̂�

)

𝑆 − 𝜇𝑆 + 𝜎𝑅𝑅

𝐸′(𝑡) =
(

𝛽𝑆 (𝑡)𝐼𝑆 + 𝛽𝐴(𝑡)𝐼𝐴
�̂�

)

𝑆 − (𝜇 + 𝜎𝐸 )𝐸

𝐼 ′𝑆 (𝑡) = 𝑝𝜎𝐸𝐸 − (𝜇 + 𝛼𝑆 )𝐼𝑆
𝐼 ′𝐴(𝑡) = (1 − 𝑝)𝜎𝐸𝐸 − (𝜇 + 𝛼𝐴)𝐼𝐴
𝑅′(𝑡) = (1 − 𝜃)𝛼𝑆𝐼𝑆 + 𝛼𝐴𝐼𝐴 − (𝜇 + 𝜎𝑅)𝑅

𝐷′(𝑡) = 𝜃𝛼𝑆𝐼𝑆

(A.1)

with

𝛽∙(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛽∙, 𝑇1 ≤ 𝑡 ≤ 𝑇2
𝜖1𝛽∙, 𝑇2 < 𝑡 ≤ 𝑇3
𝜖2𝜖1𝛽∙, 𝑇3 < 𝑡

�̂�(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝑆 (𝑡) + 𝐼𝐴(𝑡) + 𝑅(𝑡)

𝑁 = �̂� +𝐷

(A.2)

where, the index ∙ runs over 𝑆, and 𝐴. The relaxation times 𝑇1, 𝑇2 and
𝑇3 corresponds to February 19, 2020, March 23, 2020 and April 30,
2020, respectively. The initial condition for Eq. (A.1), assumes 𝐷(0) = 0
and 𝑅(0) = 0, while 𝐸(0), 𝐼𝑆 (0), and 𝐼𝐴(0) are estimated. Then the initial
susceptible stage follows the relation𝑁−(𝐸(0)+𝐼𝑆 (0)+𝐼𝐴(0)). According
to [51], we handle 𝑁 = 26 446 435 individuals as total population. As
observational model, we employ a negative-binomial with mean given
by the integral of the right hand side of death compartment in (Eq. (4)).
That is, we count the number of new deaths per day. In addition to the
above, we assign prior probability distributions to each parameter and
the initial conditions for the above mentioned classes. Table A.9 shows

prior distributions for each parameter. (

14
Table A.10
Estimated range for some parameters of system in Eq. (A.1).

Parameter Estimated range

𝛽𝑆 [0.243439, 0.814272]
𝛽𝐴 [0.416429, 0.774116]
𝑝 [0.111348, 0.249985]
𝜖1 [0.503394, 0.793054]
𝜖2 [0.3371, 0.412239]

Table A.11
Estimated range for some parameters of system in Eq. (A.1).

Parameter Estimated range

𝜖1𝛽𝑆 [0.147767, 0.544492]
𝜖1𝛽𝐴 [0.294708, 0.441215]
𝜖2𝜖1𝛽𝑆 [0.058262, 0.193831]
𝜖2𝜖1𝛽𝐴 [0.101754, 0.171101]

After employing our STAN implementation, we obtained an esti-
mated range for each parameter. Table A.10 shows the estimated range
for 𝛽𝐴, 𝛽𝑆 , 𝑝, 𝜖1 and 𝜖2.

Using the sample of estimated parameters and Eq. (5), we ob-
ain an estimated range for the basic reproductive number given by
3.308204, 4.849821]. This range is obtained for the initial COVID-19

outbreak and is consistent with reported data in the literature [17].
On the other hand, the estimated range for transmission contact rates
after implemented mitigation measures are shown in Table A.11.

Finally, it is important to mention that our results were imple-
mented considering a reduction in the baseline transmission contact
rates. However, implementation/breaking mitigation measures (among
others) do not allow knowing with precision what the value of these
parameters was at the beginning of the vaccination campaign. For this
reason, for each transmission contact rate, we join the ranges given in
Table A.11. The resulting ranges and fitting curves with their respective
bands are shown in Table 2 and Fig. 2, respectively.

Appendix B. Positivity and invariance of the interest region

Lemma 1. The set 𝛺 = {(𝑆,𝐸, 𝐼𝑆 , 𝐼𝐴, 𝑅,𝐷, 𝑉 ) ∈ [0, 1]7 ∶ 𝑆 + 𝐸 + 𝐼𝑆 +
𝐼𝐴 +𝑅 +𝐷 + 𝑉 = 1} is a positively invariant set for the system in Eq. (1).

Proof. Let 𝛺 = {(𝑆,𝐸, 𝐼𝑆 , 𝐼𝐴, 𝑅,𝐷, 𝑉 ) ∈ [0, 1]7 ∶ 𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝐴 +
+ 𝐷 + 𝑉 = 1} ⊂ [0, 1]7. First, note that for this model we have a

losed population, which allows the solutions to be upper bounded by
he total population 𝑁 .

On the other hand, to show the positivity of the solutions with initial
onditions

7
𝑆(0), 𝐸(0), 𝐼𝑆 (0), 𝐼𝐴(0), 𝑅(0), 𝐷(0), 𝑉 (0)) ∈ [0, 1] ,
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𝐊 =

⎡

⎢

⎢

⎢

⎣

(

𝑝𝛽𝑆
(𝜇 + 𝛼𝑆 )(𝜇 + 𝜎𝐸 )

+
(1 − 𝑝)𝛽𝐴

(𝜇 + 𝛼𝐴)(𝜇 + 𝜎𝐸 )

)

𝜎𝐸
(

𝑆∗ + (1 − 𝜀𝑉 )𝑉 ∗) 𝛽𝑆 (𝑆∗ + (1 − 𝜀𝑉 )𝑉 ∗)
(𝜇 + 𝛼𝑆 )

𝛽𝐴(𝑆∗ + (1 − 𝜀𝑉 )𝑉 ∗)
(𝜇 + 𝛼𝐴)

0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

Box I.
we look at the direction of the vector field on the hypercube faces in
he direction of each variable in the system. For example, consider a
oint on the hypercube face where the variable 𝑆 = 0 and look at the
ehavior of the vector field in the direction of the same variable 𝑆, to
ee if the solutions cross the face of the hypercube where we are taking
he initial condition. So, notice that if 𝑆 = 0, 𝑆′(𝑡) > 0, so the solution

points into the hypercube. Similarly, consider an initial condition of the
form (𝑆, 0, 𝐼𝑆 , 𝐼𝐴, 𝑅,𝐷, 𝑉 ) and note that 𝐸′(𝑡) > 0 for all 𝑡 > 0, which
implies that the solutions of the system with initial conditions of the
form (𝑆, 0, 𝐼𝑆 , 𝐼𝐴, 𝑅,𝐷, 𝑉 ) point towards the interior of the hypercube.
Similarly, positivity can be tested for the rest of the variables. With this
information, the result follows. □

Now, continuing with the analysis of our model, it is easy to prove
that the disease-free equilibrium is given by the point at 𝑋0 ∈ 𝛺 of the
form

𝑋0 =
(

(𝜇 + 𝜔𝑉 )
𝜇 + 𝜔𝑉 + 𝜓𝑉

, 0, 0, 0, 0, 0,
𝜓𝑉

𝜇 + 𝜔𝑉 + 𝜓𝑉

)

.

n the other hand, following [31], the next generation matrix for this
odel, evaluated at the disease equilibrium point, is given as in Box I
here 𝑆∗ = (𝜇+𝜔𝑉 )

𝜇+𝜔𝑉 +𝜓𝑉
and 𝑉 ∗ = 𝜆

𝜇+𝜔𝑉 +𝜓𝑉
. Then, the spectral radius of

K is

𝑅𝑉 = 𝑅𝑆 + 𝑅𝐴

with

𝑅𝑆 =
𝑝𝛽𝑆𝜎𝐸 (𝜇 + 𝜔𝑉 + (1 − 𝜀𝑉 )𝜓𝑉 )
(𝜇 + 𝜎𝐸 )(𝜇 + 𝜔𝑉 + 𝜓𝑉 )(𝜇 + 𝛼𝑆 )

𝑅𝐴 =
(1 − 𝑝)𝛽𝐴𝜎𝐸 (𝜇 + 𝜔𝑉 + (1 − 𝜀𝑉 )𝜓𝑉 )
(𝜇 + 𝜎𝐸 )(𝜇 + 𝜔𝑉 + 𝜓𝑉 )(𝜇 + 𝛼𝐴)

.

That is, 𝑅𝑉 is the vaccine reproduction number.
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