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Key Points

• Lenalidomide induces
early T-cell activation
and reprogramming,
and restores long-term
immune synapse for-
mation in vivo in FL
patients.

• Preexisting effector
T-cell and regulatory
T-cell signatures may
hamper response to
lenalidomide-
obinutuzumab combi-
nation in FL patients.

The immunomodulatory drug lenalidomide is used in patientswith follicular lymphoma (FL)

with the aim of stimulating T-cell antitumor immune response. However, little is known

about the effects of lenalidomide on T-cell biology in vivo in patients with FL. We thus

undertook an extensive longitudinal immunologic study, including phenotypic,

transcriptomic, and functional analyses, on 44 first-line and 27 relapsed/refractory patients

enrolled in the GALEN trial (Obinutuzumab Combined With Lenalidomide for Relapsed or

Refractory Follicular B-Cell Lymphoma) to test the efficacy of lenalidomide and

obinutuzumab combination in patients with FL. Lenalidomide rapidly and transiently

induced an activated T-cell phenotype, including HLA-DR, Tim-3, CD137, and programmed

cell death protein 1 (PD-1) upregulation. Furthermore, sequential RNA-sequencing of sorted

PD-11 and PD-1– T-cell subsets revealed that lenalidomide triggered a strong enrichment for

several gene signatures related to effector memory T-cell features, including proliferation,

antigen receptor signaling, and immune synapse restoration; all were validated at the

phenotypic level and with ex vivo functional assays. Correlative analyses pinpointed

a negative clinical impact of high effector T-cell and regulatory T-cell percentages before and

during treatment. Our findings bring new insight in lenalidomide mechanisms of action at

work in vivo and will fuel a new rationale for the design of combination therapies.

Introduction

Follicular lymphoma (FL) is characterized by an indolent but heterogeneous clinical course.1 Numerous
studies have shown that FL prognosis is tightly linked to the composition of its Janus-faced tumor
microenvironment,2-4 with T-cell infiltration initially reported to be positively associated with good
prognosis as opposed to macrophages.5 Subsequently, the heterogeneity of intratumoral T-cell
composition and localization, including CD81,6 programmed cell death protein-1 positive (PD-11),7-11

or FoxP31 12-14 subsets, was variably associated with treatment efficacy. Another level of complexity
was added when the prognostic value of some of these T cell–related parameters was found to depend
on the therapeutic regimens.11 It is thus important to better understand the specific impact of any given
therapy on FL T cells to fully harness its antitumor potential.

Within the developing armamentarium against FL, lenalidomide proved its efficacy as a single agent in
relapsed/refractory (R/R) patients, which was further enhanced when combined with rituximab.15,16 This
combination was reported to offer a promising therapeutic option for FL front-line therapy in three phase
2 studies,17-19 and it was subsequently reported in the phase 3 RELEVANCE (Rituximab Lenalidomide
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Versus Any Chemotherapy) trial to yield a response rate and
progression-free survival (PFS) similar to those of the standard
rituximab-chemotherapy regimen.20 The immunomodulatory activi-
ties of lenalidomide have been mostly described in multiple
myeloma (MM) and chronic lymphocytic leukemia (CLL) and
involved natural killer cells21-24 and T cells. In particular, lenalido-
mide was reported to activate CD8 T cells, inhibit regulatory T cells
(Treg), restore T-cell immune synapse formation,25 and down-
regulate T-cell PD-1 expression.26,27 However, to what extent these
properties are effective in vivo in patients with FL, especially in the
context of a combination with anti-CD20 antibodies, remains
unclear.

We sought to address this question in the GALEN clinical trial
(Obinutuzumab Combined to Lenalidomide for Treatment of
Relapsed/Refractory Follicular and Aggressive B-Cell Lymphoma;
#NCT01582776) evaluating the efficacy of obinutuzumab com-
bined with lenalidomide in first-line and R/R patients with FL.28,29 A
phase 1b trial has previously shown that R/R patients with FL
exhibited HLA-DRhi activated T-cell phenotype28 and restoration of
natural killer cytotoxic functions22 under this association. In addition,
CD20 expression on FL cells, unlike CLL cells,30 was unaltered by
lenalidomide, which was introduced 1 week before the first
obinutuzumab infusion.29 In the current work, we further investi-
gated, based on thorough phenotypic, transcriptomic, and func-
tional studies, the lenalidomide-dependent T-cell activation in R/R
patients as well as first-line patients with FL included in the phase 2
part of the GALEN trial.

Materials and methods

Patient cohort and samples

Two independent cohorts from the GALEN trial were evaluated
here. Immune parameters were studied in 27 unselected patients
(of 86 evaluable for efficacy) from the published R/R cohort28 and
44 unselected patients (of 100) from the first-line FL cohort. Of
note, baseline characteristics of the biologically evaluated patients
were similar to the whole R/R cohort, except that age at inclusion
was lower (supplemental Table 1). Patients received: (1) oral
lenalidomide once daily at 20 mg on days 0 to 20 of a 28-day cycle
for the first cycle and on days 1 to 21 of a 28-day cycle for cycles 2
to 6; and (2) obinutuzumab at a flat dose of 1000 mg on day 7 (D7),
D14, and D21 of the first cycle and at D0 of cycles 2 to 6 (total of 8
infusions). Thus, the 1-week delay before the first obinutuzumab
infusion allowed for the analysis of changes in immune parameters
induced by lenalidomide alone. Heparinized blood was drawn at D0
before lenalidomide intake, D7 before first obinutuzumab infusion,
D28 after 1 week off lenalidomide at the end of the first cycle of
treatment, and at the end of the sixth cycle of the induction phase
(end). Peripheral blood mononuclear cells (PBMCs) were obtained
after density gradient centrifugation (lymphocyte separation me-
dium; Eurobio) and immediately used for flow cytometry analysis,
immune synapse formation, Treg functional assays, and RNA-
sequencing (RNA-seq) study. The research protocol was con-
ducted under French legal guidelines and was approved by the
local ethics committee.

Flow cytometry analyses

PBMCs were stained with the fluorochrome-conjugated mono-
clonal antibodies listed in supplemental Table 2 and analyzed with

Kaluza software (Beckman Coulter). For Treg determination and Ki-
67 staining, cells were fixed and permeabilized by using the Foxp3/
Transcription Factor Staining Buffer Set (eBioscience). Ki-67, PD-
1, Tim-3, and CD137 expression were expressed as the percentage
of positive events compared with isotype controls. For HLA-DR
expression, brightly fluorescent events were gated. CD4 and
CD8 T-cell subsets were defined among viable CD451/CD31

cells as CCR71/CD45RAhi naive T cells, CCR71/CD45–/lo central
memory (CM) T cells, CCR7–/CD45RA– effector memory (EM)
T cells, and CCR7–/CD45RA1 terminally differentiated T cells. Treg
were gated as CD451/CD31/CD41/CD25hi/FoxP31 events.
Malignant B cells were gated as CD191/low/CD101 or
CD191/low/CD38low/CD44– events harboring light chain isotypic
restriction (.90% k or l).

RNA-seq analysis of sorted T cells

RNA-seq was performed on paired samples collected at D0 and D7
from 6 patients with FL. For each sample, T-cell subsets were
sorted as CD31/CD41/CD8–/PD-1–, CD31/CD41/CD8–/PD-11,
CD31/CD4–/CD81/PD-1–, and CD31/CD4–/CD81/PD-11 events
on a BD FACS Aria IIu (Becton Dickinson) (supplemental Figure 1).
RNA processing and RNA-seq analysis are detailed in the
supplemental Methods.

Proliferation assay

PBMCs were labeled with 0.2 mM carboxyfluorescein succinimidyl
ester (CFSE; Interchim) and subsequently stimulated for 6 days by
using agonistic 0.5 mg/mL anti-CD3 and 0.0325 mg/mL anti-CD28
antibodies (Sanquin) as described elsewhere.31 Proliferation was
evaluated by CFSE dilution assessed on CD4 and CD8 T cells
gated by flow cytometry and quantified with the proliferation index
calculated by using the ModFit LT software (Verity Software
House).

Immune synapse assay

For a subset of first-line patients with FL, T cells were purified with
Pan T Cell Isolation Kit II (Miltenyi Biotec) at various time points and
used in an immune synapse assay as previously described.32,33

Briefly, CFSE-labeled B cells purified from healthy donor peripheral
blood using B-cell Isolation Kit (Miltenyi Biotec) were incubated for
30 minutes at 37°C with a cocktail of superantigens (Staphylococ-
cus Enterotoxin A and B, Toxic Shock Syndrome Toxin-1, 2 mg/mL
each; all from Toxin Technology). FL T cells were then pelleted with
B cells at a 1:1 ratio, and cells were coincubated for 5 minutes at
37°C. The cell pellet was gently resuspended and deposited on
a polylysine slide in a 1.5-cm diameter spot for another 10-minute
round of incubation before fixation for 15 minutes with 4%
paraformaldehyde and permeabilization for 5 minutes with Triton
0.3%. Actin network was stained overnight with phalloidin
conjugated to Alexa Fluor 546. After a final washing step, slides
were mounted with Mowiol mounting medium (Sigma-Aldrich), and
T/B conjugates were analyzed by confocal microscopy by an
operator blinded to patient identity. At least 50 conjugates per
slides were scored for actin distribution at the T-cell surface,
creating a mean synapse score. Conjugates showing a distinct
polymerized actin band at the T-cell contact site were scored at 1,
conjugates lacking actin polarization were attributed a score 5 0,
and intermediate patterns showing weak protein polymerization
were given a score 5 0.5.
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Statistical methods

Comparisons of data between groups were conducted by using the
nonparametric Wilcoxon test for matched pairs or the nonparametric
Mann-Whitney U test, as appropriate. Response to treatment was
evaluated based on Cheson 1999 morphologic criteria after 3 cycles
of treatment. Responders corresponded to patients in complete
response, unconfirmed complete response, and partial response.
Nonresponders included patients with stable disease or progressive
disease. Cox proportional hazards model was used to determine
hazard ratios, confidence intervals (CIs) at the 95th confidence level,
and P values. All statistical tests were two-sided, and P values ,.05
were considered statistically significant. Analysis of flow cytometry
data was performed by using GraphPad Prism version 5.00
(GraphPad Software Inc.) and R version 3.6.0 (www.R-project.org;
R Foundation for Statistical Computing). RNA-seq data were
analyzed with DESeq2, DOSE, factoextra, ggplot2, ggrepel, grid,
gridExtra, prcomp, scales, survival, survminer, and vennDiagram R
packages. Gene Set Enrichment Analysis (GSEA) evaluations were
performed with the GSEA version 4.1.0 application.34,35

Results

Lenalidomide induces an activated phenotype in vivo

in FL patient T cells

We queried whether T-cell activation reported in patients with MM
and CLL occurred in FL patients upon lenalidomide treatment and if
it was influenced by disease course. We thus evaluated in 2 cohorts
of 44 first-line patients and 27 R/R patients with FL the expression
of a panel of activation and/or exhaustion markers, including HLA-
DR, CD137, PD-1, and Tim-3, on peripheral blood T cells before
treatment (D0), after 1 week of lenalidomide alone (D7), after the
first cycle of treatment by lenalidomide and obinutuzumab (D28),
and at the end of induction (end). All these markers were
significantly increased on CD4 and CD8 T cells within 1 week of
lenalidomide treatment alone in both the first-line cohort (Figure 1A)
and the R/R FL cohort (supplemental Figure 2). However, these
changes were transient, as respective expression of almost all
markers returned to baseline levels at the end of the first cycle of
treatment. Interestingly, a majority of PD-11 CD4 and CD8 T cells
coexpressed Tim-31 and high levels of HLA-DR at D7, contrary to
D0 (supplemental Figure 3A). In agreement, we found in the first-
line FL cohort no strong correlation between PD-1 and Tim-3 or
between PD-1 and HLA-DR expression at D0, irrespective of the
T-cell subtype, whereas expression of PD-1 and CD137 were
correlated for CD8 but not for CD4 T cells (Figure 1B-C).
Conversely, after 1 week of lenalidomide treatment, PD-1 expres-
sion was tightly correlated with Tim-3, HLA-DR, and CD137 in both
CD4 and CD8 T cells, suggesting that PD-11 T cells corresponded
to functionally different T-cell subsets at D0 vs D7. Similar
observations were made in the R/R cohort (supplemental
Figure 3B-C). In summary, lenalidomide triggers, in both untreated
and chemoimmunotherapy-pretreated patients with FL, a peculiar
activated T-cell phenotype characterized by upregulation of PD-1
expression together with Tim-3 induction and HLA-DR increase.

Lenalidomide-induced PD-11 T cells have a specific

gene expression profile

Owing to the ambiguous nature of PD-1 as an activation and
exhaustion marker,36,37 we then decided to determine a better

picture of lenalidomide-induced PD-11 T cells. For this purpose, we
sorted fresh PD-11 and PD-1– subsets of CD4 and CD8 T cells
from the blood of 6 first-line patients with FL at D0 and D7 (before
any obinutuzumab infusion) and submitted them to RNA-seq.
Unsupervised principal component analysis segregated samples
following CD4 vs CD8 T-cell identity along the PC2 axis
(Figure 2A), whereas the PC1 axis reflected a composite signature
related to PD-1 status and proliferation-related genes (supplemen-
tal Figure 4). Interestingly, the vectors summarizing gene expression
profile modifications between D0 and D7 suggested that the PC1
axis also highlighted lenalidomide impact, in particular for PD-
1–expressing T-cell subsets. In agreement, the comparison of D7 vs
D0 gene expression profiles identified 341 differentially expressed
genes for PD-1– CD4 T cells, 2297 for PD-11 CD4 T cells, 191 for
PD-1– CD8 T cells, and 859 for PD-11 CD8 T cells (supplemental
Table 3). When inferring canonical pathways and biological
processes using GSEA, we found no downregulated pathway in
either PD-1– or PD-11 subsets after 1 week of lenalidomide
compared with before therapy. More importantly, the vast majority of
upregulated Reactome pathways after 1 week of lenalidomide were
found in both PD-11 T-cell subsets (214 and 199 for CD4 and CD8
T cells, respectively) with 63% overlap (P 5 9.10259 in a hyper-
geometric test (Figure 2B; supplemental Figure 5). Of the top
upregulated biological processes in PD-11 T cells, some of obvious
relevance for lenalidomide activity, such as “Cell Cycle,” “Signal
Transduction,” and “Immune System” (Figure 2C; supplemental
Table 4), comprised nearly one-half of the total number of
significantly upregulated pathways for PD-11 CD4 and CD8 T-cell
subsets. Taken together, these results highlight a specific pattern of
transcriptomic modifications induced in vivo by lenalidomide in PD-11

FL T cells.

Lenalidomide triggers T-cell proliferation in vivo in

patients with FL

To confirm our findings, we decided to validate some relevant
pathways at the functional level. Several were linked to the
regulation of various steps of cell cycle, mitosis, or DNA replication
(Figure 3A). When we quantified peripheral blood T-cell pro-
liferation by Ki-67 staining, a dramatic but transient increase after
1 week of lenalidomide was noted in both the first-line and the R/R
FL samples (Figure 3B). Based on previous studies performed in
CLL and MM patients,38 we queried whether this strong increase of
T-cell proliferation could be ascribed to a blockade of Treg
immunosuppressive properties by lenalidomide. Treg proliferation
was induced by 1 week of lenalidomide and returned to baseline
upon cessation of the drug at the end of the first treatment cycle
(supplemental Figure 6A). In agreement, Treg absolute count
showed a minor and transient increase after 1 cycle in both the first-
line and the R/R cohort (supplemental Figure 6B).

In addition to this quantitative analysis, we evaluated their
immunosuppressive potential by comparing T-cell proliferation
ex vivo with or without Treg depletion39 (supplemental Figure 6C).
Before lenalidomide, CD4 and CD8 T-cell proliferation was not
significantly increased when Treg were removed. Conversely, after
1 week of lenalidomide, T-cell proliferative capacity was enhanced
in the absence of Treg, showing that Treg were still suppressive
under lenalidomide treatment. As a whole, this functional evaluation
indicates that lenalidomide triggers T-cell proliferation without
abrogating Treg activity.
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Figure 1. Lenalidomide activates FL patient T cells in vivo. (A) Expression of HLA-DR, CD137, PD-1, and Tim-3 by circulating CD4 and CD8 T cells measured by flow

cytometry at the indicated time points. D0, first day of the first cycle of treatment (before lenalidomide intake); D7, seventh day of the first cycle (before obinutuzumab infusion);
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Lenalidomide shifts T cells toward EM subset

Induction of T-cell proliferation can occur upon cytokine stimulation
and/or encounter of the T-cell receptor (TCR) cognate antigen, the
latter being a prerequisite to become memory cells. In this line, many
pathways relevant for T-cell activation were found upregulated by
lenalidomide such as cytokine or TCR signaling, and antigen
presentation (Figure 4A). In particular, several pathways linked to
interferon-g production and activity, such as interleukin-12 signaling,
were found significantly upregulated in PD-11 CD4 and CD8 T cells
(supplemental Table 4), in line with the identification of interferon-g
signatures in patients with CLL treated with lenalidomide alone.40

Interestingly, other pathways more specific to effector T-cell metabo-
lism could be identified,41 including pathways linked to citric acid cycle
and adenosine triphosphate production. Hence, we quantified naive
and memory T-cell subsets in the blood of GALEN patients
(Figure 4B). One week of lenalidomide decreased the percentage of
naive and CM CD4 and CD8 T cells, and conversely increased that of
EM T cells without affecting terminally differentiated T cells. This switch
to effector T cells occurred in first-line and R/R patients with FL
(supplemental Figure 7) and seemed to be transient, resolving after
1 week off lenalidomide at the end of the first cycle of treatment. In
agreement, the coexpression of PD-1 and Tim-3 was primarily found on
EM and terminally differentiated CD4 T-cell subsets, and on EM CD8
T cells (supplemental Figure 8). Moreover, at the end of the induction
course, the percentages of naive andCMCD8 T cells were higher than
before treatment. Similar results were obtained when considering cell
counts instead of cell percentages (supplemental Figure 9). Lastly, we
supported our immunophenotyping results with relevant functional
data. By definition, memory T cells are endowed with quicker and
higher immune responses upon re-encounter with their cognate
antigens. We thus restimulated patient T cells ex vivo with agonistic
anti-CD3 and anti-CD28 antibodies and found that the resulting
proliferation was statistically increased after 1 week of lenalidomide but
returned to the basal level at the end of the first cycle (Figure 4C).
These multiple lines of evidence indicate that lenalidomide triggers
transient T-cell commitment into proliferative EM cells.

Lenalidomide plus obinutuzumab combination

triggers long-term T-cell immune synapse repair

Multiple canonical pathways related to cell migration, cell adhesion,
and cytoskeleton multifaceted activities were upregulated at 1 week
of lenalidomide (Figure 5A). This prompted us to monitor how
lenalidomide affected in vivo T-cell capacity to form an immune
synapse with B cells. We performed this assay in 7 first-line and
2 R/R patients with FL before and during the course of treatment.
The synapse score, evaluating semi-quantitatively the recruitment of
actin protein to the immune synapse (Figure 5B), was increased in
all 9 patients as early as D7. Interestingly, this synapse score
remained stable afterward, even following the lenalidomide off-
period at the end of cycles 1 and 6 (Figure 5C-D). Of note, the 2
patients presenting with detectable circulating FL B cells did not
display a lower initial synapse score, which was increased to
a similar extent as nonleukemic patients by 1 week of lenalidomide.

These data reveal that T-cell immune synapse can be repaired by
lenalidomide in vivo in patients with FL and that this effect is not
antagonized, or even prolonged, by obinutuzumab.

Preexisting effector T-cell signature may hamper

response to lenalidomide and obinutuzumab

combination in patients with FL

We wondered whether these immune parameters would affect
early clinical response to the lenalidomide plus obinutuzumab
combination, based on computed tomography scan evaluation after
3 cycles of treatment. Nonresponders (ie, experiencing stable
disease or progression) presented at baseline with signifi-
cantly higher percentages of CD4 EM (median, 37.3% vs 15.4%;
P5 .016) and CD8 EM T cells (median, 11.5% vs 6.3%; P5 .040)
compared with responder patients (complete or partial response)
(Figure 6A). In addition, univariate Cox model analysis also
highlighted an association of the percentages of CD4 EM T cells
and Treg before treatment with PFS (hazard ratios, 1.51 and 3.55;
P5 .016 and .005, respectively) (Figure 6B), which was retained at
all later time points (D7, D28, and end of induction) (supplemental
Figure 10A). Interestingly, the percentage and the number of Treg,
unlike any other T cell–related parameter, were correlated with the
number of circulating malignant FL B cells (data not shown),
a parameter already associated with poor prognosis in the rituximab
era.42-44

We then queried whether these results translated into discrete
immunologic profiles that could be identified in blood at pre-
sentation. An unsupervised hierarchical clustering was performed
on the 15 immunologic parameters available at presentation for the
27 R/R patients with FL, expressed as percentages of T-cell
subsets. Three clusters could be identified containing 4, 13, and 10
patients, respectively (supplemental Figure 10B). Cluster 1 was
characterized by high percentages of CD4 and CD8 EM T cells.
Interestingly, these patients also had an overrepresentation of Treg.
Conversely, patients of cluster 3 presented with high percentages
of CD4 and CD8 naive and CM T cells and low expression of T-cell
activation markers. Cluster 2 displayed a mixed profile. Survival
analysis revealed cluster 1 to have a trend toward shorter median
PFS (supplemental Figure 10C), but the difference did not reach
statistical significance owing to the small number of patients
(P 5 .09).

Discussion

The current study provides a detailed analysis of lenalidomide
immunomodulatory effects on T cells through extensive phenotypic
and functional evaluation of a large cohort of first-line and R/R
patients with FL enrolled in the GALEN clinical trial. We found that
lenalidomide induced early CD4 and CD8 T-cell activation
characterized by Tim-3, HLA-DR, PD-1, and CD137 upregulation
that translated into a rapid increase of effector T cells at the
expense of naive and CM subsets. In addition, we showed for the
first time in FL that lenalidomide improves in vivo T-cell ability to
proliferate and mount an immune synapse in patients.

Figure 1. (continued) D28, first day of the second cycle (before lenalidomide intake); end, end of induction. Median values are depicted as red lines. **P , .01, ***P , .001,

multiple paired samples Wilcoxon tests. (B) Correlations between PD-1 and Tim-3 expression (left panels), PD-1 and HLA-DR expression (middle panels), and PD-1 and

CD137 expression (right panels) on CD4 T cells at D0 (upper row) and D7 (lower row). (C) Correlations between PD-1 and Tim-3 expression (left panels), PD-1 and HLA-DR

expression (middle panels), and PD-1 and CD137 expression (right panels) on CD8 T cells at D0 (upper row) and D7 (lower row).
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Many clinical studies previously reported on T-cell immunomodu-
lation induced by lenalidomide in various hematologic malignan-
cies, revealing a broad T-cell activation in virtually all tested
patients. However, response rates widely differ across cancer
types and between patients, emphasizing the need for more
refined analysis of T cells under lenalidomide treatment to exploit
its full clinical potential. In FL, analysis of immune cell subsets in
the peripheral blood of 27 patients treated with lenalidomide plus
rituximab as first-line therapy revealed an increase of CD4 and
CD8 circulating memory T-cell counts after 1 cycle of treatment,
simultaneously with increased expression of PD-1 on CD8
T cells.17 However, lenalidomide and rituximab were initiated
together in this trial, making it impossible to delineate their
respective contribution to immune phenotype modulation. In
addition, no early assessment of immune parameters was
performed in this work, and it remains unclear whether immuno-
phenotypes assessed at late time points reflect immunomodula-
tion induced by lenalidomide plus rituximab combination or are
merely the consequence of tumor shrinkage, as recently
suggested in patients with FL treated by rituximab alone.45

Our current work shows that lenalidomide rather induces an early
decrease of CM and naive T cells in line with a surge of EM T cells.
We also observed an increase of CM T cells starting after 1 cycle of
treatment that could be related to anti-CD20 activity and/or to
lenalidomide cessation. Finally, we reported an increased expres-
sion of PD-1 but also Tim-3 by CD4 and CD8 T cells under
lenalidomide treatment, raising the concern that this drug could
induce T-cell exhaustion. However, although PD-1 and Tim-3 are
pivotal immune checkpoints, they were originally reported to be
induced after TCR activation.46,47 In this line, we did not find any
enrichment in public signature of T-cell exhaustion in our set of
genes differentially expressed by PD-11 T cells under lenalidomide
treatment (data not shown). Rather, these cells upregulated
pathways associated with effector functions such as proliferation,
anabolic metabolism, and cytoskeleton dynamics and thus may be
considered as activated. Further studies are needed to rule out
exhaustion at later time points and consider therapeutic
combination with immune checkpoint blockers on a rational
basis. Indeed, PD-1 blockade has led to low and nondura-
ble responses in patients with FL,48 and association with
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lenalidomide would be interesting to alleviate the inhibitory signal
delivered by PD-L11 tumor-associated macrophages.10,49

A major limitation of our study is the lack of in situ analysis. Interestingly,
a recent study proposed that lenalidomide overcomes the adverse
prognostic value of tumor-infiltrating PD-11 T cells and T helper 17
cells found in patients treated with rituximab only, whereas high
amounts of GATA-31 T helper 2 cells were associated with better PFS
in patients receiving the lenalidomide and rituximab combination.50,51

Further analyzing such parameters in the obinutuzumab/lenalidomide
area would be of utmost interest.

Another FL study recently reported that in vitro exposure to lenalidomide
could enhance T-cell proliferation in response to TCR activation.22

Our ex vivo assays confirmed and extended this observation,
showing that it occurred in vivo in patients treated with lenalidomide.
The follow-up of Ki-67 proliferation marker further supported the
lenalidomide potential to directly trigger T-cell proliferation in vivo.
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FL B cells can develop immune escape mechanisms to avoid activated
T-cell cytotoxicity, including, among others, immunologic synapse
dysfunction.33 This can be ascribed to a defective recruitment of critical
signaling proteins to the T-cell synapse, as reported in vitro with FL
B cells and in vivo in patients with CLL, and is supposedly induced by
inhibitory ligands expressed by tumor cells. This defect could be
corrected by lenalidomide treatment in vitro.22,27,32,33 Our results ex-
tend these reports by showing that T-cell immune synapse can be
repaired in vivo in patients with FL treated by lenalidomide and that this
restoration persists after off-periods of the drug, unlike immunopheno-
typic or cell proliferation changes. As recently reportedwith rituximab,22

obinutuzumab is unlikely to have any significant direct role in T-cell
immune synapse, suggesting that lenalidomide is responsible on its
own for this long-lasting improvement. Experiments are underway to
decipher the molecular determinants of lenalidomide’s short- and long-
term effects.

The association of EM subsets and Treg overrepresentation is
reminiscent of the known tumor escape mechanism represented by
Treg amplification blunting the effector T-cell attack.52-54 The lack of
Treg inhibition that we observed in the GALEN trial argues against
Treg being a significant target of lenalidomide. Rather, it opens
a new avenue for improvement of lenalidomide-based regimens with
Treg-depleting agents, as has been exemplified in the REPEAT
(Revlimid, Endoxan, Prednisone Evaluation After Prior Revlimid
Treatment) study, in which lenalidomide refractoriness in patients
with MM was rescued by low-dose cyclophosphamide.55

In summary, we showed that lenalidomide activates T-cell effector
functions in first-line and R/R patients with FL. These important new
findings regarding lenalidomide’s basic mechanisms in vivo may
provide new rationale for lenalidomide-based combinations, espe-
cially in a chemotherapy-free perspective.56
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