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Abstract

The tragic deaths of three patients in a recent AAV-based X-linked myotubular myopathy clinical
trial highlight once again the pressing need for safe and reliable gene delivery vectors. Non-viral
minimized DNA vectors offer one possible way to meet this need. Recent pre-clinical results with
minimized DNA vectors have yielded promising outcomes in cancer therapy, stem cell therapy,
stem cell reprograming, and other uses. Broad clinical use of these vectors, however, remains to be
realized. Further advances in vector design and production are ongoing. An intriguing and
promising potential development results from manipulation of the specific shape of non-viral
minimized DNA vectors. By improving cellular uptake and biodistribution specificity, this
approach could impact gene therapy, DNA nanotechnology, and personalized medicine.

INTRODUCTION

In 2017, we wrote a comprehensive review of the history, key developments, specialized
uses, and broad outlook for non-viral minimized DNA vectors as therapeutics, and, in some
cases, as critical enablers of other cell-based therapies (e.g., stem cell reprogramming) [1].
We described in detail the many advantages minimized DNA vectors offer. In brief, removal
of immunogenic bacterial sequences and antibiotic resistance genes from plasmids allowed
for a dramatic reduction in vector length and led to the emergence of a new generation of
non-viral gene delivery vectors (minimized DNA vectors). Minimized DNA vectors do not
integrate into the genome and encode only therapeutic sequences. Reduced vector length is
one of many factors that is likely to account for the observed increased levels and duration of
gene expression compared to other non-viral vectors, particularly plasmids (some
comparisons of vector systems are summarized in Table 1) [2-6].

There are several types of non-viral minimized DNA vectors in pre-clinical use (reviewed in
[1]). Here, we will highlight recent advances for minicircles [1,7,8] and minivectors [1,9,10].
Several different methods exist for the production of these vectors [7,8,11], but common to
most is the use of bacteria to propagate plasmids. Bacteria are induced to express enzymes
that catalyze recombination of these parental plasmids. This reaction excises the bacterial
propagation sequences into a separate molecule (the ‘miniplasmid’) that can be removed
either by endonuclease-mediated degradation in the bacteria [12] or by size-exclusion
chromatography [11,13]. Complete removal of unrecombined parent plasmid, miniplasmid,
immunogenic endotoxin, and bacterial genomic DNA is laborious and time-consuming, yet
essential. Recently, a production method was developed that relies upon a multiplex PCR
protocol for minicircle formation [6]. This method circumvents the use of bacteria,
eliminating the need for removal of bacterial contaminants and, thus, can be completed in
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hours versus days. The product vectors, dubbed ‘bacteria-free minicircles,” could be a useful
tool for gene therapy, but production scale-up may still be an issue [6].

In common, minicircles and minivectors are double-stranded, circular, supercoiled DNA
vectors encoding therapeutic sequences. One key difference between the two is that
minivectors employ a more rigorous purification method that takes advantage of the small
size of the minivectors generated, allowing for complete removal of the larger miniplasmid
contaminant. Additional advantages include increased negative supercoiling and the ability
to generate vectors as small as a few hundred base pairs [9,10].

The reduced size of minimized DNA vectors allows for the delivery of many more
therapeutic molecules per given unit of mass. Therefore, much less mass of DNA is required
to deliver an equivalent number of molecules. Minimized DNA vectors may thus be
advantageous for delivering higher doses of a potential therapy without evidence of the
cytotoxic effects that prohibit the use of higher doses of plasmids. Less mass of vector also
means less delivery vehicle and thus reduction of another potential source of toxicity. The
decreased toxicity and decreased immunogenicity of minimized DNA vectors, and
especially of minivectors, may help mitigate some of the adverse effects observed in gene
therapy clinical trials, such as in the recent X-linked myotubular myopathy clinical trials that
used adeno-associated virus (AAV) [14-16].

Exciting pre-clinical work with non-viral minimized DNA vectors has continued since our
last review in 2017 [1], bringing the field closer to realizing the hope of wide-spread clinical
success. In this brief update, we summarize these new developments, concentrating on two
key applications where progress has been most impressive—cancer therapy and stem cell
therapy. We also present a new idea stemming from an improved understanding of DNA
structure. With support from computational simulation data to illustrate the feasibility of the
approach, we demonstrate that it may be possible to manipulate the shape of DNA vectors
for selective tissue or cell targeting, and/or increased cellular uptake.

USING MINIMIZED DNA VECTORS FOR CANCER THERAPY

To date, the field that has probably benefitted most from minimized DNA vector technology
is that of cancer therapy, particularly in the development of chimeric antigen receptor T cells
(reviewed in [17]). Chimeric antigen receptors (CARS), so named because they artificially
fuse antigen-binding domains to specific cell-activating domains [18], have brought the gene
therapy field some of its first clinical and commercial achievements (e.g., Kymriah®,
Yescarta®). Although CAR T cell therapy has been successful, particularly for
hematological malignancies [19], improvements are still needed. The therapy can be
immunogenic and the protocol for developing and delivering the T cells is expensive,
complicated, and takes several weeks. Non-viral minimized DNA vectors could replace the
viral vectors used to engineer autologous (or allogeneic) CAR T cells [20], resulting in
cheaper, faster, and safer production. Indeed, minicircles encoding a CD44-CAR have been
electroporated into T cells to engineer them against hepatocellular carcinoma. The resultant
CD44-CAR T cells resembled normal T cells in cytokine profile and phenotype, specifically
lysed CD44* cell lines and not CD44- cell lines, and suppressed tumor growth /7 vivo
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compared to controls [21]. This result was important as it demonstrated the efficacy of
minicircle-generated CAR T cells against a solid tumor, which is more challenging to treat
than the diffuse lymphomas treated previously [19].

Similar breakthroughs of minicircle-generated CAR T cells have also been reported for
prostate cancer [22] and colorectal cancer [23]. Cheng et a/. (2019) successfully generated
anti-CD19 CAR T cells via electroporation with minicircles generated using the bacteria-
free production method described above [6]. The resultant CAR T cells decreased tumor
burden in mice with at least the same efficacy as lentiviral-generated CAR T cells carrying
the same anti-CD19 CAR genes [6]. Furthermore, Batchu et a/. (2019) engineered CAR
natural killer (NK) cells capable of killing pancreatic cancer cells /in vitrousing a
combination of minicircles encoding a mesothelin CAR and S/eeping Beauty transposition
[3]. CAR T cell therapy requires the ex vivo modification of autologous T cells from each
individual. In contrast NK cells, because their cytolytic activity is antigen-independent, can
be taken from healthy donors and engineered in advance of therapy. This process creates an
off-the-shelf product that saves both time and money. Of all the minicircle-based
applications currently in development, use of the non-viral Sleeping Beauty transposon
system for the safe and reasonably effective generation of CAR T cells is probably the
closest to achieving clinical efficacy [20,24].

Various other minicircle-based strategies have emerged for breast cancer [4,25], brain cancer
[5], ovarian cancer [26], nasopharyngeal carcinoma [27] and other applications (Table 2).
Kanada et a/. (2019) developed a method that uses microvesicles to deliver minicircles
encoding prodrug converting enzymes [4]. The expressed enzymes convert co-delivered
prodrugs into cytotoxic agents that kill tumor cells. Minicircles were also combined with
calcium phosphate nanoneedles for ovarian cancer [26] and others used liposome-templated
hydrogel nanoparticles to deliver both Cas9 protein and minicircles encoding guide RNA
intravenously to tumor cells in the brain [5]. When polo-like kinase 1 was targeted for
inhibition in brain cancer cells, tumor burden was decreased and survival of mice increased
[5]. Finally, in Wu et al., (2017) nasopharyngeal carcinoma cells were targeted by way of a
commonly expressed Epstein—Barr virus antigen (EBNA1) that selectively triggers the
expression of a microRNA that inhibits nasopharyngeal carcinoma cell growth and
metastasis [27].

Minimized DNA vectors have had a broad range of applicability throughout the cancer field
and their use has also helped make headway in other disease areas, such as retinal disorders
[28,29], rheumatoid arthritis [30], Parkinson’s disease [31], and inborn errors of metabolism
[32]. They have even been used for the endogenous production of biologics [33]. Their
impact has also been felt in the areas of, among others, anti-viral treatments [34],
vaccination [35], and regenerative medicine [36,37].

USING MINIMIZED DNA VECTORS FOR STEM CELL THERAPY & STEM
CELL REPROGRAMMING

Regenerative medicine uses autologous (or allogeneic) stem cells for the repair or
replacement of damaged or diseased tissue. A major limitation to this approach has been
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associated with the use of integrating viruses, such as retroviruses or lentiviruses, to deliver
the appropriate enabling therapeutic genes to stem cells. The potential for insertional
mutagenesis is high, which could lead to disastrous downstream consequences. Minimized
DNA vectors have been tested as a replacement for viral vectors to mitigate these safety
issues. Several varieties of stem cells have been successfully manipulated using minicircles,
including neural stem cells [38,39], mesenchymal stem cells [40,41], skeletal myogenic
progenitors [42], and hematopoietic stem cells [43]. Most frequently this work has been
done in mouse and human cells, but canine and equine cells have also been used [40].

Minicircles have further been used to enable stem cell reprogramming, which refers to the
process of reverting mature, differentiated cells into pluripotent stem cells capable of
expanding indefinitely and differentiating into all other cell types in the body (called induced
pluripotent stem cells or iPSCs). iPSCs are classically produced using somatic cells
transduced with integrating viruses that carry genes for the cellular reprogramming factors
needed to induce reversal of the developmental state [44]. As with the other types of stem
cells described above, however, the use of integrating viruses renders iPSCs produced in this
manner inappropriate for clinical translation. Indeed, chimeric mice generated from iPSCs
produced with virus and then injected into blastocysts formed tumors [45].

The persistent safety issues surrounding integrating viruses have spurred research into
alternative approaches (reviewed in [46]). In addition to minimized DNA vectors, other non-
viral [46,47] methods for stem cell reprogramming include plasmids, mRNA [48,49],
microRNA [50,51], and transposon systems, such as S/eeping Beauty (the components of
which can be encoded on either plasmids or minimized vectors) for the safer genomic
integration of DNA sequences. The use of non-integrating viruses such as Sendai virus [52],
adenovirus [53], AAV [54], and measles virus [55], has also been explored. Fortunately,
insertional mutagenesis is not required for the production of iPSCs [53], and thus it is
feasible to use non-integrating vectors. Even with most non-integrating viruses, however,
there is still a small chance for genomic integration and even gene expression from
integrated vector DNA beyond the point at which reprogramming has taken place [56].
Other difficulties with viruses include immunogenicity, limits on the size of the therapeutic
insert, and variable tropism, which makes it so that some viral systems will not work well
with some cell types. Other approaches to stem cell reprogramming forgo the use of genetic
material entirely (thoroughly reviewed in [57]). These methods, however, are still very
technically challenging and often result in a low yield of usable cells.

Non-viral minimized DNA gene therapy approaches provide a valuable option for stem cell
reprogramming as they are safer and less complex to use. For example, minicircles
expressing bone morphogenetic protein 2 and transforming growth factor beta 3 were used
in a strategy for cartilage treatment and regeneration. Mesenchymal stem cell-like, human
iPSC-derived outgrowth cells transfected with minicircles successfully differentiated into
cells of the chondrogenic lineage. Chondrogenic pellets derived from these cells also
corrected defects in a rat osteochondral defect model [58]. In an interesting development for
cancer treatment, minicircles were used to reprogram murine melanoma cells. The
reprogramed cancer cells were less malignant than non-reprogrammed cancer cells, as
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evidenced by a smaller proportion of cells in S-phase and by the formation of smaller tumors
in mice [59].

It is important to keep pushing stem cell/iPSC research forward because these cells are
critically needed for drug screening, organ and tissue generation, and disease modeling.
Enabling the study of the patient-specific basis of disease also further advances personalized
medicine. While not without challenges [42], minimized DNA vectors should continue to
advance this field.

THE DIFFICULTY OF TRANSLATING NON-VIRAL MINIMIZED DNA VECTORS
TO THE CLINIC

Despite the encouraging successes described above, significant hurdles have slowed the
advancement of minimized DNA vectors into the clinic. One hurdle has been the
achievement of high quality yet cost-effective scale-up of the vectors. Fortunately, gains are
being made in improving vector yields and in minimizing contaminants [60-62], which will
ultimately lower the cost of production (briefly reviewed in [63]).

Viral vectors are generally more efficient than non-viral vectors at delivering a genetic
payload. Perhaps reflecting this difference, nearly two-thirds of gene therapy clinical trials
are based on viral rather than non-viral methods [24]. Transient gene expression from non-
viral vectors is another hurdle. For example plasmids, which thus far have been the most
commonly employed non-viral vector in clinical trials [1], are prone to silencing [64—66]
and have generally failed to afford long-enough lasting benefit in patients [67,68].
Minimized DNA vectors are much less susceptible to transgene silencing than plasmids and
are capable of producing long-lasting gene expression [2—6]. Substituting plasmids with
minimized DNA vectors should provide the benefit of stable and pro-longed gene
expression.

Physical or chemical means are required to carry non-viral DNA vectors into cells [1,69-
74]. Once inside the cell, vectors must also enter the nucleus to express the encoded
therapeutic cargo. Nuclear trafficking of DNA, however, is a complex and not yet fully
understood process [75]. In the cell cytoplasm, DNA associates with proteins to facilitate
migration toward the microtubule organizing center and the nuclear envelope [76]. If the
DNA vector delivered is large, organelles and translation machinery in the cytoplasm
prevent free diffusion inside the cells [64,77] and across the nuclear membrane pore channel
[78]. DNA = 2,000 bp is unable to diffuse into the perinuclear space [79]. In addition, the
inner diameter of the nuclear pore complex is ~40-42.5 nm [75,80-82]. Hence, small and
compact DNA particles are more likely than plasmids to successfully traverse the cell, avoid
degradation, and diffuse through the nuclear pore. Minivectors, for example, are typically
shorter than 2,000 bp in length and can be as small as ~40 nm in diameter [83], facilitating
passage through cell and nuclear membranes.
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DESIGN OF NANOPARTICLES FOR IMPROVED CELLULAR UPTAKE

The field of nanotechnology takes advantage of the benefits provided by nanometer-sized
particles [84], and the advances made in this field could potentially be used to inform the
design of the next generation of minimized DNA vectors. Nanoparticle size is important not
only for cellular internalization but also for retention [85,86], as persistence can have major
implications for therapeutic delivery and gene expression. Cancer-targeting nanoparticles
less than 100 nm in diameter freely diffuse through tumor pores and accumulate within
tumors [86,87]. Based on thermodynamic modeling studies of ligand-coated nanoparticles,
the optimal particle size for cellular uptake should be between 25-30 nm [88]. Maximum /n
vitro uptake of polystyrene and gold particles in cultured HeL a cells was achieved when
particles were between 25-42 nm [89] and 50 nm [90], respectively. 50 nm was also the
most effective size for uptake of silver nanoparticles by red blood cells [91]. In 3-D cultures,
fluorescently labeled carboxylic acid-modified nanoparticle beads = 100 nm were restricted
from cellular uptake, whereas particles < 40 nm were not [92]. /n vivo, drug-silica
nanoconjugate particles of 50 nm display maximum tissue retention and deep tumor
penetration [93]. Gold nanoparticles of 15 and 50 nm are even able to effectively cross the
blood—brain barrier [94] and accumulate faster in tumors than particles = 60 nm. For larger
tumor volumes, however, the larger nanoparticles accumulated better [95]. Whereas smaller
particles are generally more effective, particles that are too small are not. Inert nanoparticles
with diameter < 10 nm are quickly eliminated by the kidneys [96,97]. RNA nanoparticles of
<5 nm are also promptly cleared after injection in mice [98]. Even variations as small as 2
nm may change biodistribution [97].

Nanoparticle shape also influences cellular and nuclear uptake [99,100]. Filamentous
particles are more effective at cellular uptake than spherical systems [86]. Nanoparticles
with sharp edges escape endosomes faster, avoid exocytosis, and persist longer inside cells
than those with rounded edges [101]. Similarly, gold nanotriangles are more readily taken up
by cells than nanorods or nanostars [100]. Structural differences of polyethyleneimine/DNA
nanoparticles dictate their cellular uptake mechanism (macropinocytosis-mediated versus
clathrin-mediated endocytosis), thus resulting in different transfection and gene expression
levels [77]. /n vivo, particle shape affects venous circulation, biodistribution, cellular uptake
[102], and influences tumor penetration [103]. Uptake of nanoparticles by cells is dependent
not only on size and shape, but also surface area, flexibility, and charge [97,104,105].
Altering these parameters targets nanoparticles to different tumors, tissues, and cell types
[96].

Nanotechnology has the potential to address chronic diseases through controlled, site-
specific delivery of precise medicine [84,106—109], as well as through the development of
multimodality agents with both imaging and therapeutic capabilities [85,108,110,111].
Nanoparticles have great potential for the treatment of cancer and other diseases [85,96].
Obstacles still remain, however. The materials that make up some nanoparticles contain
heavy metals, which may be toxic [91,109,110,112], and systemic delivery of nanoparticles
is difficult [106].
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DESIGN OF DNA MINIVECTOR NANOPARTICLES

Since the concept was first proposed in the 1980s, significant progress has been made in
constructing nanostructures made of DNA [113,114]. DNA is remarkably stable [115-117]
and the strict rules for pairing between bases allow for the rational design of increasingly
complex DNA nanostructures [118,119]. Current DNA nanotechnology applications include
construction of structural lattices, scaffolds, molecular machines, bio-sensors, and targeted
drug delivery systems [113,120-122]. The properties of DNA make it suitable for the
construction of a nearly limitless choice of nanostructures that can be further controlled and
modified by a variety of DNA-acting enzymes [120,123,124].

Although assembling DNA into complex nanostructures holds promise for clinical
applications (reviewed in [120]), the process of making these structures is far from straight-
forward. First, a large number of DNA fragment components are typically required to build
these structures, which increases the likelihood of incorrect assembly. Second, annealing
products correctly requires very long folding times, limiting throughput. Third, products
need to be purified, but protocols for purification have not been fully optimized. Fourth, the
procedures required for annealing and purification are difficult to scale up, resulting in low
yield. Finally, even though composed of DNA, none of these structures are themselves the
‘active’ therapeutic component, but rather serve as the carrier for, or foundation of, delivery
or construction of other nanoparticles [125-128]. Indeed, many of the breakthroughs in
nanotechnology for gene therapy are based upon the design of synthetic nanoparticles as
delivery vehicles for nucleic acid payloads into the cell and none have yet focused on
modification of the therapeutic-encoding DNA vector itself.

With diameters of around 40 nm [83], supercoiled minivectors can be made small enough
such that their diameter is within a nanoparticle size range [10,83]. Furthermore, when
complexed with delivery vehicle, for example, poly-L-lysine-polyethylene glycol,
minivectors are highly homogenous, monodisperse, and adopt a needle-shaped
conformation; comparatively, plasmids are not nanoparticle-sized and adopt highly
heterogeneous shapes (Figure 1). These parameters are all important for cellular and nuclear
entry.

Could DNA minivectors be both the nanoparticle and the genetic payload? By using DNA
supercoiling and adding ‘bend site’ sequences, it seems possible. Certain DNA sequences
are much more flexible than others [129,130]. Additionally, because single-stranded DNA is
more flexible than double-stranded DNA [131], disruptions to base pairing can generate
hyperflexible hinges to facilitate bending [132-135]. The propensity for base pair disruption
in supercoiled DNA is also sequence-dependent [136]. Based on these principles, certain
sequences are more likely to bend, either because they are intrinsically more flexible, or
because of disruptions to base pairing [Fogg et af., 2020, submitted]. The placement of bend
sites could influence the 3-D structure of supercoiled DNA molecules. Therefore, by
modifying the DNA sequence, we hypothesize that it should be possible to manipulate
minivector DNA shape with supercoiling.
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We demonstrated the feasibility of this approach by simulating, using established
computational models [137-140], the effect of engineering three bend sites in a supercoiled
336 bp minivector and predicted that this should cause the DNA to adopt three-lobed shapes
[141]. Because the high compaction of rod-shaped minivectors may offer improved cellular
uptake, we reasoned that introducing a bend site diametrically (180°) opposite another bend
site in the 336 bp minivector could result in a strong mechanical correlation between the two
sequences. If correct, the two sites should then facilitate bending at the two apices of the rod
to stabilize the rod-shaped conformation (Figure 2A).

Using coarse-grained molecular dynamics simulations with oxDNA [142], we found that the
unmodified (no added bend site) negatively supercoiled minivector sequence formed a rod-
shaped conformation 30% of the time simulated across 10 independent simulations (Figure
2B). This prediction is in good agreement with the fraction of rod-shaped conformations
observed directly in this minivector [83]. When the modified minivector sequence
containing one bend site opposite the other bend site was simulated, the fraction of rod-
shaped conformations observed increased to 61%. We observed the predicted bend sites
localizing to the apices of these rod-shaped conformations as well as base pair disruption
accompanying the bend sites (Figure 2B). In the simulations, once the rod-shaped
conformation formed with bend sites at the apices, it was typically stable for the remainder
of the simulation. Minivectors with the unmodified sequence (with a single bend site)
fluctuated among multiple different conformations. Simulations, therefore, predict that we
can use circularity, DNA supercoiling, and sequence to enrich for certain nanoparticle
shapes.

Simulations suggest that it may be possible to design at least two different novel DNA
shapes (rod-shaped and three-lobed conformations). These two shapes have potential for
targeted therapy. Lung tissue selectively accumulates star-shaped over spherical gold
nanoparticles [143]. Rod-shaped are more amenable to cellular transfection in clinically
relevant breast cancer cell lines compared to spherical polystyrene nanoparticles [144]; the
authors of this study [144] speculated that the increased surface area of rods allows for more
contact with the cell membrane. Nanoparticles with higher aspect ratios (i.e., much longer
than they are wide, as in the rod-shape) also seem to be more effective at avoiding clearance
through phagocytosis—an important pharmacokinetic characteristic [145-147]. Specific
shapes of non-viral minimized DNA vectors could thus exhibit tissue specificity and
improved cellular uptake, with implications for targeted therapies.

CONCLUSIONS

The recent pre-clinical results summarized here showcase the benefits of using minimized
DNA vectors for therapeutic purposes. There is still plenty of room for improvement in
vector design and in advancing non-viral minimized DNA vectors to the clinic. Difficulties
remain in production scale-up and in getting DNA vectors into cells efficiently. One avenue
for improvement takes advantage of two important features of nanotechnology: particle size
and shape. The smallest minimized DNA vectors (minivectors) fall within the range of ideal
sizes for cellular uptake. Strategically placed bend sites in supercoiled minivectors may
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enable specific nanoparticle conformations that could one day prove beneficial for gene
therapy and targeted nanomedicine.
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G5 DEMIMINEEESE

178.2 11.4

Z-average (nm)
C-potential (mV) +2.95 +4.41
PDI 0.303 0.265

FIGURE 1. Transmission electron micrographs of three DNA vector sizes.
Poly-L-lysine-polyethylene glycol and DNA were complexed at a nitrogen:phosphate ratio

of 2:1. Z-average (a measure of particle size), C-potentials (a measure of the degree of
electrostatic repulsion between adjacent particles), and polydispersity index (PDI, a measure
of the amount of variability in the particle size distribution) values were determined using
dynamic light scattering using a Malvern Zetasizer Nano (data courtesy of Dr Jin Wang, Dr
Fude Feng, and Dr. Daniel J Catanese, Jr.).
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A
Two bend sites
B
Sequence Observed rod-shaped Bend sequences(s)
conformation (%) located at rod apices (%)

One bend site 30 54
(control)
Two bend sites 61 74

FIGURE 2. Generating custom minimized DNA vector shapes.
(A) Schematic representation of the predicted effect of adding bend sites. Bend sites (red)

are flexible, which should localize them to superhelical apices with supercoiling. (B)
Representative image from the coarse-grained simulations showing the rod-shaped
conformation, (the conformation observed most frequently with two bend sites), and
summary of how frequently rod-shaped conformations were observed during the
simulations, and of these rod-shaped conformations, what percent had the bend site(s)
localized to the apices.

Cell Gene Ther Insights. Author manuscript; available in PMC 2021 May 04.
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