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Abstract
In Alzheimer’s disease (AD) Ab accumulates because of imbalance between the produc-
tion of Ab and its removal from the brain. There is increasing evidence that in most
sporadic forms of AD, the accumulation of Ab is partly, if not in some cases solely,
because of defects in its removal—mediated through a combination of diffusion along
perivascular extracellular matrix, transport across vessel walls into the blood stream and
enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are
capable of degrading Ab. Most are produced by neurons or glia, but some are expressed
in the cerebral vasculature, where reduced Ab-degrading activity may contribute to the
development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading
enzyme (IDE), which have been most extensively studied, are expressed both neuronally
and within the vasculature. The levels of both of these enzymes are reduced in AD
although the correlation with enzyme activity is still not entirely clear. Other enzymes
shown capable of degrading Ab in vitro or in animal studies include plasmin; endothelin-
converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9;
and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen
activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in
neprilysin, IDE and plasmin in AD have been associated with possession of APOE e4.
We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and
activity of ACE are increased, the level being directly related to Ab plaque load.
Up-regulation of some Ab-degrading enzymes may initially compensate for declining
activity of others, but as age, genetic factors and diseases such as hypertension and diabe-
tes diminish the effectiveness of other Ab-clearance pathways, reductions in the activity
of particular Ab-degrading enzymes may become critical, leading to the development of
AD and CAA.
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INTRODUCTION
Ab accumulation is thought to be central to the pathogenesis of
Alzheimer’s disease (AD) (62); evidence includes the finding that
familial autosomal dominant forms of AD all result from gene
mutations that increase either both Ab1–40 and Ab1–42, or the ratio
of Ab1–42 : Ab1–40. The mechanism of Ab accumulation in cases
of late-onset sporadic AD (LOAD) is less clear. Although some
groups have found increased levels or activity of b-secretase (the
rate-limiting enzyme in Ab synthesis) in LOAD, other evidence
suggests that this is secondary to Ab accumulation rather than a
primary abnormality. The level of Ab within the brain depends
not only on the rate of Ab production, but also on the rate of its
removal through various clearance pathways and by enzyme-
mediated degradation. Several candidate Ab peptidases are
expressed both neuronally and within the cerebral vasculature.
This review will focus on studies on human post-mortem brain
tissue of the potential relevance of some of these peptidases to the
pathogenesis of AD.

Ab ACCUMULATION IN AD
Ab production results from amyloidogenic processing of amyloid
precursor protein (APP): the sequential cleavage of APP by b- and
g-secretases (51, 95, 131). The predominant species of Ab thereby
produced are Ab1–40 and, in lesser amounts, Ab1–42. Cleavage by
a-secretase of APP within the Ab segment (non-amyloidogenic
processing) prevents the formation of Ab (24, 79, 84). When
present in excess, extracellular Ab1–42, which is more prone to
aggregate than Ab1–40 (71), tends to precipitate within the brain
parenchyma, forming plaques, whereas Ab1–40 is more likely to
reach the cerebral blood vessels and to accumulate within the
vascular and perivascular extracellular matrix, leading to cerebral
amyloid angiopathy (CAA), present in over 90% of patients
with AD.

Excessive accumulation of Ab in early-onset familial AD
(EOAD) and hereditary CAA, results from increased amy-
loidogenic processing of APP, often associated with an increased
ratio of Ab1–42 : Ab1–40 (115, 128). This occurs as a result of
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autosomal dominant mutations in the genes encoding APP (APP),
presenilin-1 (PSEN-1) or presenilin-2 (PSEN-2) (141), or from
increased production of APP, in trisomy 21 (16, 40) or duplication
of the APP locus on chromosome 21 (25, 121). APP gene mutations
that cause a decrease in the Ab1–42 : Ab1–40 ratio (ie, a relative
excess of Ab1–40) usually cause familial CAA(68).

These data constitute strong evidence that Ab accumulation is
central to the pathogenesis of not only AD but also CAA. To date,
there is however, little evidence to suggest that an increase in neu-
ronal synthesis of Ab, or an increase in the overall level of Ab
production via amyloidogenic processing, is responsible for the
development of the majority of LOAD and sporadic CAA cases.
Several groups have found that the level of b-secretase-1 (BACE-1)
activity, the rate-limiting enzyme in Ab synthesis, is increased in
AD cases compared with controls (reviewed in Stockley and
O’Neill (138). Tyler et al (148) observed increased BACE-1 activ-
ity, and a concurrent decrease in a-secretase activity in tissue
homogenates from the temporal cortex in AD. Increased BACE-1
activity in AD was found to result from a rise in the maximum rate
of enzyme activity, mediated by a post-translational mechanism,
rather than a change in BACE-1 protein levels, which were reduced
in AD, especially in cases with advanced disease (139). A study
of two strains of mouse transgenic for mutant human APP
(one causing early and one late accumulation of Ab) revealed an
increase in the amount of BACE-1 only after the commencement of
Ab plaque formation (168). Elevated BACE-1 levels appeared to
be restricted to the perimeter pf plaques, and occurred without any
change in BACE-1 mRNA level. These findings argue against a
primary role for BACE-1 in the formation of plaques but suggest
that BACE-1 activation, via a positive feedback loop initiated by
parenchymal accumulation of Ab, could exacerbate Ab production
in AD.

Evidence obtained over the past decade points to deficiencies
in Ab clearance or enzyme-mediated Ab degradation as factors
potentially responsible for Ab accumulation, particularly in LOAD
and CAA. Intact, soluble Ab is probably cleared from the brain by
several routes: low-density lipoprotein receptor-related protein-1
(LRP-1)-mediated transport across vessel walls into the circulation
(134), transport of Ab across the blood–brain barrier, from the
abluminal to the luminal side via the P-glycoprotein (PgP/MDR1/
ABCB1) efflux pump (81, 83, 154), and drainage along perivas-
cular basement membranes, possibly into the cerebrospinal fluid
(CSF) (114, 158, 159). Ab can potentially gain access to the CNS
from the blood, through binding to receptor for advanced glycation
end products (RAGE) in endothelial cells (38, 92). Zlokovic et al
recently showed that Ab within the blood stream binds to soluble
LRP-1; this acts as a peripheral sink, sequestering the circulating
Ab and promoting the passage of soluble Ab out of CNS (123). The
above studies are discussed in detail in accompanying papers in this
symposium.

While some soluble Ab is therefore cleared from the brain still
intact, Ab also undergoes enzymatic degradation (43, 156). Some
of the candidate Ab peptidases can cleave only soluble monomeric
Ab. Others are able to degrade Ab oligomers and even fibrillar
aggregates, that is, forms of Ab that cannot directly be cleared into
the blood or CSF.

CANDIDATE Ab PEPTIDASES IN
THE CNS
Multiple enzymes have been identified that can cleave at either a
single or multiple sites within Ab. The cleavage products are less
likely to aggregate and less neurotoxic than Ab itself. The contribu-
tions of these enzymes to the normal homeostasis of Ab by neurons
in vitro and within the CNS of experimental animals have been the
subject of a large number of studies. Although some of this infor-
mation is touched upon below, the emphasis in the present paper is
on findings that have been validated by post-mortem examination
of human brain tissue.

Neprilysin

Neprilysin (NEP, also known as neutral endopeptidase-24.11,
EC.3.4.24.11, enkephalinase, neutrophil cluster-differentiation
antigen 10 or common acute lymphoblastic leukemia antigen) is a
90–110 kDa plasma membrane glycoprotein of the neutral zinc
metalloendopeptidase family (145–147). Within the brain, NEP is
expressed at pre- and post-synaptic membranes and is involved in
the regulation of neuropeptide signaling (13, 57, 135). It is also
expressed in the tunica media and endothelium of cortical and
leptomeningeal blood vessels (29, 98), where it is involved in the
regulation of vascular tone (31, 118).

The first evidence of deficiencies in NEP in AD came from two
studies showing that NEP mRNA and protein levels were signifi-
cantly lower in regions of brain with high plaque burdens, and
mRNA levels were lower in hippocampus from AD than control
brains despite preservation of MAP-2 (neuronal) mRNA (4, 165).
Subsequent studies yielded inconsistent findings: non-significant
reduction in NEP mRNA in the frontal cortex and hippocampus in
AD (29), significant reduction in NEP mRNA in the frontal cortex
in AD (122), and no difference in NEP mRNA levels between cases
and controls (65).

Antibodies to NEP label neurons within the cerebral cortex
(4), particularly pyramidal neurons (29, 98). Carpentier et al (29)
reported diminished immunolabeling of hippocampal pyramidal
neurons in AD. We found significantly reduced NEP labeling in
frontal and temporal neurons in AD and a non-significant reduction
in the amount of NEP in homogenates of frontal cortex (98).

Carpentier et al (29) also noted an inverse relationship between
the amounts of Ab and NEP in the cerebral vasculature. We con-
firmed this and showed that vessel-associated NEP is significantly
reduced in AD, the reduction being inversely related to CAA sever-
ity. In cases of AD with severe CAA, NEP levels were equally
reduced in the Ab-laden and Ab-free vessels (98). The findings
indicated that the reduction in cerebrovascular NEP in AD is not
simply due to replacement of tunica media by Ab. Carpentier et al
(29) also observed reduced NEP in vessels in which the tunica
media had not been destroyed, pointing to global reduction in
vessel-associated NEP as a potential cause of CAA.

Further support for a role for NEP in normally preventing CAA
comes from the finding that NEP cannot cleave the abnormal forms
of Ab that result from Dutch, Flemish, Italian or Arctic mutations
in APP and which are all associated with severe CAA (142). It is
also of note that NEP cleaves monomeric Ab1–40 more efficiently
than it does Ab1–42 (73). A deficiency in NEP would therefore be
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expected to decrease the ratio of Ab1–42 : Ab1–40, favoring vascular
deposition of Ab.

We found a significant association between NEP labeling and
APOE genotype, the only well-established genetic risk factor for
both AD and CAA (30, 33, 53, 129, 140). Possession of APOE e4
was associated with reduced immunolabeling of neurons and
vessels for NEP (98). Colinearity of e4 with the presence of moder-
ate to severe CAA precluded assessment of the independence of
this association from NEP levels. However, logistic regression
analysis showed low NEP labeling to be a significant independent
predictor of moderate to severe CAA. The precise relationship
between NEP immunolabeling and enzyme activity, particularly in
the vascular tunica media, remains to be established, although the
likelihood is that these are directly related.

Correlation between immunolabeling studies and measurements
of NEP protein levels in human brain tissue homogenates (usually
by densitometry of Western blots) has generally been poor. In most
studies NEP levels have not differed significantly between AD
cases and controls (65, 98, 122). Wang et al (155) found signifi-
cantly reduced NEP levels in the mid-frontal cortex in AD (but not
frontotemporal degeneration, suggesting that the reduction in NEP
in AD was not simply secondary to neuronal loss). NEP levels
correlated directly with brain weight and synaptic protein levels
and inversely with plaque counts, formic acid-extractable Ab1–40

and Ab1–42, neurofibrillary tangle counts and phospho-tau levels.
Hellstrom-Lindahl et al (65) also reported a significant inverse
relationship between NEP levels and insoluble Ab1–40 and Ab1–42 in
the temporal and frontal cortex, in both control and AD brains.

The levels of NEP in post-mortem brains were shown to decline
with age (65). It may be of relevance that the levels of somatostatin,
which up-regulates NEP activity, also fall with age and in AD
(124). Somatostatin levels in the frontal cortex were significantly
lower in AD cases positive for APOE e4 (61). An APOE-dependent
genetic association between AD and three single nucleotide
polymorphism (SNPs) within the somatostatin gene (3q27.3) was
reported in a Finnish population (151). The biological link between
somatostatin, NEP and APOE e4 merits further exploration.

NEP enzyme activity in CSF is significantly reduced in AD and
patients with mild cognitive impairment (MCI) [a prodromal form
of cognitive decline that has a high later conversion rate to AD
(153)] compared with controls (94). However, when the AD
patients were subdivided according to severity of disease, the most
severely affected patients showed a significant increase in NEP
activity, with levels similar to those in the controls. It is not clear
whether NEP activity in the CSF parallels that in brain tissue but
these data suggest that (i) CSF measurement of NEP activity has
potential as a biomarker of early AD, and (ii) there may be late-
stage up-regulation of NEP activity (eg, as a response to elevated
Ab). We (98) and others (155) used fluorogenic peptide substrates
to measure NEP activity in brain homogenates and found this to be
significantly reduced in AD. However, when applied to brain homo-
genates, the specificity of this method for NEP is questionable
(100). We have recently developed immunocapture-based fluoro-
genic peptide cleavage assays (100) that allow the measurement of
NEP and IDE enzyme activity levels in brain homogenates with
much greater specificity (Figure 1).

Some genetic studies have shown strong associations between
polymorphisms in the gene-encoding NEP (MME) and AD (64,
125, 133) whereas others have found no associations (111, 137).

Yamada et al (163) reported that a GT repeat polymorphism in
the enhancer/promoter region of NEP was associated with CAA
severity.

Insulin-degrading enzyme

Insulin-degrading enzyme (IDE) (insulysin, insulinase,
EC3.4.24.56) is a zinc metalloendopeptidase that is highly
expressed in the liver, testis, muscle and brain (82). It is a single
polypeptide with a molecular weight of 110 kDa and is encoded by
a gene (IDE) on chromosome 10q23–q25 (2). IDE is predomi-
nantly cytosolic (3, 17, 41), with smaller amounts in peroxisomes
(8, 103), rough endoplasmic reticulum and plasma membranes (60,
132). A secreted form of IDE is present within extracellular com-
partments such as CSF (117). IDE degrades a wide range of sub-
strates that share a common amyloidogenic secondary protein
structure and include insulin (42, 60, 78), amylin (17), insulin-like
growth factors I and II (101) and Ab (96, 113, 117).

IDE is predominantly expressed neuronally within the brain (18,
32) and has been demonstrated in Ab plaques and endothelial cells
(102). In AD, immunolabeling suggested that neuronal and plaque-
associated IDE was increased in AD (18) but quantitative in situ
hybridization demonstrated reduced neuronal IDE mRNA in the
dentate granule cells, hilus and CA2-3 fields of the hippocampus,
and Western blot analysis of hippocampal homogenates showed
decreased IDE protein levels. The reduction of IDE mRNA and

Figure 1. Schematic representation of immunocapture-based fluoro-
metric enzyme activity assay for the measurement of neprilysin (NEP)
and insulin-degrading (IDE) enzyme activity within brain tissue homoge-
nates. The initial immunocapture phase (similar to a standard indirect
sandwich ELISA method), prior to the addition of the fluorogenic sub-
strate, allows the specific measurement of NEP enzyme activity in bio-
logical tissues separate from other closely related enzymes. Specificity
is demonstrated by almost complete inhibition of fluorogenic peptide
substrate cleavage in the presence of thiorphan (200 nM), a NEP-
specific inhibitor. The assay combines high sensitivity and specificity and
can be adapted to a 96-well plate format to permit high-throughput
analysis. ELISA = Enzyme-linked immunosorbent assay.
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protein in AD was APOE e4 dependent (32). Our immnuolabeling
studies have shown that neuronal IDE expression within the pyra-
midal cells of the hippocampus is highest in CA3/4 neurons and
lowest in the CA1 subfield and is significantly reduced in AD cases
compared with controls (Figure 2). In our cohort IDE immuno-
labeling levels varied with APOE genotype but not significantly,
and were lowest in patients with advanced Braak tangle stages and
high temporal Ab plaque load.

Reduced levels of cystolic IDE in AD were reported by Perez
et al (113). More recently, Zhao et al (169) demonstrated that
hippocampal IDE protein and activity were reduced in MCI and
further reduced in AD; in contrast to Perez et al (113), the reduc-
tions were within the membrane fraction and not the cytosol. The
reduction in membrane-bound IDE was region-specific (not seen
in the occipital cortex) and correlated inversely with Ab1–42 load.
Region-specific alterations were also reported by Caccamo et al
(26): reduced levels in IDE in the hippocampus and cerebral cortex
but increased levels in the cerebellum.

IDE has also been detected immunohistochemically in pericytes,
endothelial and cerebrovascular smooth muscle cells (59, 102).
IDE was present within occasional vessels in AD but not controls
(18). Measurement of IDE levels in vessel-enriched preparations of
brain tissue showed cases with severe CAA to have elevated IDE
levels but reduced IDE activity (102), raising the possibility that
inactivation or inhibition of IDE activity may contribute to the
development of CAA.

There is evidence of genetic linkage of AD to chromosome 10 in
the region to which IDE is mapped (19, 104). Several studies
observed an association between IDE haplotypes (20, 21, 50, 56,
116), and SNPs within the IDE gene, with AD (152). Other studies
(1, 23, 126) have not found significant associations. Genetic varia-
tion in close proximity to the IDE gene was found to be associated
with clinical disease severity, plaque and neurofibrillary tangle
density (116) and plasma Ab42 levels in AD patients, (50) provid-
ing further support for a genetic association with AD. Naturally
occurring splice variants of IDE associated with AD were reported
to have reduced catalytic activity (54, 55).

Endothelin-converting enzymes

Endothelin-converting enzymes ECE-1 and ECE-2 (EC 3.4.24.71)
are type II integral membrane zinc metalloendopeptidases (144)
that are primarily localized to the endothelium throughout the
human vasculature (36). They share common catalytic substrates
and are responsible for cleaving big endothelins to produce potent
vasoconstrictor endothelins (48, 162). In man, four isoforms of
ECE-1 are encoded by a single gene on chromosome 1 (1p36).
These differ in their subcellular location: ECE-1a, 1c and 1d are
located predominantly in the plasma membrane (130, 150);
ECE-1b is predominantly intracellular. ECE-2 is present intracellu-
larly and has an acidic pH optimum in contrast to the neutral pH
optimum of ECE-1 (48).

Immunolabeling of rat (14) and bovine brain (48) has revealed
ECE-1 in neurons, specifically within pyramidal neurons of the
hippocampus and layer V of the neocortex (136). A few astrocytes
were also labeled (136). In mice, ECE-2 labeling is largely con-
fined to the brain (164); in the rat brain, ECE-1 and ECE-2 mRNA
was localized to neurons (105).

Limited information is available on the expression of ECE-1
and -2 in human brain. ECE-1 immunoreactivity was seen within
neurons and their processes in the cerebral cortex (37). We found
the strongest labeling for ECE-1 to be within the cerebrovascular
endothelium, whereas ECE-2 was predominantly neuronal, with
strong labeling of hippocampal pyramidal neurons (Figure 3).

Although several experimental studies have highlighted a role
for ECE-1 and ECE-2 in degradation of Ab (44–46) there are few
data from studies on human tissue. A recent microarray study,
looking at changes in gene expression in the inferior parietal lobe
in LOAD, revealed a highly significant decrease in ECE-2 gene
expression, confirmed by RT-PCR (157). Immunolabeling showed
loss of ECE-2 from neurons; similar loss was not seen in Parkin-
son’s disease dementia, hippocampal sclerosis or dementia lacking
distinctive histological features. Yoshizawa et al (167) found ET-1
levels in human CSF to be lower in AD patients than controls; it
remains to be established whether or not the lower ET-1 levels are
caused by reduced ECE activity.

A SNP in ECE-1 (chromosome 1p36) was associated with
increased hippocampal neuronal ECE-1 expression and protection
from AD in a large case–control study (58). No studies have
assessed genetic associations of ECE-2 with AD.

Angiotensin-converting enzyme

Angiotensin-converting enzyme (ACE; peptidyl-dipeptidase A;
EC 3.4.1.5.1) is a membrane-bound zinc metalloprotease that is
widely expressed in the vasculature throughout the body. ACE is
encoded by a gene (ACE) on chromosome 17q23.3 and has an
important role in the regulation of fluid homeostasis and blood
pressure (49, 119). The two major physiological substrates for ACE
are angiotensin I (which is converted by ACE to the vasoconstrictor
angiotensin II) and bradykinin. Within the human brain, ACE has
been detected predominantly in pyramidal neurons in the cortex
(layer V) and within the cerebral vasculature (99, 127).

Human genetic studies have provided strong evidence of an
association between ACE and AD. Several studies, including a
large meta-analysis, revealed that possession of an insertion (I)
polymorphism within intron 16 of ACE is strongly associated with
AD risk whereas the deletion (D) variant is protective (47, 75–77,
90, 107). In a study concerned with the genetic basis of hyperten-
sion, serum ACE protein levels were found to be lower in people
with the I/I (higher AD risk) genotype (120). These findings have
been replicated in human post-mortem CSF samples from our own
cohort; ACE protein levels were significantly decreased in CSF
from AD cases compared with controls and were significantly
lower in CSF from individuals with the I/I genotype (Figure 4).
In vitro studies have shown that ACE can cleave Ab1–40 and Ab1–42

(66, 69, 110) and converts Ab1–42 to Ab1–40 (170). However, Lendon
et al (91) found no relationship between ACE genotype and either
Ab load or CAA severity. Other studies have not shown ACE geno-
type to be associated with vascular dementia or vascular pathology
(80, 90).

The conclusions from animal studies of the effects of ACE on Ab
homeostasis are not entirely clear. Most have found inactivation of
the mouse ACE gene or inhibition of ACE in mice not to affect Ab
levels (46, 67) but Zou et al (170) reported that administration of
the ACE inhibitor captopril to mice transgenic for the Swedish APP
double mutation increased Ab1–42 deposition.
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In post-mortem brain tissue, ACE protein levels and activity are
raised in AD. Savaskan et al (127) described increased immuno-
labeling of ACE in neurons and blood vessels in the parietal cortex
in AD. ACE levels were also raised in hippocampal homogenates
(12) and ACE activity increased in the caudate nucleus and cerebral
cortex in AD (6). We also found ACE immunolabeling and activity
to be elevated in the frontal cortex in AD (99); the activity corre-
lated directly with parenchymal Ab plaque load, raising the possi-
bility that intracerebral ACE levels are up-regulated as a response
to Ab accumulation within the brain.

In our series, ACE immunolabeling in frontal and temporal
cortex was predominantly perivascular and was significantly
increased in moderate to severe CAA. Perivascular ACE

co-localized with the extracellular matrix marker proteins
fibronectin and decorin. Angiotensin II (ANG II), the primary
cleavage product of ACE, is expressed alongside ACE in the cere-
bral vasculature (127). The significance of perivascular ACE in
CAA is unclear but it may be relevant that we have found strong
labeling of blood vessels for ANG II receptor in some patients with
CAA (Figure 5). ANG II stimulates the production of ECM,
fibronectin in particular (34, 112), and also induces expression of
transforming growth factor b (TGF-b) and its receptors (28, 88).
TGF-b stimulates the synthesis of ECM and is associated with
pathological accumulation of ECM in various inflammatory and
fibrotic diseases (22, 106) and is elevated in AD (160). Over-
expression of TGF-b by astrocytes or neurons in transgenic mice
resulted in deposition of ECM and accumulation of Ab perivascu-
larly (149, 161).

ACE enzyme activity was increased in the CSF in a series of
patients with either MCI or AD compared with controls. ACE
activity levels were significantly higher in MCI cases than in
AD (63). It remains unclear, however, whether enzyme activity

Figure 2. (A) Insulin-degrading enzyme (IDE) immunolabeling of neurons
within the CA3-4 and CA2 regions of the hippocampus in control cases
and Alzheimer’s disease (AD). (B) IDE immunolabeling of neurons is
significantly reduced in AD cases (n = 20) compared with age-matched

controls (n = 22) (CA3-4, P < 0.05 and CA2, P < 0.01). Reductions in IDE
neuronal labeling in (C) CA3-4 and (D) CA2 hippocampal regions are
inversely related to Braak tangle stage, APOE e4 genotype, and Ab plaque
load in the temporal lobe. The error bars indicate standard error of mean.

�

Figure 3. Endothelin-converting enzyme (ECE-1) in sections of temporal
lobe. A. Immunolabeling ECE-1 is largely confined to the endothelium. B.

Neurons in the CA2 subfield of the hippocampus are strongly immu-
nopositive for ECE-2.

Figure 4. Angiotensin-converting enzyme (ACE) protein levels in human
post-mortem cerebrospinal fluid (CSF) samples. The bars in the left chart
show the mean values and standard error of the mean in Alzheimer’s
disease (AD) and control samples. In the right chart the levels are sub-
divided according to ACE (I/D) genotype. ACE levels (measured by sand-
wich ELISA) were significantly reduced in AD cases (n = 122) compared
with controls (n = 20) (P < 0.05). ACE CSF protein levels were signifi-
cantly lower in AD cases of I/I genotype (n = 29) (ie, the genotype asso-
ciated with increased risk of AD) than in D/D (protective genotype)
(n = 44) (P < 0.05) and lower, but not significantly, in I/D (n = 34) cases.
The number of control CSF samples (I/I = 2, I/D = 8, D/D = 7) in this small
series was too small for meaningful assessment of the influence of I/D
genotype. ACE CSF levels did not vary according to age or gender but
showed a weak positive association with post-mortem delay (which was
adjusted for in the statistical analysis). ELISA = Enzyme-linked immuno-
sorbent assay. *P < 0.05.
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parallels protein levels; another study found that ACE protein
levels in CSF did not vary between AD patients and controls (109).

Plasmin

The serine protease, plasmin (EC 3.4.21.7), which is generated
from inactive plasminogen, cleaves Ab at multiple sites (143) and
prevents the aggregation of Ab1–42 into b-pleated sheets (52). Gen-
eration of plasmin from plasminogen results from proteolytic
cleavage by either tissue-type (tPA) or urokinase-type plasminogen
activator (uPA). In vivo data from two separate human APP trans-
genic mouse models revealed that reduced activity of the tPA
system may account for enhanced Ab levels. In one APP(SI) trans-
genic mouse model, a decrease in tPA activity (with a correspond-
ing increase in the level of tPA inhibitor) correlated with Ab
accumulation in 14-month-old mice (27). Elevated Ab in another
human APP transgenic mouse strain also correlated with increased
levels of tPA inhibitor (97). In contrast, in 22-month-old transgenic
mice, the levels of tPA and uPA activity were increased. Incubation
of fibrillar (not soluble) Ab with primary cortical neuronal cultures
caused an increase in tPA and uPA mRNA levels (143). The
plasmin system may participate in a feedback mechanism in which
fibrillary Ab induces tPA and uPA synthesis and formation of
plasmin which in turn degrades the Ab.

In human post-mortem tissue, plasmin levels were significantly
reduced in the hippocampus and frontal cortex in AD (86, 87). The
reduction was confined to APOE e4-positive cases. The finding that
several Ab-degrading enzymes (NEP, IDE and plasmin) show a
similar relationship between APOE genotype and reduced levels or
activity suggests a common pathway through which APOE medi-
ates at least some of its influence on the risk of developing AD and
CAA through effects on Ab degradation.

The PLAU gene which encodes uPA which has been mapped to
10q22 and which lies within the reported region of linkage to AD
has not been found to be associated with AD(141).

Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are zinc- and calcium-
dependent endopeptidases, several of which are produced by
neurons and glial cells. MMP-2 (EC3.4.24.24), -3 (EC 3.4.24B6)
and -9 (EC 3.4.24.35) all have Ab-degrading activity in vitro (10).
Although the Ab-degrading activity of these MMPs has not yet
been explored in vivo, MMP-9, unlike ECE-1, NEP and IDE, is
capable of cleaving aggregated Ab-fibrils (25). Asahina et al (7)
reported increased MMP-9 immunolabeling of neurons in AD, as
well as labeling of neurofibrillary tangles, plaques and vessel walls.
Backstrom et al (9) found MMP-2 and -9 activity to be elevated
in homogenates of hippocampal tissue from AD brains. Several
cell types (glial, neuronal and vascular) up-regulate endo-
genous MMP-2 -3 and -9 expression in response to Ab stimulation
(39, 72, 89).

We looked at MMP-2, -3 and -9 levels and activity in the frontal
cortex in AD (11). MMP-2 was detected immunohistochemically
in the walls of some blood vessels and scattered white matter glia,
MMP-3 in and around some neurons and within occasional
plaques, and MMP-9 in many neurons. In our series, the level and
activity of these three MMPs did not differ significantly between
AD and control brains and were not related to Ab plaque load.
Analysis of polymorphisms in the MMP-3 (-1171 5A/6A) and
MMP-9 (C-1562T) genes indicated that the -1171 6A MMP-3
allele (with reduced promoter activity) was associated with AD; the
MMP-9 polymorphism was not.

UP-REGULATION OF Ab PEPTIDASES
WITH AGE AND IN RESPONSE TO Ab
IDE levels (85), tPA and uPA activity (143) and MMP-2 and -9
activity (166) were all shown to be increased in aged mice that were
transgenic for mutant human APP. Neprilysin levels were also
increased, although not significantly, in aged Tg2567 mice (5).
Increases in the levels of Ab peptidases in the transgenic mice seem
to parallel increases in Ab load–somewhat surprisingly given the
reduction in levels of these enzymes in AD. An observation in
several studies on aged human APP transgenic mice (5, 85, 166)
and post-mortem tissue (29) is the presence of NEP, IDE or
MMP-2- or -9-positive astrocytes in close proximity to Ab plaques,
suggesting up-regulation by Ab of these enzymes in astrocytes and,
possibly, a role for astrocytes in the removal of Ab, as suggested by
Nicoll and Weller (108).

There is in vitro evidence that incubation of neuronal, microglial
and vascular smooth muscle cells with fibrillar (not soluble) Ab or
fragments of APP can cause significant elevation in the levels of
MMP-2, -3 and -9 (39, 72, 89), IDE (85) and plasminogen activa-
tors (143). These studies, together with others noted earlier, suggest
that Ab-degrading enzymes are part of a normal regulatory process
that act at several stages after Ab synthesis, up to and including
plaque formation and CAA, to limit Ab accumulation within brain
parenchyma and blood vessels (Figure 6). Reduction in the level
or activity of an Ab peptidase may be offset, or at least partially
compensated for, by consequent up-regulation of other Ab-
degrading enzymes. However, as age, environmental factors, gen-
etic factors, diseases such as hypertension and diabetes impact on
the effectiveness of other Ab-clearance pathways, impairments in

Figure 5. Strong labeling of angiotensin II receptor in arteriolar walls in
an Alzheimer’s disease (AD) patient with cerebral amyloid angiopathy
(CAA).
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the activity of particular Ab-degrading enzymes may become criti-
cal (Figure 6).

THERAPEUTIC CONSIDERATIONS
Virus-mediated delivery of human NEP, in mouse models of AD,
has demonstrated the therapeutic potential of exogenous Ab pepti-
dases for reduction of Ab levels (67, 70, 93). Most Ab-degrading
enzymes have multiple physiological roles. NEP and ACE, for
example, are involved peripherally in the regulation of blood pres-
sure and vascular tone (118). Drugs that have been developed for
the treatment of hypertension and which inhibit NEP, ACE and
ECE-1 (15, 35) have the potential to act adversely on the develop-
ment of AD and this will require careful assessment in animal
studies and, if given to patients, close clinical monitoring and
post-mortem evaluation. Current evidence suggests, however, that
agents routinely used in the treatment of hypertension, which have
the ability to impact on Ab levels if they penetrate the blood–brain
barrier, offer some protection against cognitive decline in MCI and
AD [reviewed in Kehoe and Wilcock (74)].

CONCLUSIONS
Ab-degrading enzymes are involved in the physiological regulation
of Ab levels in the brain. Altered levels or activity of several of
these enzymes have been demonstrated in both AD and CAA and
may be influenced by APOE genotype. The multiplicity of enzymes
capable of degrading Ab within the brain and the availability of
other pathways of Ab removal probably limit the immediate impact
of deficiency of any particular Ab-degrading enzyme. However, as
other pathways of Ab removal decline in efficiency with age or
disease, a reduced capacity for enzymatic degradation of Ab may
become critical, resulting in its accumulation within the brain
parenchyma and blood vessels and the development of AD and
CAA.
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