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Improving clinical tests are allowing us to more precisely classify autism spectrum
disorders and diagnose them at earlier ages. This raises the possibility of earlier and
potentially more effective therapeutic interventions. To fully capitalize on this oppor-
tunity, however, will require better understanding of the neurobiological changes
underlying this devastating group of developmental disorders. It is becoming clear that
the normal trajectory of neurodevelopment is altered in autism, with aberrations in
brain growth, neuronal patterning and cortical connectivity. Changes to the structure
and function of synapses and dendrites have also been strongly implicated in the
pathology of autism by morphological, genetic and animal modeling studies. Finally,
environmental factors are likely to interact with the underlying genetic profile, and
foster the clinical heterogeneity seen in autism spectrum disorders. In this review we
attempt to link the molecular pathways altered in autism to the neurodevelopmental
and clinical changes that characterize the disease. We focus on signaling molecules
such as neurotrophin, Reelin, PTEN and hepatocyte growth factor, neurotransmitters
such as serotonin and glutamate, and synaptic proteins such as neurexin, SHANK and
neuroligin. We also discuss evidence implicating oxidative stress, neuroglial activation
and neuroimmunity in autism.

Brain Pathol 2007;17:434–447.

INTRODUCTION
Autism spectrum disorders (ASD) are

the most devastating conditions in the
broad range of developmental abnormali-
ties known as “pervasive developmental
disorders” (175). ASD comprise a complex
and heterogeneous group of conditions
that include autism, Rett and Asperger
syndromes, and pervasive developmental
disorder-otherwise nonspecified (2). The
main clinical features of ASD are stereo-
typic behaviors and marked impairment in
communication, social skills and cognition
(129, 174). Clinical signs of ASD are fre-
quently present at 3 years of age and recent
prospective studies in toddlers indicate that
abnormalities in social, communication
and play behavior that may represent early
indicators of autism can be detected as
early as 14 months of age (124). Abnor-
malities in language development, mental
retardation and epilepsy are frequent prob-
lems in the clinical profiles of patients with
autism, and some patients may exhibit fea-
tures of clinical regression, in which neu-

rodevelopmental milestones are lost and/
or other clinical signs worsen (174). ASD
are clinically heterogeneous and can be
associated in up to 10% of patients with
well-described neurological and genetic
disorders, such as tuberous sclerosis, fragile
X, Rett’s and Down syndromes, although
in most patients the causes are still
unknown (159, 176) (see review by
London). The heterogeneity and clinical
variability of autism has prompted some
researchers to use the term autisms instead
of autism (81).

The stereotypic behaviors and marked
delay or disruption of communication and
social behavior trajectories that characterize
ASD indicate that crucial neuroanatomic
structures and neurodevelopmental path-
ways may be affected during intra-uterine
and/or early postnatal brain development.
Several lines of research indicate that ASD
are associated with disarrangement of
neuronal organization, cortical connectiv-
ity and neurotransmitter pathways. While
the causes of these abnormalities are still

being identified, it is generally believed
that genetic as well as environmental
factors are involved in the pathogenesis of
ASD (98, 147, 164). This review focuses
on the current knowledge of molecular
and cellular factors that may contribute
to pathogenic mechanisms in ASD, and
examines how they might affect the devel-
opment and functioning of the central
nervous system (CNS).

THE NEUROANATOMICAL AND
NEURODEVELOPMENTAL BASIS OF ASD

Different approaches, including clinical
assessment, neuroimaging and neuro-
pathological studies have been used to
assess the structural and morphological
brain abnormalities in ASD. One con-
sistent finding in ASD is altered brain
growth, which has been extensively docu-
mented by Courchesne et al (54). The
clinical onset of autism appears to be pre-
ceded by two phases of brain growth
abnormalities: a reduced head size at birth,
then a sudden and excessive increase
between 1–2 months and 6–14 months of
age (54, 57). Furthermore, these reports
and other recent neuroimaging studies
have shown that an abnormal pattern of
brain overgrowth also occurs in areas of the
frontal lobe, cerebellum and limbic struc-
tures between 2 and 4 years of age, a
pattern that is followed by abnormal slow-
ness in brain growth (54, 55, 57, 192).
These brain regions are intimately involved
in the development of social, communica-
tion and motor abilities that are impaired
in ASD. For example, social orienting defi-
cits in ASD were linked to abnormalities in
frontal brain mechanisms involved in asso-
ciating rewards with goal-directed activity
(62, 201). A recent clinical study found
that a head circumference >75th percentile
is associated with more impaired adaptive
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behaviors and with less impairment in IQ
measures and motor and verbal language
development (182). Neuroimaging studies
have also demonstrated an overall enlarge-
ment of brain volume associated with
increased subcortical white matter in the
frontal lobe, and abnormal patterns of
growth in the cerebral cortex, amygdala
and hippoccampal formations (see review
by Herbert (95)). A detailed parcellation
study of the cerebral white matter showed
increased volume of the subcortical or
outer radiate white matter in all lobes, but
most remarkable in the frontal lobe, sup-
porting the view that an overgrowth of
intrahemispheric and cortico-cortical con-
nections rather than interhemispheric con-
nections occur in patient with autism and
language-associated developmental disor-
ders (96, 97). Other studies of cortical and
cerebral white matter volumes are in-
dicative of inter-regional disconnectivity
(95–97), potentially resulting in poor inte-
gration within and across neurobehavioral
developmental domains (56, 117).

Other novel neuroimaging approaches
such as diffusion tensor imaging (DTI) and
functional magnetic resonance imaging
(fMRI) have also demonstrated disruption
of white matter tracts and disconnection
between brain regions in patients with
autism. DTI of the brain reveals reduced
fractional anisotropy values in white matter
adjacent to the ventromedial prefrontal cor-
tices, anterior cingulated gyrus and superior
temporal regions, suggesting disruption of
white matter tracts in brain regions involved
in social functioning (9). Interestingly,

fMRI of the brain has also shown abnormal
patterns of activation and synchronization
across different cortical and subcortical
regions. This includes reduction in the
functional connectivity and decreased cor-
relation of the time series involved in higher
order tasks that include language, working
memory, problem solving and social cogni-
tion (reviewed by Minshew (147)).

Post-mortem neuropathological studies
also show disturbances in neuronal and
cortical organization (reviewed in this issue
by Casanova). Indeed, cytoarchitectural
organizational abnormalities of the cerebral
cortex, cerebellum, and other subcortical
structures appear to be the most prominent
neuropathological changes in autism (7,
112). An unusual laminar cytoarchitecture
with packed small neurons has been
described in the classical neuropathological
studies by Kemper and Bauman, but no
abnormalities in the external configuration
of the cerebral cortex were noted (112).
Cerebellar and brainstem pathology was
also prominent, with loss and atrophy of
Purkinje cells, predominantly in the poste-
rolateral neocerebellar cortex. Kemper and
Bauman (11, 112) have delineated at least
three different types of pathological abnor-
malities in autism: (i) a curtailment of the
normal development of neurons in the
forebrain limbic system, (ii) an apparent
decrease in the cerebellar Purkinje cell
population, and (iii) age-related changes in
neuronal size and number in the nucleus of
the diagonal band of Broca, the cerebellar
nuclei and the inferior olive. Most recently,
studies of the amygdala showed an abnor-

mal pattern of growth with an overall
decrease number of neurons (190, 191).
These observations suggest that delays and
disarrangements in neuronal maturation
are important in the pathogenesis of
autism (55), although the possibility that
Purkinje cells or other neurons were ini-
tially present and subsequently degener-
ated must also be considered. In addition
to these cytoarchitectural abnormalities,
the structure and number of cortical mini-
columns, narrow chains of neurons that
extend vertically across layers 2–6 (151)
to form anatomical and functional units,
appear to be abnormal in ASD. Mini-
columns in brain from patients with ASD
are more numerous, smaller, and less
compact in their cellular configuration in
the frontal and temporal regions, as com-
pared with controls ((34) and review by
Casanova in this issue).

Taken together, clinical, neuroimaging
and neuropathological studies support the
hypothesis that autisms are disorders of
neuronal-cortical organization that cause
alterations of information processing at
different levels of the nervous system, from
synaptic and dendritic organization to
pathway connectivity and brain struc-
ture (81, 147). These neurobiological
alterations likely affect the developmental
trajectory of social behavior and com-
munication during early stages of child-
hood (124) and appear to be influenced
by both genetic and environmental factors
(Figure 1). Some of the morphological
abnormalities (eg, minicolumnar disorga-
nization) suggest the events involved in the
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Figure 1. Genetic and environmental factors that influence intrauterine and early postnatal brain development likely alter neurobiological and neurodevel-
opmental trajectories that determine the clinical core of ASD.
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pathogenesis of ASD occur early during
neurodevelopment, perhaps during first
and second trimester of gestation.
However, there is still uncertainty about
the precise timing of the neuronal and cor-
tical changes in ASD. For example, there is
lack of clear gyral or cortical lamination
abnormalities (103), a common feature of
neurodevelopmental disorders originating
at early stages such as those that occur
during the first or second trimester.

GENETICS AND NEUROBIOLOGY OF ASD
The major role of genetics in autism is

clear, as a concordance rate of 60% to 92%
is seen in monozygotic twins. Recent
studies have further documented the
genetic complexity of ASD, and highlight
the polygenic nature of the disorder (160,
187, 194, 205, 220). From these and other
analyses, it is clear that molecular pathways
with the potential to disrupt neurodevel-
opmental trajectories in utero or after birth
are involved in the pathogenesis of ASD.
Such pathways may be associated with
many different developmental processes,
from neuronal migration and cortical orga-
nization to synaptic and dendritic con-

formation. Environmental factors (159),
including both maternal/intrauterine and
postnatal events, may well modify the
underlying genetic substrate and lead to
greater abnormalities in neuronal organiza-
tion and cortical network development.
In the sections below, we further discuss
the range of neurobiological changes in
ASD, and associate them when possible
with potential genetic etiologies. We have
attempted to use a neuroanatomical frame-
work in organizing this part of the review
(Figure 2), while recognizing that many
of the molecular pathways implicated
in autism have effects on multiple CNS
processes.

Neuronal and cortical organization.
Molecular pathways critical for normal
neuronal and cortical organization that
have been implicated in patients with ASD
include those directed by growth factors
such as hepatocyte growth factor (HGF)
and its receptor MET, neurotrophic factors
such as brain-derived neurotrophic factor
(BDNF), serotonin and other neurotrans-
mitters, and signaling proteins such as
Reelin.

MET and the HGF pathway. Both
genetic and protein expression studies have
associated the receptor MET and its ligand
HGF with ASD. A recent case–control
study demonstrated a strong association
of a single nucleotide polymorphism
(G-to-C) in a common 5′ promoter of the
MET gene with ASD. The relative risk of
ASD diagnosis was 2.27 in subjects with
the C/C as compared with the G/G geno-
type (32). This study is especially relevant
because the MET gene is located at 7q31
in one of the regions most commonly asso-
ciated by genetic linkage studies with ASD
(104, 220). MET is a transmembrane
receptor that possesses tyrosine kinase
activity (14, 24) and is activated by bind-
ing to HGF, also termed scatter factor
or hepatopoietin A. HGF and MET, are
present in both developing and adult
mammalian brains, suggesting important
functions across a broad range of neur-
odevelopment (115). HGF acts as a
neurotrophic factor for motor, sensory
and parasympathetic neurons (203), and
influences neuronal migration (169, 170)
and dendritic development (91). The
HGF/MET pathway also plays a role in
regulating dendritic morphology in the
developing cerebral cortex and promoting
neurite outgrowth (170). Decreased levels
of MET itself and altered levels of mRNA
of proteins associated with the HGF/MET
pathway have been documented in brain
tissues from patients with ASD (33). In
addition to these genetic observations and
brain tissue findings, we have documented
increased levels of HGF in cerebrospinal
fluid (CSF) of patients with autism (211),
suggesting a potential compensatory feed-
back mechanism.

Interestingly, the multifunctional roles
of the HGF/MET pathway also involve the
immune system, as studies have demon-
strated expression of MET in dendritic
cells (161) and during activation of mono-
cytes (12). HGF-stimulated monocytes
increased the expression of chemoattrac-
tant factors including MCP-1, MIP-2b,
MIP-1a and IL-8 (13). HGF also exhib-
ited immunosuppressive effects without
up-regulation of IL-10 or TGF-b (161),
findings that suggest HGF/MET signaling
is involved in regulation of the inflam-
matory responses. Because some of the
non-neurological manifestations of ASD
include immune and gastrointestinal prob-

Figure 2. Multiple genes associated with autism spectrum disorders (ASD) appear to influence neurode-
velopment at different stages of prenatal and postnatal life. These genes have specific periods of influ-
ence (red solid line) during defined stages of brain development (orange boxes), but their influence may
extend to later stages of development including adult life (red broken lines). (Brain development graphic
concept based on review by de Graaf-Peters and Hadders-Algra. (63))
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lems, the dysregulation of HGF/MET may
provide a link between dysfunction of the
CNS and other organs.

Reelin. RELN, which encodes the
protein Reelin is another gene playing a
critical role in cortical patterning that may
be involved in autism. Reelin is a secreted
extracellular matrix protein that controls
neuronal migration, cortical layering and
other aspects of brain development via
interactions with lipoprotein receptors
(reviewed by Forster (77)). It was initially
implicated in ASD based on associations
between a polymorphic GCG repeat imme-
diately 5′ of the RELN gene and autism in
both case-control and family-based studies
in an Italian population (166). The fact that
RELN is located on the distal long arm of
chromosome 7 at a locus (7q22) associated
with autism susceptibility added further
support to the concept that Reelin function
might be important, as did the reduced
levels of Reelin found in post-mortem
studies of autistic brains (73). Attempts to
confirm these intriguing preliminary find-
ings have yielded varied results. Some
reports have supported an association
between genetic changes in the RELN locus
and autism (196, 199, 224), while others
have not (22, 66, 118).Transgenic mouse
studies are also suggestive, but not defini-
tive, with some social changes and defects in
cortical layering observed in mice mutant in
RELN alleles (186).

Neurotrophins. Neurotrophic growth
factors, or neurotrophins, are good candi-
dates for involvement in ASD because of
their fundamental roles in guiding CNS
development and cortical organization,
and their abnormal expression patterns in
autistic individuals. The core functions of
neurotrophins during neurodevelopment
include regulation of cell proliferation,
migration and survival, and extend to
include the modulation of axonal and
dendritic outgrowth, synapse formation
and other neuroplastic processes (5). The
neurotrophin family consists of at least
four proteins, including nerve growth
factor, BDNF, neurotrophin-3 and
neurotrophin-4 (92). Their potential role
in pathogenic ASD pathways has been
examined in several studies involving a het-
erogeneous groups of neurodevelopmental
disorders (146, 155, 179).

Neurotrophins and their receptors are
expressed in the neocortex and hippocam-
pus (102) and these patterns of neurotro-
phin expression are activity-dependent
and regulated by sensory inputs, electrical
activity and stimulation (102) (138).
BDNF and its receptor, trkB, are densely
expressed on cortical and hippocampal
neurons, and influence both axonal and
dendritic growth in a highly neuron-
specific and age-dependent manner (139).
In rodents, the expression of the trkB
receptor peaks in the first 2 weeks postna-
tally, but BDNF action on cortical plastic-
ity continues into adulthood (119, 139).
With maturation, trkB becomes enriched
at the site of glutamatergic synapses
and therefore uniquely able to modulate
experience-dependent plasticity (85).

Interestingly, abnormalities in neurotro-
phins, especially BDNF, have been im-
plicated in the etiology of several brain
disorders that show altered cortical matu-
ration and plasticity, such as schizophrenia
and depression (158, 197). Genetic studies
and expression of BDNF in serum of
patients with ASD have pointed out poten-
tial links to the pathogenesis of autism.
Nelson et al found elevated levels of BDNF
and NT4/5 by assessment of archived neo-
natal blood samples of ASD patients (155).
Elevation of BDNF was also reported in
a study of 18 Japanese children with ASD
as compared with controls (148), and
the authors suggested hyperactivity of this
growth factor may be involved in neuro-
biological abnormalities in autism. Similar
findings were reported in a study of Ameri-
can children with ASD, where elevation of
BDNF was demonstrated along with the
presence of auto-antibodies against BDNF
(47, 153, 206).

It is still unknown how these observa-
tions fit into the neurodevelopmental
pathogenesis of ASD, and it is unclear
whether the increase in BDNF is a primary
pathogenic mechanism or a secondary
reaction to cortical abnormalities in ASD.
However, one report suggesting that
genetic changes in autistic individuals
account for altered neurotrophin levels
supports the notion that BDNF dysregula-
tion could be a primary factor in the devel-
opment of autism. CADPS2 is a gene
found in the AUTS1 susceptibility locus
for autism on 7q31 (42). Sadakata et al
have recently shown that CADPS2 is aber-

rantly spliced in some autistic patients, and
that Cadps2 knockout mice have autistic-
like phenotypes. CADPS2 regulates the
exocytosis of dense-core vesicles, includ-
ing BDNF-containing vesicles. In addi-
tion, the cellular distribution of BDNF in
the brain largely overlaps with that of
CADPS2 (183, 184).

Neurotransmitters. Several lines of re-
search suggest that abnormalities in sero-
toninergic, GABAergic and glutamatergic
pathways occur in autism (reviewed by
Zimmerman (225)). Neurotransmitter
function in the CNS is linked not only to
synaptic neuronal interactions, but also to
other roles including brain maturation and
cortical organization. Neurotransmitters
and their receptors may act as paracrine
signaling molecules in the immature brain
and help control mechanisms that govern
neuronal migration and positioning (134).
It is well known that activation of specific
GABA and glutamate receptors (GluRs)
occurs during cell migration, and is
involved in regulating radial and tangential
migration (134). Because of these diverse
functions, neurotransmitters and their
receptors are clearly capable of playing
central roles in the wide variety of neuro-
biological alterations associated with ASD.

The role of serotonin in autism has been
explored using biomarker, neuroimaging
and genetic approaches (193). The most
relevant brain imaging studies used
positron emission tomography to show
that young children with autism lacked the
developmental peak in brain 5-HT synthe-
sis capacity seen in typically developing
infants (36) (41). Reduced synthesis of
5-HT was observed in dentatothalamocor-
tical pathways, with simultaneous increases
in the contralateral dentate cerebellar
nucleus (41). More recently, SPECT
studies demonstrated significant reduc-
tions in 5-HT2A binding in the cerebral
cortex (152). Elevated levels of serotonin in
the platelets of patients with autism has
also been observed by a number of groups
(29, 48, 123). In contrast, studies that
assess changes in 5-HT receptors in plate-
lets or whole blood of individuals with
autism show decreased 5-HT2 receptor
binding (51, 140).

Genetic studies have also identified
abnormalities in serotonin-related genes.
Tryptophan hydroxylase-2 (TPH2) is the
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rate-limiting enzyme in 5-HT synthesis in
the CNS, and one group found a particular
variant of TPH2 to be associated with
autism (53). A second study, however, was
not able to confirm this (181). Polymor-
phisms in the promoter region of the sero-
tonin transporter gene SLC6A4 have also
been reported to be associated with autism
and cortical gray matter volume (39, 52,
67, 204, 213, 215). Finally, the gene
ITGB3 has been proposed as a regulator of
serotonin levels in autism based on genetic
association studies (214, 215). Synergistic
interaction between the SLC6A4 and
ITGB3 loci has also been suggested (58).

Another line of research supporting
serotonin as a neurobiological factor in
ASD comes from pharmacological inter-
ventions. Drugs acting on the 5-HT2
receptor (28, 143) alter the serotonin
system and have caused behavioral im-
provements in autistic patients (94, 101,
114, 150, 168). Specifically, the selective
serotonin reuptake inhibitor fluoxetine
causes improvements in social behavior
while decreasing aggressive and stereotyped
behaviors in children with autism (6, 27,
50, 64, 72, 82). Interestingly, approaches
that decrease CNS serotonin such as tryp-
tophan depletion exacerbated symptoms in
patients with ASD (49, 142).

A wide range of studies suggest that
changes in serotonin and other neuro-
transmitters can result in aberrant cortical
development. 5-HT afferents from the
brainstem raphe nuclei innervate cerebral
cortex during a critical time in cortical mor-
phogenesis. Similar to the peak in serotonin
synthesis at 2 years of age in humans,
rodents show a transient peak in serotonin
levels in the first few days after birth (46,
100). At this time, layer IV of the sensory
areas of cortex exhibits dense patches of
staining for serotonin and 5-HTTs, particu-
larly in the “barrel field” in primary
somatosensory cortex (18, 60, 78, 178).
In vivo, it appears that too little or too much
serotonin is detrimental to cortical develop-
ment. Experimental approaches in rodents
with neonatal systemic 5-HT depletion
reveal delayed development of several corti-
cal layers (162), the aberrant appearance of
thalamocortical afferent patterning in the
barrel field (18) and an ultimate decrease in
the size of the barrel field (156, 165).
Altered dendritic and synaptic development
appears to be at the root of serotonin’s

effects (137, 219), as barrel formation is
restored in MAOA and 5-HTT single and
double knockouts by the blockade of sero-
tonin synthesis, or the additional knockout
of 5-HT1B receptors, which normally
inhibit glutamate release (185).

The interaction of serotonin pathways
with neurotrophins such as BDNF suggests
a potential interplay between these factors
in ASD pathogenesis. BDNF and serotonin
show co-regulation in response to environ-
mental factors (25, 136). During brain
development, factors such as perinatal stress
or environmental enrichment lead to long-
term alterations in BDNF expression in
brain and blood plasma (25, 79). In rodent
models, maternal infection can cause long-
term increases in BDNF within the cerebral
cortex and other brain areas that eventually
affect the development of serotoninergic
pathways (83). Another example of this
interaction comes from mice heterozygous
for BDNF (BDNF+/–) that display prema-
ture, age-associated loss in forebrain sero-
tonergic innervation (130). Similarly,
5-HTT function is impaired in the brains of
BDNF+/– mice (61). Localized increases in
BDNF expression promote 5-HT fiber
sprouting after injury (88, 133). In turn,
5-HT depletion via inhibition of synthesis
is accompanied by decreases in BDNF levels
in the mature hippocampus (223). Such
decreases in BDNF expression may be
mediated by serotonergic mechanisms in
that 5-HT2A receptor antagonists have
been shown to block stress induced
decreases in BDNF expression in the hip-
pocampus and cortex (210).

Excitatory neurotransmitter signaling via
glutamate receptors (GluRs) also likely
plays a role in cortical development (134),
and has the potential for involvement in the
pathogenesis of ASD. Candidate genes-
screening and association analyses showed
that the kainate receptor GluR6 (105, 198,
202), metabotropic GluR8 (GRM8) (195)
and one of four N-methyl-D-aspartate
(NMDA) receptor 2 subunits, GRIN2A
(8), appear to be associated with ASD.
Interestingly, cDNA micro-array tech-
niques along with other mRNA and
protein studies of brain tissues from patients
with autism identified significant increases
in expression of several genes associated
with glutamatergic pathways, including
excitatory amino acid transporter 1 and
glutamate receptor AMPA 1 (173). Such

disturbances of the glutamatergic system
may well affect cortical development and
plasticity, as experimental evidence suggests
that GluRs play roles in the activity-
dependent refinement of synaptic connec-
tivity (65). GluRs are classified broadly into
two groups, ionotropic sites, linked to ion
channels and metabotropic sites, linked to
second messengers (144). The ionotropic
sites include those activated by the
exogenous agonists, NMDA, amino-3-
hydroxy-5-methyl-4-isoxazole propionic
acid (AMPA) and kainate (KA). NMDA
receptors influence both the retraction of
incorrectly placed axon arbors and synapses
and the elaboration of correctly positioned
terminals. NMDA receptors also have well-
documented roles in cortical development
and activity-dependent plasticity (89, 134).

GABAergic pathways also play impor-
tant roles during brain development, and
the interplay of glutamatergic and
GABAergic systems facilitates modeling of
the cerebral cortex by positioning of prin-
cipal, pyramidal and interneurons (134).
The establishment of the GABAergic
system and the migration of GABAergic
interneurons are crucial for the develop-
ment of an inhibitory cortical system that
regulates the excitatory processes mediated
by glutamatergic pathways (127). A
balance between excitation and inhibition
is crucial for normal development, and its
disruption may produce profound conse-
quences for CNS function and homeostasis
(126). GABAergic interneurons are also
important for processing of information
across cortical domains and are part of the
structure of mini-columns, an essential
module involved in the physiopathology of
cortical dysfunction in autism (35). The
potential involvement of the GABAergic
system in the pathogenesis of ASD has
been suggested by clinical, neuropathologi-
cal and genetic studies. Elevated levels of
GABA in platelets (180) and reduction in
the GABAergic receptor system has been
documented by studies of brain tissues
from patients with autism (16, 17). The
location of three genes for subunits of the
GABAA receptor, GABRB3, GABRA5 and
GABRG3 on the proximal 15q arm (189)
prompted genetic studies in ASD that
yielded inconsistent results (reviewed by
Schmitz (188)). One study that evaluated
fourteen GABA receptor subunit genes
found an association between GABRA4
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and a potential increase in the risk of
autism through interaction with GABRB1
(131).

Synaptic and dendritic changes. An
early review focused on the neurobiology
of autism and Rett syndrome helped
introduce the concept that experience-
dependent synaptic plasticity might be dis-
rupted in such developmental disorders
(227). Dendritic abnormalities can also be
observed in ASD. Indeed, decreased den-
dritic branching in CA1 and CA4 was
reported in one of the earliest analyses of
pathological changes in autism (177).
Several leads from genetic studies have also
implicated synaptic changes in autism.
These include alterations in the genes
encoding Neuroligins 3 and 4, their
binding partners Neurexins 1 and 3,
SHANK and contactin-associated-protein-
like 2 (CNTNAP2). The neuroligins, a
family of five postsynaptic cell adhesion
molecules, were the first of these to be asso-
ciated with autism. In 2003, Jamain et al
reported that Neuroligins 3 and 4 were
mutated in ASD patients (106). They ini-
tially examined the locus because it is
located at Xp22.3, a chromosomal region
deleted in several autistic females. When
they screened 36 pairs of affected siblings
and 122 trios with autism, they found one
Swedish family harboring a frameshift
mutation leading to a premature stop
codon in NLGN4, and another Swedish
family with a mutation affecting a highly
conserved residue in NLGN3. The
NLGN4 mutation is predicted to represent
a genetic null allele, while the changes in
NLGN3 result in a protein that does not
efficiently traffic to the cell surface and
appears to have altered binding abilities
(40, 44).

Subsequent attempts to confirm the role
of neuroligin mutations in patients with
ASD have yielded mixed results. Laumon-
nier et al reported a frameshift mutation in
the NLGN4 gene in a large French family
with mental retardation, some of whom
also had autism (125). A mixed cohort of
148 autistic patients from the USA and
Portugal contained about 3% with mis-
sense mutations in conserved regions of
NLGN4, but no changes in NLGN3
(218). A functional analysis found that the
R704C mutation described by Yan et al
weakened the binding of neuroligin to syn-

trophin, suggesting they could be biologi-
cally significant (217). A Finnish study of
100 families with autism yielded a modest
association of the disease symptoms with
the NLGN1, three and four loci, but no
functional mutations were identified in the
30 cases sequenced (221). It has also been
suggested that the splicing pattern of the
neuroligins is altered in autistic individuals
(207). In contrast, however, studies of 96
autistic patients in Quebec (80), 196 in
Toronto (212) and 124 from an interna-
tional molecular genetic study of autism
(15) did not identify any genetic alter-
ations interpreted as being causally linked
to autism. Furthermore, in at least one
family deletion of NLGN4 was not associ-
ated with autistic symptoms (132).

Given these somewhat conflicting find-
ings, the recent discovery that neurexin, a
major protein partner of the neuroligin
family, is altered in some autistic individu-
als provides key support for the concept
that this synaptogenic pathway is involved
in ASD development. Feng et al screened
three beta-neurexin genes in 203 patients
with autism, as well as in 535 controls (74).
They found two putative missense muta-
tions predicted to cause structural changes
in four autistic cases, but in none of the
controls. Neurexin are presynaptic pro-
teins, and represent the binding partners
for postsynaptic neuroligins. This interac-
tion is thought to trigger postsynaptic dif-
ferentiation and control the balance of
inhibitory GABAergic and stimulatory
glutamatergic inputs (87, 171).

SHANK3, another synaptic protein
which can bind neuroligins, was also
recently implicated in autism. It was ini-
tially investigated because of its location
on chromosome 22 in a region lost
or rearranged in patients with ASD.
This microdeletion syndrome involving
22q13.3 is characterized by multiple devel-
opmental delays, dysmorphic features and
autistic behavior (135). SHANK3, also
known as ProSAP2, is one of three genes
located in the minimal involved region. It
encodes a type of protein found in excita-
tory synapses that serves as a scaffold and
can bind to neuroligins (145). Shank pro-
teins have been proposed as master orga-
nizers of postsynaptic density because of
their ability to nucleate multimeric protein
complexes in dendritic spines. Durand et al
recently sequenced all SHANK3 exons in

227 individuals with ASD and in 190 con-
trols (69). They identified alterations in a
small percentage of patients, and showed
that mutations in a single copy could be
associated with language and/or social
communication disorders.

Abnormalities in brain growth. Head
circumference was found to be abnormally
large in a subset of autistic patients by
Kanner in 1943, and approximately 20%
of children with autism have macrocephaly
(76, 122). As described above, a wide range
of imaging studies have more precisely
delineated abnormalities in the growth of
the brain as a whole, and of specific regions
and structures. Potential molecular causes
of these size changes are beginning to be
discovered. For example, a polymorphism
in the HOXA1 homeobox gene has been
associated with increased head circumfer-
ence in patients with autism (45). The
cellular basis of brain overgrowth is not
yet clear, but several theories have been
advanced. One hypothesis is a reduction in
the pruning and consolidation of synapses
during development, leading to an in-
creased number of neurites. Increased
numbers of neurons or glia in the brain,
either through initial overproduction or
reduction of cell death, are additional pos-
sibilities. These and other theories are dis-
cussed in more detail in a recent review of
brain growth in autism (141). Finally, it is
possible that hypertrophy of individual
cells may cause the brain size increase. An
intriguing candidate potentially involved
in the regulation of brain size in autism via
this final mechanism is the gene PTEN
(phosphatase and tensin homolog on chro-
mosome 10).

PTEN was initially evaluated in ASD
patients because it is mutated in Cowden
syndrome, a rare autosomal dominant con-
dition characterized by numerous hamar-
tomas and an increased risk of cancer
(167). Inherited PTEN mutations are
also found in patients with Bannayan–
Riley–Ruvalcavba (BRRS) and Proteus
syndromes. Macrocephaly is a feature of
Cowden syndrome patients, and some of
these individuals were reported to be autis-
tic (84, 167). Macrocephaly and autistic
behavior has also been reported in a patient
with BRRS (228). Given these common-
alities between inherited PTEN syndromes
and autism, Butler et al sequenced the
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PTEN gene in 18 autistic patients with
macrocephaly, and found three with het-
erozygous germline mutations (30). A
more recent screen of 88 patients with
ASD and macrocephaly identified one
with a misssense mutation in PTEN, but
no partial or whole gene deletions (31).
Several additional cases of autistic indi-
viduals with PTEN mutations have also
been reported recently, leading to the rec-
ommendation that such testing be rou-
tinely performed (19, 99). It is not yet clear
if PTEN mutations in autistic individuals
are always associated with increased head
size, or if normocephalic autistic patients
might also have disruptions in PTEN func-
tion. It will also be interesting to determine
if other members of the signaling cascades
regulated by PTEN are altered in autism.

PTEN is a phosphatase that regulates
signaling through the phosphoinositol 3-
kinase (PI3K) pathway. It has multiple
downstream effects, and regulates cellular
proliferation, differentiation and migra-
tion. In neoplasms, PTEN acts as a tumor
suppressor, with loss of function mutations
and deletions causing increased prolifera-
tion and decreased cell death. In postmi-
totic neurons, however, loss of PTEN
function leads to the hypertrophic growth
without proliferation, resulting in forma-
tion of aberrant ganglion cells and a phe-
notype highly similar to that seen in
Lhermitte–Duclos disease, which is associ-
ated with Cowden syndrome (120).

PTEN has subsequently been deleted
from postmitotic neurons of the cerebral
cortex and dentate gyrus in transgenic
mice, leading to some very interesting
behavioral and neuropathological changes
(121). These animals showed progressive
macrocephaly, but also were impoverished
in their social interactions. For example,
while wild-type animals will preferentially
interact with a mouse they have not
previously encountered, PTEN deficient
animals did not. Indeed, the transgenic
animals were as likely to interact with an
inanimate object as a social target animal.
These behavioral changes may be caused by
multifaceted neuropathological changes,
as in addition to increased neuronal size
the authors found alterations in axons,
dendrites and synapses in the transgenic
animals. Specifically, in mutant animals
they documented enlargement of mossy
fiber tracts, ectopic granule axons, den-

dritic hypertrophy and a dramatic increase
in the number of presynaptic vesicle. These
changes are consistent with a previous
report implicating the AKT/mTOR
pathway, which functions downstream of
PTEN, in dendritic arborization (109).

Tuberous sclerosis (TS) is another
genetically defined neurodevelopmental
disorder caused by alterations in genetic
signaling pathways that converge with
those controlled by PTEN. TS patients are
frequently also diagnosed with autism,
with estimated rates of ASD ranging from
17% to 68% (200). Some investigators
have found that the numbers or location of
cortical tubers in TS is correlated with
autistic behaviors, suggesting these discrete
structural lesions might cause the associa-
tion (20, 71). Others, however, did not
find that the number or site of cortical
tubers correlated with autistic behaviors (3,
21). In order to examine this pathway, we
performed a preliminary immunohis-
tochemical investigation of S6 ribosomal
protein phosphorylation in post-mortem
brains from five autistic children and an
equal number of matched controls, but did
not identify any major changes (70).

NEUROIMMUNITY, ENVIRONMENT AND
NON-GENETIC FACTORS IN ASD

It is clear that genetics alone do not
determine the entire ASD phenotype, and
that other non-genetic factors must play
roles as modifiers of processes determined
by genetic susceptibility. Environment and
epigenetic factors both have the ability to
influence pathogenic mechanisms of corti-
cal and neuronal function. Among envi-
ronmental factors, maternal influences and
exposure to neurotoxins and potential
environmental pollutants have been the
focus of attention in recent investigations.
These may interact with the neuroimmune
system and disrupt neurodevelopmental
pathways resulting in alterations of neu-
robehavioral trajectories such as those that
occur in ASD (124, 129). A recent study,
for example, found that patients with
autism and larger head sizes show a signifi-
cant association with a history of allergic/
immune disorders both in the patient and
in first-degree relatives (182).

Neuroglia and neuroimmunity in ASD.
Neuroglial cells such as astrocytes and
microglia, along with perivascular mac-

rophages and endothelial cells, play im-
portant roles in neuronal function and
homeostasis (1, 10, 68, 157, 216). Both
microglia and astroglia are fundamentally
involved in cortical organization, neuroax-
onal guidance and synaptic plasticity (75,
209). Neuroglial cells contribute in a
number of ways to the regulation of
immune responses in the CNS. Astrocytes,
for example, play an important role in the
detoxification of excess excitatory amino
acids (154), maintenance of the integrity of
the blood–brain barrier (172), production
of neurotrophic factors (10) and the
metabolism of glutamate (154). In normal
homeostatic conditions, astrocytes facili-
tate neuronal survival by producing growth
factors and mediating uptake/removal of
excitotoxic neurotransmitters, such as
glutamate, from the synaptic microenvi-
ronment (154). However, during astroglial
activation secondary to injury or in
response to neuronal dysfunction, astro-
cytes can produce several factors that may
modulate inflammatory responses. For
example, they secrete pro-inflammatory
cytokines, chemokines and metalloprotein-
ases that can magnify immune reactions
within the CNS (10). Microglial and astro-
glial activation is an important factor in the
neuroglial responses to injury or dysfunc-
tion. Microglia are involved in synaptic
stripping, cortical plasticity and immune
surveillance (1, 86). Changes in astroglia
and microglia can therefore produce
marked neuronal dysfunction that is likely
to be associated with mechanisms of neu-
ronal dysfunction observed in autism.
These neuroglial changes are mediated by
the production of oxidative species, cytok-
ines, chemokines and other neuroactive
substances (10).

There has been growing interest in the
role of immunity and immunological
dysfunction in the pathogenesis of ASD
(reviewed by Pardo (163) and Ashwood
(4)). Several reports link the presence of
immunological dysfunction with autism,
and some studies suggest that up to 60%
of patients with ASD have various types
of systemic immune dysfunction, either
as part of cellular or humoral immune
responses (116, 128, 208). A few earlier
case reports found pathological evidence of
immunological reactions within the CNS,
such as lymphocyte infiltration and micro-
glial nodules (7, 90). Several reports using
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different methodologies and small patient
populations have shown increases in
pro-inflammatory cytokines in peripheral
blood samples in ASD (see review by
Ashwood (4)). Most recently, Molloy et al
found an increased pattern of production
of Th2-associated cytokines in leukocytes
from autistic subjects (149).

Neuropathological studies of post-
mortem brain tissues from autistic patients
demonstrate an active and ongoing neu-
roinflammatory process in the cerebral
cortex and white matter characterized by
astroglial and neuroglial activation. These
findings support a role for neuroimmune
responses in the pathogenesis of ASD
(211). As both astroglia and microglia
are involved in pathogenic inflammatory
mechanisms common to many different
disorders of the CNS, it is possible that
different factors (eg, genetic susceptibility,
maternal factors, prenatal environmental
exposures) may trigger the development of
these neuroglial reactions. Furthermore,
protein array techniques used to establish
the profiles of immune mediators demon-
strated that cytokines/chemokines such
as MCP-1, IL-6 and TGFb1, which are
mainly derived from activated neuroglia,
are the most prevalent cytokines in brain
tissues (211). Similar findings were seen in
CSF from autistic patients. Preliminary
studies also show that serum concentra-
tions of subsets of cytokines and chemok-
ines, such as MCP-1 and IL-6, parallel the
CSF levels, suggesting that serum levels
may be useful as surrogate markers of neu-
roinflammatory activity in autistic sub-
jects. These findings strongly suggest that
neuroimmune reactions are part of the
neuropathological processes in ASD, and
that immune responses are among the
factors that may contribute to CNS dys-
function. However, the significance of the
neuroinflammatory response to the specific
neuropathologies and behavioral disrup-
tions in ASD, and its position in the etiol-
ogy of ASD, requires further exploration.

Oxidative stress. Oxidative stress is
another possible cause of Purkinje cell
loss and other neuroanatomical changes
described in autistic brains (reviewed in
(37, 113)). Oxidative stress occurs when
the levels of reactive oxygen species exceed
the antioxidant capacities of a cell, often
leading to cell death. Because of its very

high oxygen demands and limited anti-
oxidant capacity, the brain is thought
to be relatively vulnerable to oxidative
stress (111). Several studies have shown
decreased levels of antioxidants such as
superoxide dismutase, transferrin and
ceruloplasmin in the blood or serum of
patients with ASD (38, 108, 222). Signifi-
cant elevations in biomarker profiles indi-
cating increased oxidative stress, such as
increased lipid peroxidation, have also been
documented in autism (38, 107, 229).
Interestingly, in one report the alterations
in antioxidant proteins were linked specifi-
cally to regressive autism, suggesting a
postnatal environmental effect (38). Poly-
morphisms in metabolic pathway genes
may contribute to the increased oxidative
stress in autism (108). Advanced glycation
end products have also been reported to be
elevated in both the brain tissue and serum
of autistic patients, a change which can also
lead to increased oxidative damage (23,
110).

Maternal factors. A final interesting area
of research has focused on the potential
role of maternal factors in the pathogenesis
of autism. A study by Comi and Zimmer-
man (43) showed that the mean number
of autoimmune disorders was greater in
families with autism, and that 46% of
ASD patient’s families had two or more
members with autoimmune disorders. As
the number of family members with
autoimmune disorders increased from one
to three, the risk of autism was greater, with
an odds ratio that increased from 1.9 to
5.5. The most common autoimmune dis-
orders observed were type 1 diabetes, adult
rheumatoid arthritis, hypothyroidism and
systemic lupus erythematosus. However, a
large population-based case–control study
found no significant differences in the pro-
portion of case and control mothers with a
diagnosis of autoimmune disease in the
4-year period surrounding pregnancy (59).
Tissue-based studies have also suggested a
role for maternal autoimmune factors in
the pathogenesis of autism. The presence
of maternal auto-antibodies that cross-
react with brain epitopes was demonstrated
by two studies (26, 226). In one study by
Zimmerman et al, serum from 11 mothers
and their children with autism was com-
pared with serum from controls in its
ability to bind adult rat brain proteins

using immunoblot techniques. In another
study by Van de Water et al (26), of 61
mothers of patients with autism, seven of
the plasma samples (11.5%) contained
maternal antibody cross-reactive with
human fetal brain proteins 73 kDa and
37 kDa in size. This was not observed in
the control group of mothers with typical
developing or non-autistic developmen-
tally delayed children. The presence of such
antibodies in the plasma of some mothers
suggests the transfer of maternal antibodies
during early development could interact
with fetal CNS proteins, affecting neu-
rodevelopmental pathways and increasing
the risk of ASD.

SUMMARY
In this review, we have attempted to

briefly summarize some of what is cur-
rently known about the neurobiological
causes of autism. Autism and related devel-
opmental disorders are clinically heteroge-
neous, and are likely caused by a range of
factors. This heterogeneity has made it dif-
ficult to tease out the individual causal ele-
ments of this devastating disease. Slowly,
however, genetic and environmental alter-
ations are being defined, including the
molecular and genetic changes affecting
brain growth and development described
above. This improving understanding may
ultimately lead to new strategies for the
prevention or cure of ASD. An encourag-
ing recent report provides an example of
such therapeutic progress, as Hayashi et al
have shown that the symptoms of fragile X
syndrome in mice can be reversed by inhi-
bition of a specific kinase (93). Similar
studies targeting a broad range of molecu-
lar factors involved in autism will hopefully
eventually allow us to treat the growing
number of patients afflicted with ASD.
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