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Abstract
The description of neuroglia by Virchow in 1848 may be considered the starting point of our
understanding of primary brain tumors. At the beginning of the 20th century, surgical
removal of primary brain tumors became possible, and therefore, tissue for microscopic
analysis and clinical data on survival became available. During this time, research on
gliomas beyond improving surgical procedures focused on their classification. The classifi-
cation schemes developed emphasized parameters for sorting tumors with regard to (i)
cytological aspects; (ii) presumed tumor cell origin; (iii) histological appearance of the
tissue; or (iv) clinical outcome. Over the years, experimental studies have greatly improved
our knowledge on gliomas. Gliomas induced by viruses, chemicals, radiation, transgenes
and knock-out technology contributed to the understanding of their pathogenesis and still
serve as preclinical models for the testing of novel therapies. Recent advances in develop-
mental neurobiology and the identification of stem cells provided new insights into
the origin of brain tumors and the molecular mechanisms of tumor formation. This
review briefly compiles the evolution of our concepts on gliomas, focusing on the latest
developments.
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PREREQUISITES FOR UNDERSTANDING
BRAIN TUMOURS
Systematic analysis of gliomas became possible following the
availability of tumor tissue. While the first reports on gliomas
relied on autopsy studies, it was the pioneering work of Bennett and
Godlee and their followers that made surgical material available.
Their seminal report (9) initiated the development of modern
glioma surgery. However, it was not only surgical skills that needed
to be developed. Anesthesia caused by inhalation of nitrous oxide
entered dentistry in the middle of the 19th century, and in 1846,
Morton and Warren made their famous appearance in the Massa-
chusetts General Hospital when they removed a mandibular tumor
from a patient rendered unconscious by ether inhalation. Further
advancement in anesthesia allowed intracranial surgery. Another
essential precondition for glioma surgery was the development of
techniques allowing preoperative tumor localization. Localization
efforts in the early years of glioma surgery relied on meticulous
analysis of neurologic deficits. The development and adaptation of
pneumencephalography by Dandy in 1918 and arteriography by
Moniz in 1927 allowed for the first time the preoperative visualiza-
tion of brain tumors, and the introduction of computed tomography
by Cormack and Hounsfield and magnetic resonance imaging by
Mansfield and Lauterbur resulted in high resolution images indis-
pensable in today’s neurosurgery. Thus, the direct access to tissue
was an invaluable factor for developing concepts on glioma. This
access and the interest in the postoperative clinical course of the

patients placed neurosurgeons in key positions for generating
glioma classification schemes.

CLASSIFICATION AND GRADING OF
BRAIN TUMORS FROM THE BEGINNING
TO THE PRESENT DAY
Early tumor classification had already relied on comparing tumor
features with those of normal tissue. This concept was formulated
by J. Müller in 1838 (63). This principle was extended to include
the developmental stage of the tumor cells and was systematically
applied to brain tumors by Bailey and Cushing. Their book, A
Classification of the Tumours of the Glioma Group on a Histoge-
netic Basis with a Correlated Study of Prognosis, was published in
1926 and introduced the concept still at the basis of tumor classifi-
cation currently in use (5). Their classification relied on histologi-
cal features observed in glial tumors and comparison with mature
glial cells. Brain tumors with cells resembling astrocytes were
termed astrocytomas; the tumor cells of ependymoma shared an
appearance with ependymal cells; and pinealoma was composed of
tumor cells resembling those of the pineal gland. A scheme of this
early classification is shown in Figure 1. The names of several
tumor entities relate to cell types no longer recognized today.
Examples are spongioblastoma to the spongioblast (or by other
authors glioblastoma referring to the glioblast) and medulloblas-
toma to the medulloblast. It is noteworthy that this first comprehen-
sive classification system already outlined the concept of tumors
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arising from immature precursor cells or, employing a very timely
term, from neuroectodermal stem cells.

Several other investigators proposed classification schemes
limited to gliomas: Roussy and Oberling in 1931, Penfield in 1932,
Bergstrand in 1932, and Rio Hortega beginning in 1932 and
extending into the following years. However, none of these classi-
fication systems became as widely accepted as that of Bailey and
Cushing. The interested reader is referred to K. Zülch giving an
extensive overview on the historical development of classification
(103).

In 1949, Kernohan et al introduced a simplified classification
that recognized four tumor grades for gliomas (45). His approach
focused on cytological criteria and gained wide recognition among
pathologists. A subsequent proposal by Ringertz in 1950 defining
three tumor grades received less attention (76). Currently, the most
widely used classification and grading system for brain tumors is
that of the World Health Organization (WHO). The WHO classifi-
cation was first presented in 1979 and is the result of compromises
agreed on by a panel of expert neuropathologists led by Zülch
(104). The involvement of large numbers of specialists, first by
Zülch and later under the tender guidance of Kleihues, may be one
of the keys to the success of the WHO grading. The most recent
update has just been made available (53). Another approach to the
classification of astrocytic brain tumors was proposed by Daumas-
Duport et al in 1988 (19). This approach relies on only four criteria
for tumor grading, thus greatly reducing the complexity of the task.
More complex is an attempt based on analysis of histological and
clinical parameters and computer-assisted analysis forwarded
(TESTAST 268) by Schmitt in 1992 (78). Interestingly, a study on
102 supratentorial astrocytomas reported very similar data on sur-
vival regardless whether WHO, Daumas-Duport, Kernohan or
TESTAST 268 classification was used for diagnosis (43). Future
development will definitely include molecular parameters.
Although the most recent WHO release has not emphasized the
importance of molecular markers, it is not unrealistic to expect
molecular analysis to become central to classification and grading.

EVOLUTION OF TECHNIQUES
FOR GLIOMA CLASSIFICATION
AND GRADING
Microscopic evaluation of tumors followed the identification of
cells and the subsequent development of tissue-staining methods.
A major breakthrough was the development and application of
staining and impregnation techniques by Golgi, Ramon y Cajal,
Del Rio-Hortega and others allowing identification of neural cells
in the central nervous system (CNS). An early report already distin-
guished neuroglia of the CNS from fibers of connective tissue and
described the proliferation of neuroglia in pathologic processes
(95). Histology became the dominating source for diagnosing and
classifying brain tumors and still is the basis of daily routine in
neuropathology.

Histochemistry has been applied to research on brain tumors, in
particular in the middle of the last century, and generated a large
body of data; however, the impact of histochemical analysis on the
diagnosis and classification of brain tumors can be neglected.
The advent of electron microscopy added a novel dimension to the
analysis of gliomas. This technique allowed the investigation of
individual cellular compartments and organelles and the identifica-
tion of specific structures of cell lineage such as synaptic vesicles
in neuronal cells or cilia in ependymal cells. Ultrastructural find-
ings are still helpful in today’s diagnosis of neoplastic intracranial
lesions, for example as with the demonstration of Birbeck bodies in
histiocytosis. However, electron microscopy as a tool for providing
diagnostic information beyond that obtained by standard histology
has been nearly completely replaced by immunohistochemistry.
The advent of immunohistochemistry marked a novel era in tumor
characterization. Rubinstein was among the first neuropathologists
to recognize the potential of antibodies to cell lineage-specific
antigens for tumor classification. This novel concept had to be
accompanied by development of cell culture systems in order to
obtain the appropriate antigens. Lineage-specific antibodies led
to the reclassification of several tumor types and currently belong

Figure 1. Classification scheme of primary
brain tumors by Bailey and Cushing. Tumors
were expected to arise from cells with
corresponding differentiation. For example,
medulloepithelioma would originate from the
medullary epithelium or oligodendroglioma
would originate from oligodendroglia (adapted
from Bailey P (1948) Intracranial Tumors, 2nd
ed. Thomas: Springfield, IL).
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to the most powerful tools for glioma classification and for charac-
terization of rare glioma entities. For example, the glial nature of
pleomorphic xanthoastrocytoma has been proven by detection of
glial fibrillary acidic protein (GFAP) in the tumor cells. Previously,
this tumor entity had been assumed to be of meningothelial origin
(44). Another tumor entity, recently identified as a glioma by its
expression of GFAP, is the chordoid glioma of third ventricle (13).
The identification of several newly characterized tumor entities
relied strongly on immunohistochemistry, and their inclusion into
the newest update of the WHO classification (53) demonstrates the
overwhelming impact of this technique for current and future diag-
nosis of brain tumors. The rosette-forming glioneuronal tumor of
the fourth ventricle with its typical expression of neuronal antigens
shown in Figure 2 may serve as an example for tumors of previ-
ously uncertain nature only recently included in the WHO classifi-
cation system. Today, a large panel of antibodies against glial,
neuronal, epithelial and mesenchymal antigens represents an
essential tool for the classification of brain tumors. The introduc-
tion of antibodies targeting epitopes such as Ki67 in proliferating
cells established the role of immunohistochemistry in tumor
grading.

The development of tools for the analysis of chromosomes and
DNA allowed systematic examination of brain tumors for cytoge-
netic and molecular genetic alterations. Among the first consistent
cytogenetic changes in solid tumors, loss of a small chromosome
belonging to the G group, later to be identified as chromosome 22,
was discovered by Zang and Zinger in meningiomas (98). Analysis
of cytogenetic alterations in gliomas has been the topic of many
studies and has led to the identification of some consistent patterns
such as losses of chromosome 10, the short arm of chromosome 9
and trisomy of chromosome 7 in glioblastoma; however, individual
gliomas turned out to be very heterogeneous in their chromosomal
configuration and even a fraction of pilocytic astrocytoma WHO
grade I already demonstrated unexpectedly altered karyotypes. A
very consistent pattern of deletions characterizes the majority of
oligodendroglial tumors. A combined loss of one entire copy each
of chromosomal arms 1p and 19q is seen in approximately 70% of

these tumors. Two recent reports were able to provide an explana-
tion for the combined deletion. It could be shown that a transloca-
tion is responsible for this trait so typical of oligodendroglioma (32,
41).

With the advent of PCR technology, it became possible to screen
large series of tumors for alterations of their associated genes.
Although oncogenes turned out to be affected only in small frac-
tions of brain tumors, several tumor suppressor genes were
reported to have high mutational frequencies. Prominent examples
are point mutations in the TP53 gene, observed in approximately
50% of diffuse astrocytomas WHO grade II and anaplastic astrocy-
tomas WHO grade III (93), while the PTEN gene is mutated in
roughly 25% of glioblastomas WHO grade IV (23). These analyses
allowed the identification of molecular subgroups of brain tumors
that cannot otherwise be distinguished on morphological grounds
alone. In some instances, such molecular examination is of clinical
relevance. Patients with oligodendrogliomas exhibiting combined
deletions of chromosomal arms 1p and 19q, have a significantly
better outcome than patients with oligodendrogliomas not showing
this feature (15). Moreover, patients with glioblastoma live longer
and respond better to alkylating chemotherapy if their tumors have
low O-6-methylguanine-DNA methyltransferase (MGMT) activity
caused by the silencing of this gene by promoter methylation (36).
So far, the clinical impact of these analyses has been modest,
because due to lack of effective alternative therapy, glioblastoma
or oligodendroglioma patients without MGMT inactivation also
receive chemotherapy with alkylating agents. However, molecular
analyses already assist in the diagnosis of tumors of indeterminate
differentiation and gliomas with only small samples available.

Following the identification of mutations in individual genes, it
became evident that distinct signaling pathways could be activated
or inactivated in different positions. A prominent example in
glioma is the disruption of cell cycle control by alterations either in
RB or upstream in CDKN2A (90). Such observations led to an
interest in altered gene expression as an alternative to dysfunction
caused by mutations. With the advent of SAGE (serial analysis of
gene expression) and microarray technology, it became possible to

Figure 2. A. Neurocytic rosettes and perivascular pseudorosettes in rosette-forming glioneuronal tumor of the fourth ventricle; HE ¥ 100. B. Binding
of antibodies to synaptophysin (SYN) in the neuropil lining delicate vessels in the perivascular pseudorosettes; SYN ¥ 400.
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generate expression maps of brain tumors. A pioneering study
highlighted typical expression profiles distinguishing medulloblas-
tomas from other primitive neuroectodermal tumors and from
atypical teratoid rhabdoid tumors (69). Distinct glioma types also
exhibit characteristic expression profiles, and recent research
focuses on identification of qualifiers of diagnostic, prognostic or
therapeutic value. For example, class distinctions based on the
expression profile in a series of malignant non-classic glioma
proved superior to histological evaluation in predicting clinical
course (64). Gene expression profiles also can separate genetic
subsets of gliomas indistinguishable on morphological grounds,
such as primary and secondary glioblastoma (54, 88). The combi-
nation of expression arrays with screening technology allowing
determination of the genomic status such as matrix-/array-CGH, or
with screening technology allowing assessment of methylation
status of promoters will provide more insight into mechanisms
underlying expression. Much emphasis will be given to the fact
that tumors of comparable histology may exhibit entirely different
genomic and signaling pathway alterations.

BRAIN TUMOR MODELS
Cell lines developed from sporadic mouse glioma such as the spon-
taneous murine astrocytoma (VM/Dk background) and GL261
(C57/BL6 background) cell lines (79, 33) have been very helpful
for the understanding of glioma. However, sporadic brain tumors
in laboratory animals remain a rare event and additional animal
models have to be devised for the induction of brain tumors, mostly
in rats or mice.

Chemical carcinogenesis

Experimental brain tumors became widely available with the sys-
tematic administration of alkylating agents to laboratory animals.
One of the most successful systems relied on a transplacental
model. Female rats were inoculated with a single dose of ethylni-
trosourea (ENU) at day 15 of pregnancy. Although this treatment
had little effect on the adult animals, all offspring exhibited terato-
genic or carcinogenic effects of ENU. Aside from congenital mal-
formations, a significant number of offspring developed gliomas
or nerve sheath tumors, the latter most frequently involving the
trigeminal nerve (22). In subsequent studies of ENU-induced
gliomas, the predominant mutations in the c-neu gene resulted in a
substitution from valine to glutamic acid in position 664 contained
in the transmembrane region (7).

Viral carcinogenesis

In parallel with the development of chemically induced rodent
tumors, the induction of brain tumors by virus proved successful
in several models. JC virus induced tumors resembling medullo-
blastoma in Syrian hamsters (102) and adenovirus 12 did so in
mice; Simian virus 40 (SV40)-induced ependymomas in hamsters
(30); and avian sarcoma virus B-77 caused astrocytic tumors in rats
(17). Many studies have detected viruses in human glioma.
Measles virus (26), SV40 (84) or JC virus (75) have been suggested
as potential glioma-inducing agents. However, in contrast to other
tumor entities, such as cervical cancer or nasopharyngeal carci-
noma, the issue that viruses cause human glioma remains contro-

versial, with many conflicting reports being published. It should be
kept in mind that early polio vaccines were contaminated with
SV40, and a Swedish study estimates that at least 700 000 patients
in Sweden were inoculated with these preparations. However, long-
term follow-up did not find increased glioma incidence in patients
exposed to SV40-contaminated preparations (65).

Transplantation models with genetically
engineered vectors

Several methods have been used to induce experimental brain
tumors by transplantation of cells containing genetically engi-
neered vectors. The transfection and expression of diverse acti-
vated oncogenes in fetal brain tissue transplanted into adult rats
resulted in endothelial hemangiomas with polyoma middle T or
astrocytic and mesenchymal tumors with v-src (1). One of the
lessons learned from these experiments was the synergistic effect
of activated oncogenes in these tumors. Although injection of fetal
rat cells transfected with either Ha-ras or v-myc into syngeneic
adult recipients yielded tumors in at best half of the transplanted
animals, the vast majority of animals receiving both oncogenes
developed tumors (96). However, morphological features of these
xenografts are not always similar to those of human tumors, and the
genetic alterations inducing these experimental tumors are often
not the same as those in the human counterparts.

Therefore, much attention has been paid to generating tumor
mouse models by engineering neural cells with those mutated
genes or oncogenes shown to be of importance in human glioma.
TP53 is among the most frequently mutated genes in diffuse human
astrocytoma (93), and neurofibromatosis type 1 (NF1) patients fre-
quently develop astrocytic tumors; most frequently, they develop
pilocytic astrocytoma WHO grade I rather than anaplastic astrocy-
toma or glioblastoma. Mice with germline mutations in TP53 and
NF1 were shown to consistently develop malignant astrocytoma
within 6 months of age (74). In another example, platelet-derived
growth factor (PDGF) overexpression induced oligodendroglioma
upon targeting nestin-expressing cells, and induced oligodendro-
gliomas or oligoastrocytomas if GFAP-expressing cells were tar-
geted (18). Additional inactivation of InK4a-Arf in these mice
resulted in more aggressive gliomas and earlier time of onset. In
contrast to the early transplantation models, these refined models
recapitulate molecular steps of human glioma formation, and
therefore, can serve as models for experimental therapy.

Transplantation of gliomas in human recipients has been studied
by several authors. Subcutaneous injection of autologous glioblas-
toma yielded viable grafts in approximately half of the patients.
One lesson learned from these quite problematic experiments was
that transplants tended to change morphology, with sarcomatous
portions becoming the predominant tumor component (57). Of
more current importance is the risk of glioblastoma being transmit-
ted by transplantation of organs. Although metastasis of malignant
glioma to visceral organs is exceedingly rare, recipients of organs
from donors with malignant gliomas have developed this malig-
nancy in the transplant (42).

CONCEPTS ON THE ORIGIN OF GLIOMA
The current predominant hypothesis for the origin of cancer is the
somatic mutation theory. This concept is based on the assumption
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that cancer arises from a single cell that has acquired cell cycle-
relevant disturbances mostly in the form of somatic mutations. This
theory dates back to Boveri who already had the vision of chromo-
somes promoting proliferation and mediating inhibition in tumor
cells (12). Contrasting with this is another concept termed the field
theory (97) that emphasizes the interaction of neighboring cells.
This theory is based on the assumption that tumors not only grow
by cellular proliferation but also by neoplastic conversion of pre-
formed fields. The field theory has been applied to gliomas (91)
without becoming a central dogma to explain the origin of these
tumors.

The overwhelming body of data on carcinogenesis was gathered
following the concept of individual cells being the founders of
gliomas. The experimental designs of studies following this theory
had the conceptual advantage of reducing the complexity of the
question by addressing single cells, single chromosomes and single
genes. However, even this reductionistic model is ever gaining
complexity because of the identification of novel tumor-relevant
mechanisms such as epigenetic regulation of gene products by
promoter methylation status, by histone acetylation status or by
regulatory micro RNAs.

One question of intense current research addresses the nature of
the cells giving rise to gliomas. It has been a matter of debate for a
long time whether gliomas arise from differentiated glial cells or
originate from less differentiated or immature and possibly multi-
potent precursor or stem cells. Experimental murine models were
interpreted quite differently, ranging from the notion that these
experimental tumors could be traced to mature cells based on his-
tologic resemblance of tumor with differentiated cells in the CNS,
to the idea that they arise preferentially from immature cells sup-
ported by the enhanced efficiency of transplacental induction of
malignant gliomas in the fetal stage (22). The latter model clearly
shows the vulnerability of immature fetal cells for neoplastic trans-
formation. The potential of fetal cells to generate tumors was
later shown in transfection and transplantation experiments. Viral
vectors carrying oncogenes were used to transform cells from fetal
rat brain in vitro, followed by transplantation into syngeneic adult
animals. Depending on the constructs used, tumors of different
morphology and differentiation have been induced (96). Recently,
the stem cell concept has gained much attention. Intracerebral
xenografts of as few as 100 CD133-positive glioma (stem) cells
into NOD-SCID mice successfully initiated tumor growth, while as
many as up to 105 CD133-negative glioma cells failed to form a
tumor (83).

The tumor stem cell concept

The recognition that within the tumor there is a cell population that
shares common features with their normal stem cell counterparts
has opened a new window to look at neoplasia. This cancer stem
cell-like population, also known as tumor-initiating cells, seems to
represent the most therapy-resistant cell population within a tumor
and has therefore become a major focus in devising future thera-
peutic strategies.

The term “stem cell” was first applied by the evolutionary biolo-
gist Ernst Haeckel (35) to unicellular organisms, as putative phylo-
genetic origins of multicellular organisms. Nowadays, the term
“stem cell” indicates the unlimited capacity to self-renew and dif-
ferentiate. These two features were first detected in cells of the

hematopoietic system in the late 19th century, establishing them as
the prototypical stem cell (71). Meanwhile, stem cells have been
detected in many adult tissues including the intestine, the skin and
also the CNS. The detection of cells capable of generating neurons
contradicts the dogma of the postmitotic stage of adult brain dating
back to Ramon y Cajal, who stated that “in adult centres the nerve
paths are something fixed, ended immutable. Everything may die,
nothing may be regenerated” (72). It was Joseph Altman who in
1965 demonstrated the existence of ongoing cell division in the
hippocampus and olfactory bulb of the rat (2). Since then, multiple
studies have repeatedly shown the existence of continuing neuro-
genesis in the subventricular zone (SVZ) and the dentate gyrus of
the hippocampus (DG). Stem cells in these regions can self-renew,
proliferate and differentiate into neuronal or glial lineage. Thus,
they undergo asymmetric divisions that generate other stem cells or
more committed neural progenitor cells.

Stem cells with the potential to self-renew are currently identi-
fied by the expression of CD133 or nestin, while more committed
progenitor cells express differentiation markers such as NeuN for
the neuronal or GFAP for the astrocytic lineage. However, GFAP is
also expressed by slowly proliferating stem cells, so-called type B
cells. These cells are radial glia acting as precursor intermediates
between immature neuroepithelial cells and differentiating neu-
ronal progeny in the SVZ (3, 61). Adult neural stem cells (NSCs) in
the DG also retain radial glial properties (reviewed in 10, 21, 27,
56, 68, 87).

Another important aspect of stem cell biology is the so-called
stem cell niche. This niche is a specialized microenvironment
harboring heterologous cell types that tightly regulate stem cell
renewal, proliferation and differentiation, thus preventing deple-
tion or over-proliferation of the stem cell pool. In the neurogenic
niche, endothelial cells have been identified as regulators of prolif-
eration and neurogenesis (81). Soluble mediators of cellular
responses mainly arising from neighboring astrocytes such as
wingless-related proteins (WNTs), their antagonists, soluble Notch
modulators, FGFs and Hedgehog (HH) also influence the ability of
stem cells to proliferate and differentiate and may even affect the
architecture of the niche (77). In the SVZ, the extracellular matrix
protein tenascin C increases stem cell propensity to generate glial
progenitors (29). The cytoarchitecture of the niche influences the
production of metabolites, such as reactive oxygen species (ROS).
ROS seems to be a means to intricately regulate cellular functions,
linking cell density to proliferation status (51). On the other hand,
NSCs are highly sensitive when it comes to elevated levels of ROS
accompanying irradiation injury—both in vivo and in vitro studies
have shown that irradiation depletes NSCs by inducing elevated
ROS levels in these cells (50). It has been extensively demonstrated
that injury to the CNS which involves increased production of
ROS, expansion of endothelial cells, and recruitment and activa-
tion of astrocytes and microglia to the lesion site induces the expan-
sion of NSCs (24, 60, 99).

Cancer neural stem cells: a cell type and
a concept

The first evidence for the existence of cancer stem cells was found
in acute myeloid leukemia (AML). Bonnet and Dick identified a
subset of cells capable of giving rise to a phenocopy of the original
AML in immunodeficient mice (11). The ability to reproduce the
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original tumor pathology by xenotransplantation followed by serial
transplantation is widely accepted as the criterion to define cancer
stem cells. In CNS tumors, neural cancer stem cells (NCSCs) have
been found to be enriched in the population expressing the marker
CD133 (89), or in the population able to efflux the Hoechst 33342
dye, the “side population” (SP) (46). The latter property is based on
the overactivation of ATP-binding cassette (ABC) transporter pro-
teins (31, 100). By this means, NCSCs have been identified in
glioblastoma multiforme GBM, medulloblastoma and ependy-
moma (37, 40, 82, 86). Later, NCSCs were also isolated from GBM
by applying the same conditions used to isolate normal NSCs at a
frequency comparable to that of cultures of initially sorted CD133-
positive cells from the tumor (28).

NCSCs share common signaling pathways for self-renewal, pro-
liferation and differentiation with normal NSCs. Human CD133
GBM cells express bone morphogenetic proteins (BMPs) and
BMP-receptors, which normally induce astrocytic differentiation
of NSCs (67). Also, Notch signaling pathway induces proliferation
of both NSCs and NCSCs (25, 39, 70, 81). The polycomb transcrip-
tion factor Bmi-1, acting as a regulator of chromatin remodeling,
regulate self renewal of NSCs and tumor cells (14, 58). Bmi-1
induces self-renewal by repressing the tumor suppressors INK4a
and ARF. Expression of Bmi-1 is highly increased in medulloblas-
tomas (48, 59). Sonic hedgehog is required for proliferation of
granule cerebellar precursors, and activating mutations in this
pathway lead to development of cerebellar medulloblastomas
(reviewed in 66).

Some of the pathways important for NSC biology are deregu-
lated in GBM. The tumor suppressor PTEN controls proliferation
and migration of NSCs and is often inactivated in glioblastomas
(23, 34). WNT signals that regulate neurogenesis of NSCs are
involved in the pathogenesis of medulloblastoma (49, 55). Also, the
machinery involved in the control of asymmetric divisions in
normal NSCs is frequently found to be deregulated in cancer.
Accordingly, Numb, a regulator of asymmetric divisions and Notch
signaling acting as an anti-proliferative and pro-differentiation
signal, is down-regulated in cerebellar progenitors and their malig-
nant derivative, medulloblastoma (16, 20, 92, 94). Also, expression
of atypical protein kinase C dramatically increases the number of
divisions of neuroblasts in Drosophila and has been identified as an
oncogene in lung cancer (47, 73). In addition, symmetric divisions
provide the perfect setting for the appearance of aneuploidy and
other secondary mutations by relaxing the control on mitotic
spindles (62). Thus, asymmetric divisions of NSCs might be a
mechanism to prevent tumourigenic degeneration. Injury to the
CNS, such as stroke, increases the number of symmetric division of
NSCs (99). Thus, though not yet documented, injury to the CNS
might increase the risk of tumor formation in the CNS of geneti-
cally predisposed individuals.

Neural stem cells as the tumour’s
“cell of origin”

One of the central questions in cancer stem cell biology is whether
CNS tumors arise by aberrant proliferation of normal NSCs. This
notion is supported by the fact that the location within the CNS of
ependymoma and pilocytic astrocytomas determines their tran-
scriptional signatures, which in turn share a high similarity with the
radial glia signature from the respective location (80, 86). Along

this line, the cell of origin of tumors with inactivated p53 and
activated Ras locates to the stem cell niche of the SVZ. Mut1 mice
are engineered to lack p53 in the germline and neurofibromin in
GFAP-expressing cells. All Mut1 mice developed astrocytomas
ranging from low-grade to GBM, and the early presymptomatic
lesions were detected within the SVZ (101). This suggests that
GFAP-positive cells within the SVZ are more prone to develop
astrocytomas induced by deficiency of p53/neurofibromin or more
predisposed towards tumorigenesis by the microenvironment.
Likewise, PDGF in nestin-positive neural progenitors or GFAP-
positive cells were predisposed to glioma formation, with the
highest incidence shown by targeting nestin-positive cells (18).
However, other glioma-associated genetic lesions such as deregula-
tion of EGFR signaling and INK4a/ARF deficiency could induce
GBM formation either from adult astrocytes or NSCs (4). Also,
microarray and animal models suggest that the cell of origin of
most medulloblastoma is the external granule cell, a self-renewing
but not multipotent cell type (69). Thus, several studies on astrocy-
tomas initiation still support the model of cellular dedifferentiation
and transformation (28, 83). Altogether, available data suggest that
NSCs can be the source of many CNS tumors, and that most malig-
nant tumors, independent of their source of origin, do contain puta-
tive NCSCs.

Clinical implications

Actual treatment strategies of brain tumors encompass surgical
resection followed by adjuvant chemo- and radiotherapy. New
imaging techniques and better protocols for adjuvant therapy have
slightly increased patient’s life expectancy. However, resistance to
apoptosis and the highly invasive behavior of those tumor cells that
escape surgery lead to the formation of secondary tumors. NCSCs
are highly resistant to the effects of chemotherapeutic drugs (38,
52). This resistance can be explained in part by a higher expression
of the multidrug resistance gene BCRP1, DNA repair genes such as
MGMT and/or genes that inhibit apoptosis. Treatment with the
chemotherapeutic drug temozolomide prolongs the life of patients
with GBM; however, this treatment can even increase the number
of CD133-positive cells in primary GBM (85), thereby promoting
the expansion of cells resistant to treatment in the long run. NCSCs
are also the most radiation-resistant cell population within GBM.
These cells can be rendered less resistant to radiation by inhibiting
the Chk1 and Chk2 kinases that control DNA repair mechanisms
(6). Thus, it may be worthwhile considering modifications of
current therapy protocols for brain tumors in order to control the
undesirable effects on NCSCs.

The appreciation that these therapy-resistant cells might be iso-
lated from the tumor mass and used as targets to develop new
therapies might open new and unexpected therapeutic possibilities.
To this end, treatment with bone morphogenetic proteins of
CD133-positive cells may induce their differentiation and loss of
tumor-forming capacity (67). Pharmacologic inhibitors of Notch
specifically depleted the NCSC population in medulloblastomas
and prevented tumor formation in xenotransplantation experiments
(25). However, NCSCs do also exist within a niche, often coined as
the neo stem cell-niche. A deregulated niche might contribute to
the formation of brain tumors. Therefore, the idea of targeting the
neo-niche might prove to be advantageous to patients. A further
potential application of stem cell features for therapy was reported
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by Benedetti and colleagues. Transplanted neural stem cells have
been shown to migrate towards the brain tumor, and thus, may
serve as carriers of factors that promote the tumor’s regression. In
this regard, NSCs genetically engineered to express interleukin-4
reduced the tumor’s growth and increased the survival of tumor-
bearing mice (8).

CLOSING REMARKS
The focus of this review on the most recent insights into glioma
biology reflects the excitement about novel concepts that hopefully
will allow us to further understand the origin of these tumors.
However, a retrospective view on brain tumor research spanning an
entire century teaches that most of our initial interpretations need
to be put into perspective. Diagnostic uncertainties were thought to
be solved with the advent of electron microscopy and again with
the introduction of immunohistochemistry. The success in induc-
tion of experimental tumors by carcinogens was expected to iden-
tify environmental hazards of relevance for the genesis of brain
tumors. Radiation and chemotherapy was seen as the tools to
conquer cancer. Current enthusiasm is focusing on molecular
methods expected to revolutionize our concepts of cancer and diag-
nostic and therapeutic approaches. We are detecting chromosomal
representation and gene transcription in individual gliomas, and
next, we will be able to compare the proteome of these tumors.
Therapies aimed at attacking the tumor cells or at modifying the
immune response by transfer of recombinant are currently being
tested. Indeed, most of the novel concepts developed and most of
the advances in laboratory techniques have enriched our knowl-
edge on gliomas. However, the still gloomy fate of patients diag-
nosed with malignant glioma today reminds us that we are far away
from having satisfactory solutions. The recognition of multiple and
very different parameters affecting tumor biology is quite likely to
result in adaptation of molecular screening procedures and incor-
poration in diagnostic routine and in therapies tailored to individual
patients. We will work further to understand the genesis of brain
tumors and to refine the tools for diagnosing and treating gliomas.
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