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Abstract
In Alzheimer’s disease (AD), there is abnormal accumulation of Ab and tau proteins in the
brain. There is an associated immunological response, but it is still unclear whether this is
beneficial or harmful. Inflammation in AD, specifically in the form of microglial activation,
has, for many years, been considered to contribute to disease progression. However, two
types of evidence suggest that it may be appropriate to revise this view: first, the disappoint-
ing results of prospective clinical trials of anti-inflammatory agents and, second, the obser-
vation that microglia can clear plaques in AD following Ab immunization. Although Ab
immunization alters AD pathology, there is limited evidence so far of benefit to cognitive
function. Immunization against microorganisms is almost always used as a method of
disease prevention rather than to treat a disease process that has already started. In animal
models, immunotherapy at an early age can protect against Ab accumulation and it will be
interesting to see if this can usefully be applied to humans to prevent AD.
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INTRODUCTION
Alzheimer’s disease (AD) is an age-related chronic neurodegen-
erative disease characterized by memory loss and severe cognitive
decline. The key pathological features of AD relate to accumulation
of Ab protein and tau protein (72). Ab accumulates in the form of
plaques in the cortical grey matter and in the walls of cortical and
leptomeningeal small arteries and arterioles in the form of cerebral
amyloid angiopathy (CAA). Tau protein accumulates within
neurons in cell bodies (tangles), fine calibre neuronal processes in
the grey matter neuropil (neuropil threads) and in distorted and
swollen neuronal processes in the region of Ab plaques (dystrophic
neurites). Detailed studies have also documented neuronal and
synaptic loss (64, 114).

THE AMYLOID HYPOTHESIS
Evidence of a key role for Ab peptide in AD pathogenesis gives rise
to the “amyloid hypothesis” of AD (46). Ab is a peptide predomi-
nantly 40 or 42 amino acids in length derived from the transmem-
brane protein amyloid precursor protein (APP) after cleavage by b
and g secretases (44, 67). Several lines of evidence from the human
disease support a pivotal role for abnormalities of Ab in the patho-
genesis of AD, leading to neuronal dysfunction and cell death (99):
(i) APP point mutations can cause familial AD; (ii) familial AD,
whether because of point mutations of PSEN1, PSEN2 or APP,
have in common increased production of Ab42 which is particu-
larly prone to aggregation; and (iii) Down’s syndrome, which is

usually due to trisomy 21 on which the APP gene is located, is
associated with AD at an early age. It is worth noting that this
evidence comes from the very rare genetically determined forms of
AD, and whether the role of Ab applies equally to the common
sporadic form of AD is not yet known with certainty. A crucial test
of the amyloid hypothesis would be whether prevention of Ab
aggregation prevents the neurodegenerative decline.

There is now good evidence that AD that has a genetic cause is
due to an increase in the production of Ab, resulting in Ab accumu-
lation. In the much more common sporadic AD, there is not good
evidence for this and, instead, evidence has been emerging for an
age-related impairment of elimination of Ab as the cause of Ab
accumulation. It seems likely that there is a dynamic equilibrium
between the production and elimination of Ab protein in the human
brain. Evidence for several potential mechanisms by which Ab is
normally eliminated from the brain has emerged, including (i) by
cellular mechanisms involving microglia (85, 90); (ii) by enzy-
matic degradation (eg, neprilysin and insulin degrading enzyme)
(54, 91); (iii) by transport across the blood–brain barrier mediated
by the low density lipoprotein receptor-related protein-1 (LRP)
receptor (101); and/or (iv) by bulk flow with interstitial fluid along
the perivascular drainage pathway (97, 119).

Transgenic mice which over-express familial AD APP point
mutations develop Ab plaques as they age providing a valuable
animal model (25, 36), although lacking tau pathology. Recent
evidence in a triple transgenic animal model of AD, with point
mutations in APP, PSEN1 and tau genes, indicates that Ab accumu-
lation precedes the tau pathology in a cascade of events that ulti-
mately leads to the cognitive alterations (81).
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Apolipoprotein E

Genetic studies in the early 1990s clearly identified polymorphism
of the apolipoprotein E gene (APOE) as the major genetic risk
factor for sporadic AD (110). APOE molecules are lipid carriers
(15) involved in the redistribution of cholesterol within the brain to
maintain the structural and functional integrity of membranes and
synapses (63). APOE also acts as an Ab-scavenging molecule that
regulates Ab concentration through internalization of APOE re-
ceptors by the endosomal/lysosomal pathway (89). In addition,
recently, it has been revealed that Ab has an essential physiological
role in lipid homeostasis (43). This evidence suggests that clear-
ance of Ab is likely to be regulated by the APOE–Ab interactions.
Three different isoforms of APOE occur within the brain (APOE
E2, E3 and E4), which differ in amino acids at position 112 and
158, according to the genotype of the individual (63). The
increased risk of developing AD associated with APOE E4 may be
due to its inability to internalize, and therefore clear, extracellular
Ab to endosomes/lysosomes. The evidence for this comes from a
failure to develop plaques in transgenic mice that both over-express
human APP and are APOE deficient (48). In addition, the bio-
chemical difference of APOE E4 may induce the promotion of lipid
rafts that have a suitable environment for the amyloidogenic pro-
cesses (19). APOE genotype has also been associated with differ-
ences in microglia; both in the degree of microglial activation in
AD brains (27) and in the microglial expression of inflammatory
molecules (59, 62).

EVIDENCE FOR INVOLVEMENT OF
THE IMMUNE SYSTEM IN AD
The immune system has evolved to protect the body against
invasion by foreign microorganisms. The efficiency of the immune
system is the result of two different but complementary forms of
activation—innate and adaptive. Innate immunity is the first
response to infection and plays a major role in controlling the
infection during the gestation of adaptive immunity. The macroph-
age is a central component of innate immunity. If innate immunity
is overcome by pathogens, adaptive immunity operating via den-
dritic cells, lymphocytes and antibodies, will build a specific
response to the infection. The key property of adaptive immunity is
to recognize pathogens specifically and to provide enhanced pro-
tection against re-infection.

A growing number of studies in AD have reported alterations in
the immune system, including: the presence of circulating auto-
antibodies; the presence in the brain of proteins from the comple-
ment system; abnormal production of cytokines; and changes in
the distribution and activation of microglia. This implies that, in a
sense, the immune system is capable of recognizing the proteins
that aggregate in the brain in AD as abnormal or “foreign” proteins
that should be disposed of. This raises the question as to whether
this involvement of the immune system can help to ameliorate the
progress of AD or simply adds to the damage.

Auto-antibodies

An increase in auto-antibodies, defined as antibodies to “self-
tolerant” proteins, in the blood of healthy elderly humans has been
observed (35, 45, 95). This led to two different hypotheses: (i)

auto-antibodies contribute to the diseases associated with ageing,
as occurs in autoimmune disease (116); or (ii) auto-antibodies play
a role in eliminating senescent cells to maintain the integrity of the
host (37). More recently, a number of studies have reported the
presence of specific anti-Ab antibodies in the blood and cere-
brospinal fluid (CSF) of healthy humans and AD patients (26, 50,
73, 77, 118). More than 20 years ago, immunoglobulin (Ig)-G was
seen by light and electron microscopy in the AD brain to be
co-localized with neuritic plaques (28, 52, 53); however, the role of
IgG in the AD process, including in plaque formation, remains
unclear. Indeed, the findings in relation to antibodies in AD are
somewhat inconsistent, with the level of anti-Ab antibodies being
either increased or decreased, possibly because of differences in the
methodology employed. However, most of the studies have identi-
fied a decrease of anti-Ab antibodies in AD patients compared with
age-matched healthy controls (26, 73, 118), raising the possibility
that some people are, in a sense, able to immunize themselves
against Ab and therefore protect themselves against AD.

Complement system

The complement system is a sophisticated system evolved to
destroy pathogens and to assist in the phagocytosis of waste mate-
rials. Four main functions are carried out by complement: recogni-
tion, opsonization, activation of inflammation and killing of the
pathogen. Fibrillar Ab is a strong stimulator of the complement
system (94) and can activate the classical (antibody-dependent) (2,
20, 57, 69, 117) and alternative (antibody-independent) (13, 111)
pathways. Activation of complement by Ab appears to be highly
specific to fibrillar Ab, as other peptides of similar size are unable
to activate the complement system (13). Hyperphosphorylated tau
contained in neurons can also activate the classical complement
cascade (68, 100) as demonstrated by the staining of tau-positive
neurons by anti-complement antibodies. Therefore, in AD, there is
evidence that the complement system is strongly activated and
could participate either in the exacerbation or amelioration of the
pathology. In APP transgenic mice which have inhibition of the
complement system at the level of C3 (the central component of
complement), neurodegeneration is increased compared with non
complement-inhibited controls (123). This finding suggests that
the complement system may have a protective role in AD.

Cytokines

Four main cytokines have been investigated extensively in AD:
interleukin 1 (IL-1), IL-6, tumor necrosis factor a (TNF-a) and
transforming growth factor b1 (TGF-b1). Immunoreactivity for
IL-1, IL-6 and TGF-b1 has been reported in association with Ab
plaques (41, 49, 115). Elevated TNF-a and TGF-b1 levels have
been detected in the serum and CSF of AD patients (17, 18, 32,
113). It has been proposed that cytokines secreted by glia interact
with neurons to form a positive feedback loop or “cytokine cycle”
which, once initiated, leads to progressive neurodegeneration (42,
76). Initial studies found some evidence for associations between
specific cytokine gene polymorphisms and AD, for example, in the
IL-1 gene (78), but subsequent studies suggest these are not of
major importance (92) with the possible exception of TNF gene
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polymorphism (9). Overall, the role of the cytokines in AD, and
particularly whether on balance they are beneficial or harmful,
remains uncertain.

Microglia

A key component of the innate immune system in the brain is the
microglial cell which is the representative of the monocyte/
macrophage lineage. Microglia are activated in AD but, despite
much interest in the subject, the role that microglia play and
whether they are harmful or helpful, remains unclear. In non-neural
tissues, the state of cell activation and the nature of the activating
stimulus play a significant role in determining the spectrum of
molecules that are secreted by a macrophage (1, 40). Furthermore,
the initial state of activation of the macrophage is an important
determinant of the magnitude of a particular response (40). Micro-
glia are highly sensitive to disturbance of CNS homeostasis (58).
They respond to signals which arise from injured neurons, and the
presence of activated microglia seems to be limited spatially to
those regions occupied by injured neurons and neuronal processes.
However, the damage does not have to be lethal to the neurons in
order to elicit a reactive microgliosis. This is illustrated by trau-
matic and ischemic lesions where peri-necrotic areas contain sur-
viving neurons and reactive microglia (75, 107) or as observed
following intra-hippocampal injection of bacterial component in a
mouse brain (10). According to the type of injury or insult, activa-
tion of microglia can be either tolerated or, alternatively, harmful
leading to a destructive profile of microglia associated with neu-
ronal loss (88). A third phenotype of microglia has also been sug-
gested in which microglia become dysfunctional with ageing, char-
acterized by structural deterioration and increased apoptosis (108).
As a result, microglia may lose their neuroprotective properties
with advancing age (109) leading to chronic neurodegeneration
such as AD.

It is important to consider the origin of the microglia that
responds to brain pathology. There is now good evidence that two
types of microglia coexist within the brain: first, resident microglia
which are derived from the mesoderm and migrate to the brain
during the embryogenesis (87) and, second, bone marrow-derived
microglia which are characterized by recruitment from the blood
during life in response to an appropriate stimulus from the brain
(87, 103). Recent evidence from animal models suggests that the
activated microglia that surround plaques have been recruited from
the blood and are specifically attracted to the accumulated Ab
peptide (104). The authors postulated that blood-derived microglia
are more efficient at presenting antigen and may be more efficient
than resident microglia in phagocytosing Ab (103). Study of mice
lacking the chemokine receptor 2, a microglial cell-surface recep-
tor that mediates recruitment of blood-derived microglia, supports
the idea that bone marrow-derived macrophages infiltrate the brain
and can clear Ab from the brain (29). In human AD, despite the
presence of abundant activated microglia, Ab is rarely observed
within microglia. When it is, the microglia seem unable to degrade
Ab as observed by electron microscopy (34, 85) unless, as demon-
strated in an AD model, they express Toll-like receptors, receptors
usually observed during a bacterial attack (39, 112). Nonetheless,
an exception is observed when an infarct occurs in AD, the micro-
glia are then able to phagocytose all of the tissue components,
including Ab plaques in the vicinity of the infarct (3).

Study of a prion mouse model, an analogous chronic neurode-
generative disease with accumulation of an amyloid protein, shows
that (i) microglia may be activated by neurodegeneration rather
than protein deposition (21, 122); and (ii) conversely, the microglia
express TGF-b1 which down-regulates scavenger receptors ham-
pering phagocytosis (11, 21). These events may also occur during
the neurodegenerative process of AD, in which TGF-b1 is also
expressed (65).

These observations highlight the point that, rather than simply
demonstrating that microglia have been activated, it is the specific
way in which microglia are activated that is important in determin-
ing the influence of microglia on neurodegeneration (88).

MANIPULATION OF THE IMMUNE
SYSTEM AS A THERAPEUTIC TOOL

Anti-inflammatory therapy in
Alzheimer’s disease

Modulation of the immune system as a therapy for AD became
of great interest in the 1990s. Early observations indicated that
patients with rheumatoid disease who were on long-term anti-
inflammatory therapy had a lower prevalence of AD than controls,
raising the possibility that their medication may have been pro-
tective (71). The main mechanism postulated was that down-
regulation of microglia would have a beneficial effect in preventing
or slowing neurodegeneration in AD, with supporting evidence
from animal models (60). However, subsequent prospective trials
of anti-inflammatory agents have, to date, proved disappointing
(51, 71). It has been suggested that key questions relating to this
approach remain unanswered, for example (i) the type of anti-
inflammatory agent to use; (ii) the dose at which use them; and
(iii) the duration of the treatment (4).

Ab immunization in animal models

Different approaches to immunization

Approaches have been developed using anti-Ab antibodies, either
injected directly (ie, passive immunization) or induced by active
immunization with the Ab peptide, in order to reduce Ab formation
or to facilitate clearance of Ab from the brain. Initially, it was
observed that aggregated Ab in vitro was dissolved and its forma-
tion prevented in the presence of anti-Ab antibodies (105, 106).
Subsequently, in an APP transgenic mouse model of AD, active
immunization with Ab42 peptide demonstrated in vivo that it was
possible to prevent or reverse Ab accumulation in the brain (96).
Studies of peripheral immunization with Ab antibodies showed the
presence of Ab antibodies within the brain (6, 56). That antibodies
could cross the blood–brain barrier was already known (93);
however, the passive Ab immunization experiments showed that
the IgG antibodies to Ab are directly involved in amyloid plaque
removal (6). The specificity of the Ab antibodies has been also
investigated and it has been shown that only Ab antibodies directed
against the N-terminal part of the peptide were efficient to remove
amyloid (7) and that the Fc part of the antibody was fundamental
for the clearance of amyloid (7). IgM antibodies, produced by
active vaccination before IgG antibodies, might also act in the
clearance of Ab despite their inability to cross the blood–brain
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barrier because of their large size. Immunization of mice with a
prototype vaccine containing a modified Ab peptide that induced
only IgM antibodies has shown a decrease of Ab load in the brain
(102). The IgM effect is known as the “sink hypothesis”, defined by
immunization modifying the balance between Ab peptide and Ab
antibodies in the periphery and consequently attracting Ab from
the brain to the periphery (23, 24) (Table 1).

Intracranial injection of anti-Ab antibodies induces two phases
of Ab removal: first, a rapid decrease starting 24 h after the admin-
istration and before cellular activation, and then after 3 days, a
further decrease in Ab associated with activation of microglia.
This observation suggests that there are two different mechanisms
involved in removal of Ab, respectively, independent and depen-
dent of microglial activation (120) (Table 1). Immunization
appears to alter the activation state of microglia so that they are able
to efficiently phagocytose the aggregated amyloid, although the
precise mechanisms remain unclear. The Fc part of the antibody
has been suggested to be essential to mediate the phagocytosis of
amyloid through binding to the microglial Fc receptor (6, 7). On the
other hand, Ab42 immunization of APP transgenic mice crossed
with FcRg-/- mice and therefore lacking the possibility of activation
of microglia by immune complexes also showed a decrease of
amyloid plaques (22). Furthermore, by using in vivo multiphoton
microscopy, intracranial application of F(ab’)2 fragments of
anti-Ab antibodies have been found sufficient to decrease amyloid
load (5). These two experiments suggest the existence of an
Fc-independent mechanism which results in phagocytosis of
amyloid by microglia. It seems clear that the mechanisms by which
the activated microglia are prompted to phagocytose amyloid
plaques are not exclusive. The role of complement in the removal of
Ab has been explored relatively little, but it seems not to be essen-
tial for plaque clearance to occur (7). However, it has been sug-
gested that these findings may reflect differences in complement
activation, being relatively weak in the transgenic mouse models
compared with AD patients (70).

In summary, the key pathological changes following Ab immu-
nization in animal models include: (i) prevention of Ab deposits if
the immunotherapy is administered before the onset of Ab accumu-
lation (96); (ii) clearance of Ab plaques if the immunotherapy is
started at an age at which plaques are already present in the brain
(6, 96, 102); (iii) presence of Ab in microglia (5); and (iv) removal
of dystrophic neurites, defined in APP-transgenic mice as swollen
axons and dendrites surrounded amyloid plaques which contain
APP but not tau (14, 61, 96).

Immunization prevents neurodegeneration and

functional decline

Removal of Ab plaques in APP transgenic mice has been shown
associated with an improvement of cognitive function in the treated

animals by comparison with the untreated transgenic mice after
active immunization (56, 74), passive immunization (121) or by
using the “sink” mechanism (102). Interestingly, improvement of
cognitive function in immunized APP-transgenic mice is observed
with only an attenuated immune response (102) and does not need a
complete clearance of Ab plaques from the brain (56). Quantifica-
tion of the synaptic density in immunized transgenic mice showed a
prevention of the synaptic degeneration following active or passive
procedures in association with the Ab clearance (16).

Limitations of the animal models

Some caution is necessary in translating these impressive findings
in animal models into expectations for the effects of immuno-
therapy in human AD. Since the first APP transgenic mouse model
(36), numerous animal models have been designed based on the
different APP point mutations that can cause familial AD. It is
important to recognize that the APP transgenic mice are models of
Ab pathophysiology which lack some of the key features of AD,
particularly tau pathology. Therefore, the state of chronic micro-
glial activation in these animals may not simulate the inflammation
in AD.

Immunization of the triple transgenic mice, characterized by
the Ab and tau accumulation, have shown: Ab removal, clearance
of the early but not late-hypersphosphorylated tau aggregates and
improvement of cognitive function (82, 83). Investigation of
inflammation in the triple transgenic mice has detected early
inflammatory processes in relation with the Ab and tau deposits
(55); however, the consequences of immunization on the inflam-
matory compounds have still not been studied.

Ab immunization in human AD

The first clinical trials of Ab immunization

As a consequence of the finding that active Ab42 immunization of
APP transgenic mice results in plaque removal (96), a human clini-
cal trial was initiated in 2000. This first trial was conducted in
the UK involving 80 patients with mild to moderate AD (8) and
was designed to assess the antigenicity and tolerability of multiple
dose immunization with full length Ab42 peptide with adjuvant
(AN1792 + QS-21). No adverse events were identified and 53% of
the immunized patients developed anti-Ab antibodies at varying
titers. A subsequent larger clinical trial (n = 372) designed to assess
efficacy was halted when 18/298 (6%) of the patients developed a
subacute neurological deterioration accompanied by cerebral white
matter abnormalities on imaging and lymphocytes in the CSF (84).

Effects of Ab immunization on the neuropathology

of AD

Post-mortem neuropathology of patients who were immunized in
these studies, and subsequently died for incidental reasons, has
shown remarkable evidence of modification of the AD pathology
(12, 31, 66, 79, 80) (Figure 1). Most importantly, there was evi-
dence that the Ab immunization had resulted in removal of Ab
plaques in a manner similar to that seen in the animal models,
providing “proof of principle” for the rationale of the studies
(Table 1). Comparison of the histological patterns of Ab shows

Table 1. Mechanisms of Ab removal following Ab immunization.

Animal models Human cases

Solubilization by anti-Ab
antibodies

✓ (6) ✓ (11, 86)
(indirect evidence)

Phagocytosis by activated
microglia

✓ (7, 120) ✓ (80)

Peripheral sink hypothesis ✓ (102) Unknown
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remarkably close modeling of the immunized AD patients by the
APP transgenic mice (Table 2). The characteristic set of features
shared by the immunized AD patients and the APP transgenic mice
include: extensive areas of cerebral cortex cleared of plaques; a
“moth-eaten” appearance of some of the residual plaques; the pres-
ence of “naked” dense plaque cores in otherwise plaque-free areas;
persistence of CAA and association of Ab with capillaries in
plaque-free areas; and localization of Ab in microglia (Figure 2),
confirmed by confocal microscopy as representing Ab phagocy-
tosed by microglia (80). It is important to note that not all of these
features were present in each of the cases examined, but together

they can be considered as the defining alterations in the histological
pattern of Ab in the brain following active immunization with
Ab42 peptide.

Of particular interest, in view of the longstanding uncertainty of
the causal inter-relationship between extracellular accumulation of
Ab and intracellular accumulation of tau protein, is the observation
that in regions where plaques have been removed, tau-containing
plaque-associated dystrophic neurites are absent. This implies that
when plaques are removed, the dystrophic neurites are also
removed, presumably either by resolution or phagocytosis. The
APP transgenic mice do not have tau pathology but they do have

Figure 1. Ab immunohistochemistry in unimmunized Alzheimer’s
disease (AD) and after Ab42 immunization. Pattern of Ab immunoreactiv-
ity (pan-Ab antibody, residues 8–17) in the parietal lobe of an unimmu-
nized AD case (AD) and an immunized AD case (iAD). The AD case

reveals the presence of numerous Ab plaques in the cerebral cortex, but
whereas in the iAD case, the area is virtually devoid of plaques with a
persistence of Ab in the cerebral vasculature. Scale bar = 1 mm.

Table 2. Pathological features following Ab42
immunization. Comparison between
observations in the animal models and the
human immunized AD cases. Abbreviations:
AD = Alzheimer’s disease; APP = amyloid
precursor protein; CAA = cerebral amyloid
angiopathy. N/A = not applicable;
✕ = observed.

Animal models Immunized AD cases

Ab pathology
Removal of Ab plaques ✓ ✓

Ab in microglia ✓ ✓

Increased CAA ✓ ✓

Tau pathology
Removal of dystrophic

neurites
✓ (APP-containing only) ✓

Persistence of tangles N/A ✓

Persistence of neuropil
threads

N/A ✓

Unexpected events
T lymphocytes ✕ ✓ (some cases only)
Leucoencephalopathy ✕ ✓ (some cases only)
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APP-immunoreactive plaque-associated dystrophic neurites and
these resolve after plaque removal, again closely modeling the
situation in human AD (14, 80). Studies in one case also provided
evidence of local inhibition of the stress-activated protein kinase/
c-Jun N-terminal kinase and p38 kinase, enzymes involved in tau
phosphorylation, where Ab had been removed (31). Nevertheless,
quantification of tau immunoreactive tangles and neuropil threads
does not show any clear evidence that they are reduced in regions of
cortex where plaques have been removed (79, 80) (Table 2). The
pathological changes observed in immunized AD are summarized
in the Figure 3.

What pathophysiological events underlay

the meningoencephalitis?

A striking difference between the animal models and the human
studies was the development of “meningoencephalitis” in a small
proportion of the patients which was not predicted in the preclinical
studies (84). Two of the humans studied neuropathologically had
this clinically defined side effect (31, 79); however, they both sur-

vived many months after this event, so study of the neuropathology
can only provide limited information about the nature of the
responsible pathological process. Nevertheless, important patho-
logical correlates of this side effect are: (i) the presence of T lym-
phocytes in the leptomeninges, particularly near to blood vessels
severely affect by CAA, but almost entirely absent from the cere-
bral cortex; and (ii) widespread changes in the deep cerebral white
matter including rarefaction of myelinated fibers and abundant
macrophages (Figure 4). To link these two features must be a
matter of speculation but previous studies of severe CAA affecting
cortical and leptomeningeal blood vessels have identified degen-
erative changes in the deep cerebral white matter as a common
feature (98). Presumably, this unwanted side effect has potentially
identifiable risk factors and AD patients with these factors could be
deemed unsuitable for this form of therapy. Such risk factors might
include, for example, a previously primed immune system, severe
CAA and genetic variation, including possibly APOE genotype. A
further risk factor for meningoencephalitis is likely to be the pres-
ence of Ab in the brain, strengthening the argument for use of Ab
immunization as a preventative therapy. However, it is important to

Figure 2. Activated microglia in Alzheimer’s disease (AD) vs. immu-
nized AD (iAD). Detection of HLA-DR (A) and CD68 (B) positive microglia
in an unimmunized AD case. After Ab42 immunization, HLA-DR (C) and
CD68 (D) positive microglia are observed particularly clustered around

residual plaques. Using isoform specific antibodies, Ab42 (E) and Ab40
(F) peptides are detected within microglia after Ab42 immunization,
rarely seen in unimmunized AD cases. Scale bar = 40 mm.
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note that the meningoencephalitis is not required for the clearance
of Ab (66). The potentially beneficial and/or harmful effects of
Ab42 immunization are summarized in Table 3. Possible causes of
the unwanted side effect in addition to the T lymphocyte infiltrate
include an over-exuberant activation of microglia prompted by
opsonization of Ab and alterations in fluid balance in the brain
triggered by interaction of antibody-Ab immune complexes and
the cerebral vasculature. Clear understanding of the pathophysiol-
ogy of this phenomenon has important implications for future
immunization trials as many of the current protocols have been
specifically designed to avoid T lymphocyte activation. If T lym-
phocytes are responsible then it should not raise its head again as a
problem, but if not then it may cloud the results of future immuni-
zation trials.

Intriguingly, the constellation of features identified in AD
patients who have been immunized with Ab as described above,
and including an inflammatory infiltrate, has been identified in
specific subgroups of unimmunized patients (30, 98). This raises
the question as to whether Ab pathology in natural disease may be
in a dynamic state of flux, with episodic or progressive deposition
and removal, possibly mediated at least in part by the immune
system.

Effects on cognitive function

Overall, the data from the AD immunization trials so far do not
seem to show evidence of a substantial effect on cognitive function,
either in improving function or in preventing progressive decline

Figure 3. Summary of the pathological changes observed in Alzhe-
imer’s disease (AD) after Ab42 immunization. AD pathology is character-
ized by the presence of Ab plaques, dystrophic neurites, intraneuronal
tangles and neuropil threads with activated microglia and cerebral
amyloid angiopathy, as illustrated with modified Bielschowsky staining

and in diagrammatic form (A). After Ab42 immunization, the Ab plaques
and dystrophic neurites are removed, microglia have phagocytosed Ab,
Ab is increased in the vasculature and the neuropil threads and tangles
are still observed (B). Scale bar = 50 mm.
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(8, 38) (Holmes, pers. comm.). However, it is important to bear in
mind that the active immunization resulted in antibody production
in only about half of the immunized patients and those patients

produced antibodies at varying titers (8). Studies performed so far
in subgroups of the initial trials, dividing patients into responders
and non-responders, have suggested there may be some beneficial
effect (38, 47). The results of passive immunization, in which the
antibody levels available to the brain are controlled, are awaited
with interest.

Intriguingly, and perhaps counter-intuitively, sequential in vivo
imaging studies have shown evidence of accelerated cerebral
atrophy in antibody responders compared with non-responders
(33). The reasons for this reduction in brain volume are unclear, but
might include a removal of plaque-associated proteins, a reduction
in the glial cell reaction and fluid redistribution.

CONCLUSIONS
The amyloid hypothesis predicts that removal of Ab from the brain,
or prevention of its accumulation, will ameliorate the Alzheimer
process. In transgenic animal models of Ab accumulation, both
passive and active Ab immunization can result in removal of Ab or
prevent its accumulation, resulting in functional benefits. Studies
of Ab immunization in humans with AD have provided “proof of
principle” that Ab accumulation can be reversed. However, there is
limited effect on some aspects of AD pathology, particularly tau
accumulation, and limited evidence of functional benefit. Current
concern with the Ab immunization approach is centered on an
unpredicted inflammatory complication that occurred in a minority
of AD patients, and therefore, immunization protocols aimed to
circumvent this problem are currently in clinical trials. The long-
term consequences of activation of the immune system on cogni-
tive function in AD may depend on the net balance of potentially
beneficial and harmful effects on the complex array of pathological
changes that are induced. Consequently, if it can be done safely, Ab
immunization at an earlier stage an preferably before irreversible
AD-related brain damage has occurred will be of interest.
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