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Abstract

Knowledge-based biomedical data science involves the design and implementation of computer 

systems that act as if they knew about biomedicine. Such systems depend on formally represented 

knowledge in computer systems, often in the form of knowledge graphs. Here we survey recent 

progress in systems that use formally represented knowledge to address data science problems in 

both clinical and biological domains, as well as progress on approaches for creating knowledge 

graphs. Major themes include the relationships between knowledge graphs and machine learning, 

the use of natural language processing to construct knowledge graphs, and the expansion of novel 

knowledge-based approaches to clinical and biological domains.
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INTRODUCTION

What Is Knowledge-Based Biomedical Data Science?

Knowledge-based biomedical data science (KBDS) involves the design and implementation 

of computer systems that act as if they knew about biomedicine.1 There are many ways in 

which a system might act as if it knew something: For example, it might use existing 

knowledge to generate, rank, or evaluate hypotheses about a dataset, or it might answer a 

natural language question about a biomedical topic.

Knowledge-based systems have long been a theme in artificial intelligence research. 

Knowledge-based systems specify a knowledge representation—how a computer system 

represents knowledge internally—and one or more methods of inference or reasoning—how 

computations over those representations (perhaps combined with other inputs) are used to 

produce outputs. Classical descriptions of knowledge representation and reasoning systems 
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[e.g., see Davis et al. (2)] characterize them by the ontological commitments a knowledge 

representation makes (i.e., what it can or cannot describe), which inferences are possible 

within it, and, sometimes, which of those inferences can be made efficiently. These issues 

remain useful in thinking about how knowledge representation and reasoning play a role in 

today’s data science environment.

This review provides some useful background knowledge on important KBDS concepts like 

ontologies, Semantic Web standards, and the distinction between knowledge bases and 

knowledge graphs (KGs). To provide context, we then describe some high-level applications 

of KBDS that were published prior to January 2020. Then, we describe our approach to 

reviewing the last year of KBDS research and present our findings. Finally, we conclude the 

review by discussing perceived barriers to and offering recommendations for conducting 

KBDS.

Ontologies

Ontologies are a vital component of knowledge representations. Knowledge representations 

are said to be grounded in a set of primitive terms, hereafter termed “primitives,” that 

specify those ontological commitments: the entities and processes that can be referred to by 

that knowledge representation. Computational ontologies are, then, collections of primitives 

relevant to a domain, often related to each other by explicit subsumption (subclass of) and 

meronomy (part of) statements.

Within the biomedical domain, ontologies [e.g., the Gene Ontology (GO) (3)] are 

community consensus views of the entities involved in biology, medicine, and biomedical 

research, analogous to how nomenclature committees systematize naming conventions. 

Knowledge bases created using primitives from community-curated ontologies, rather than 

idiosyncratic or single-use sets of primitives, provide significant advantages for 

reproducibility in scientific research, for interoperability, and for avoiding pitfalls in the 

modeling of knowledge. Primitives can be combined into assertions that express facts about 

the world. In the simplest case, an assertion links two primitives with a specific relationship. 

Consider, for example, that the Protein Ontology contains a primitive human p53 protein, the 

GO contains a primitive DNA strand renaturation, and the Relation Ontology contains a 

primitive participation that can link a physical entity to a process in which it participates. 

Those three primitives can be composed into an assertion that could be part of a knowledge 

base: Human p53 protein participates in DNA strand renaturation. Some KGs are grounded 

in terminological resources, such as UMLS (Unified Medical Language System), SNOMED 

CT (Systematized Nomenclature of Medicine, Clinical Terms), and the National Cancer 

Institute Thesaurus, that lack some aspects of a computational ontology.

Semantic Web Standards

While ontologies provide the primitive elements from which a knowledge representation is 

constructed, they are agnostic about the mechanisms by which entities are assembled into 

assertions. In 2011, the World Wide Web Consortium promulgated a collection of 

international standards for linking entities with shared meaning into assertions and managing 

collections of assertions, together termed the Semantic Web (https://www.w3.org/standards/
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semanticweb/). The Semantic Web builds on the standard Resource Description Framework 

(RDF) (https://www.w3.org/standards/techs/rdf), which provides a way to link three uniform 

resource identifiers (4) to specify a relationship between a pair of entities (forming an RDF 

triple). Collections of triples form a graph, where the entities are nodes and the relationships 

are edges connecting them. A computational mechanism for managing such collections is 

called a triplestore.

The Semantic Web standards also define RDF Schemas and a Web Ontology Language 

(OWL), which provide additional expressivity; SPARQL [SPARQL Protocol and RDF 

Query Language (5)], which provides a query language for interrogating RDF graphs or 

triplestores; and the Simple Knowledge Organization System, which provides a basic 

ontology. The OWL (6) is used to specify two important types of entities: instances and 

classes. Instances are particular entities or processes in the world (e.g., a particular molecule 

of p53) and classes are groupings of instances that meet a defined set of individually 

necessary and collectively sufficient criteria (e.g., human p53 proteins). As it lacks variables 

and quantification, OWL cannot express all logical statements about primitives; the subset of 

first-order logic that OWL can express is inspired by description logics (7).

Knowledge Base Versus Knowledge Graph

Collections of assertions, generally called knowledge bases, can be created, queried, and 

shared, and then in turn used by other systems that apply various inference methods to fulfill 

particular application needs. Knowledge bases that can be represented as graphs are often 

called “knowledge graphs.” While not all knowledge bases are implemented as graphs (e.g., 

some are databases where a table structure is used to make implicit assertions), in recent 

years, it has become very common to represent knowledge bases using Semantic Web 

standards, or at least to use knowledge bases that can produce and consume Semantic Web–

compatible versions (8). For that reason, the terms “knowledge base” and “knowledge 

graph” are often used interchangeably. In 2012, Google announced its proprietary 

Knowledge Graph, which also popularized the use of the term (9). The literature sometimes 

contains terminological imprecision about the differences between knowledge bases, KGs, 

and ontologies; readers are referred to Reference 10 for a recent review and analysis of 

various published definitions.

In this review, we use the term “knowledge graph” (“KG”) and say that a KG is grounded in 

the set of primitives from which it is constructed. Some KGs also include a set of logical 

rules called axioms that relate assertions to each other (e.g., the human p53 protein is a 

subclass of the p53 protein class that is found in the organism human). Figure 1 shows a 

simple example of a biomedical KG.

Biomedical Applications of Knowledge Graphs

KBDS does computation over KGs (and perhaps other inputs) to make inferences about 

biomedicine. While each of the works surveyed below addresses a different problem using a 

different technique, there are some common themes in the computational approaches to 

using KGs, including improving information retrieval, inferring new knowledge, and 

creating alternative representations of KGs. Each of these themes is discussed further below.
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Information retrieval.—A major use of KGs is simply to organize knowledge for 

information retrieval. Such systems are designed to make it possible to find facts or evidence 

regarding a wide variety of topics, ranging in this review from cataloging traditional Chinese 

medical practices to decision support for pharmacovigilance. KGs have also been used to 

improve other forms of information retrieval, such as finding relevant publications in the 

literature.

Inferring new knowledge.—There are two primary ways that new information in KGs is 

automatically inferred: graph algorithms and logical reasoning.

Edge (or link) prediction is one class of graph algorithm that is widely used in KBDS. Edge 

prediction methods generally use the structure of a graph to identify edges that are likely but 

missing in the graph (11). In KGs, these are predictions of assertions about the world. This is 

a form of hypothesis generation and often includes an estimate of the confidence in the 

prediction. Many approaches to drug repurposing use edge prediction algorithms over KGs 

of drugs and diseases to identify new indications. Another broad class of graph algorithms 

does community finding, or identification of groups of entities in a KG that are similar or 

highly related to each other. For example, some approaches to disease subphenotyping apply 

community-finding approaches to KGs encoding information about patients.

The second way new information is inferred from KGs is through the use of logical 

reasoners. The Semantic Web OWL standard was designed to facilitate two important 

classes of reasoning over KGs: satisfiability and subsumption inference. Satisfiability 

inference checks to see if a class definition is logically satisfiable; it is possible for a KG to 

define a class that has no members (e.g., human p53 protein homologs in bacteria). 

Subsumption inference uses class definitions to identify all classes that are fully contained 

within some other class (e.g., all proteins are nitrogen-containing compounds). Specific 

reasoners, such as ELK (12) or HermiT (13), can be used to make these inferences with 

particular computational performance guarantees, which can be important in large KGs. 

Subsumption inference in particular is useful in KBDS because it makes explicit many edges 

that are otherwise implicit in KGs, and therefore it can improve the results of other 

algorithms that depend on the structure of the graph, such as link prediction or embeddings.

Alternative representations.—Machine learning, particularly in the form of artificial 

neural networks, is widely used in the KG context (14). One frequent application of neural 

networks to KGs is to create embeddings of entities or assertions by training autoencoder 

networks with inputs constructed from the KG. These embeddings can then be used to 

compute knowledge-based similarities between, e.g., drugs, proteins, and diseases. Neural 

network methods have also been used to identify parts of a KG relevant to question and 

answering (Q&A) for a given input question.

Known Challenges

Many challenges to designing, constructing, and utilizing KGs within the biomedical 

domain have been identified. Some of the more difficult challenges include (a) 

computational performance, (b) constructing KGs using expert curation or information 
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extraction methods, and (c) meaningfully integrating disparate data sources. Each of these 

challenges is discussed further below.

Computational performance.—Computational performance is always a challenge when 

applying algorithmically complex methods to large volumes of data. Biomedical knowledge 

is very extensive, and broad biomedical KGs can contain billions of assertions. A wide 

variety of schemes have been proposed to address the computational complexity of both 

querying and inference over KGs (15).

Knowledge graph construction.—A few KGs, such as GO annotations (16), GO 

Causal Activity Models (GO-CAMs) (17), or Reactome (18), are constructed through 

intense expert curation efforts. However, several algorithmic approaches have been proposed 

to either augment these efforts or fully automate them. Automated approaches to KG 

construction fall into two broad classes: natural language processing (NLP) methods and 

data-driven construction. Data-driven KG construction can involve the integration of 

previously disparate resources or the direct analysis of large-scale datasets.

NLP methods propose to extract information from a set of documents to create KGs, for 

example, the Semantic MEDLINE Database (SemMedDB) (19). As NLP methods are all 

imperfect, these approaches are often focused on assessing the reliability of the information 

extracted, or on techniques to manage missing or erroneous assertions and other sources of 

noise.

Data integration.—Some data-driven approaches simply transform existing databases 

[e.g., DrugBank (20)] into KGs, which can be useful for tasks like facilitating adherence to 

FAIR (findable, accessible, interoperable, and reusable) research principles (21). More 

frequently, data-driven KG construction aims to integrate multiple sources of data into a 

single KG. If an integrated KG can ground the different sources in one set of primitives 

(ideally, from a community-curated ontology), then inference over the combined information 

can be facilitated. There are thousands of public, biomedically important databases (22); 

hence, integration approaches that support semantic compatibility are important and can lead 

to improved data quality, as incompatibilities sometimes signal errors (23).

METHODS OF REVIEW PROCESS

For this review, relevant literature was surveyed by searching PubMed and Google Scholar 

using the following phrases: “knowledge graph,” “biomedicine”; “knowledge graph,” 

“medicine”; “knowledge graph,” “medical”; and “knowledge graph,” “biology.” These terms 

were also searched by replacing “graph” with “base.” All paper types were eligible for 

inclusion (i.e., conference proceedings, dissertations, book chapters, peer-reviewed archived 

manuscripts, and published peer-reviewed manuscripts).

Results

The search phrases above returned 52 papers from PubMed and 7,752 papers from Google 

Scholar. Manual review of these papers was performed to identify those that were focused 

on the use or construction of KGs within the biomedical domain, which resulted in a 
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reduced set of 174 papers. This set of papers was then further reduced to only include papers 

published or posted to public manuscript archives between January 2018 and December 

2019 whose full-text version was publicly available at the time of writing, resulting in a final 

set of 83 papers. For additional details, please see Figure 2.

The final set of papers was further broken down by year of publication or presentation/

submission, the manuscript type, and the journal or archive name. Among the 83 papers, 41 

were published or posted online in 2018. The majority of 2018/2019 papers were published 

in conference proceedings (n = 38) or in peer-reviewed journals/books (n = 26), with the 

remaining papers posted as online preprints (n = 19). Among these, the majority of the 2018 

and 2019 papers were published as conference proceedings (48.8% and 42.9%, 

respectively). The number of conference submissions decreased by 9.1% between 2018 and 

2019; 2018 papers were primarily submitted to IEEE (Institute of Electrical and Electronics 

Engineers) (n = 10), whereas 2019 papers were submitted to ACM (Association for 

Computing Machinery) (n = 5), AAAI (Association for the Advancement of Artificial 

Intelligence) (n = 3), and IEEE (n = 3).

Organization and Presentation of Findings

The final set of papers fall into two broad categories, which are used to organize the 

remainder of this review: application of KGs (n = 53) versus construction of KGs (n = 30). 

This review then concludes by considering some nascent projects likely to be important in 

the near future, characterizing current barriers to building and using biomedical KGs, and 

making some recommendations. Information about each paper included in the final set is 

presented in Supplemental Tables 1 and 2, and broad themes spanning multiple papers are 

described below.

APPLICATIONS OF KNOWLEDGE GRAPHS IN BIOMEDICAL DATA SCIENCE

Applications of KGs are noted in a wide variety of biomedical domains, ranging from 

analysis of genomic data to clinical decision support. There is also a close relationship 

between KGs and biomedical NLP: KGs can be used to improve the quality of NLP, and 

NLP can be used to generate KGs from the literature. Thus, the application of KGs is further 

divided into three primary themes: (a) clinical, (b) biological, and (c) NLP. Supplemental 

Table 1 provides a high-level summary of the reviewed papers that used KGs to help solve a 

biomedical data science problem (References 24-79).

Clinical Applications

There were three primary themes identified within this domain in the papers surveyed, 

including the use of KGs to improve the retrieval of information from the literature or from 

large sources of clinical data, the use of KGs to provide confidence either by adding 

evidence to support phenomena observed in data or by completing missing information and 

deriving new hypotheses, and the use of KGs to improve the representation and presentation 

of complicated patient data or personal health information.

The first observed theme was the use of KGs to refine user queries and otherwise improve 

information retrieval from the literature or from an electronic health record (EHR) system. 
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One study demonstrated that using KGs with traditional rule-based approaches for 

information retrieval performed better than using either KGs or rule-based approaches alone 

(24). Liu et al. (25) proposed a novel graph-based representation of patient data where 

entities were linked to concepts in a biomedical KG in order to enable querying based on 

domain knowledge. Other clinical applications of KGs in information retrieval included the 

finding that a KG-based component added to a larger system improved the ability of doctors 

to identify meaningful information from an EHR (26), a KG-based method for users to 

formulate queries within the context of relevant domain knowledge (27), and a system to 

rewrite user queries using domain knowledge (28).

The second observed theme was the use of KGs to address uncertainty by identifying 

relevant evidence. KGs have been leveraged to provide evidence for diagnostic assistance, 

clinical decision support machinery, or surveillance (29). For example, Bakal et al. (30) used 

SemMedDB and a subset of the UMLS to better predict treatments for and causes of 

different diseases, and Reumann et al. (31) found that using a KG was helpful for correctly 

identifying rare disease patients when examined using over 100 different queries. There 

were two papers that focused on surveillance. In the first paper, Bobed et al. (32) built a KG 

from an adverse drug reaction ontology and SNOMED CT as a means to improve 

pharmacovigilance. In the second paper, Kamdar et al. (33) built a KG using drug classes 

from the Anatomical Therapeutic Chemical Classification System and active ingredients in 

RxNorm to better understand opioid use patterns across the United States.

Also part of the second observed theme was the use of link prediction algorithms to discover 

missing knowledge or generate hypotheses (e.g., 25). To improve the identification of 

comorbid diseases, Biswas et al. (34) built a KG using the approach outlined by Alshahrani 

et al. (35) and then performed link prediction using an inductive inference method. Also 

using inductive inference methods, Callahan et al. (36) described a method for transforming 

OWL-encoded knowledge to create representations that were better suited to inductive 

inference tasks; the results were evaluated using queries against the Knowledge Base of 

Biomedicine (KaBOB) (37). Neil et al. (38) described a method for transforming KGs into 

graph convolutional neural networks and an attention model using independent learnable 

weights to measure each edge’s usefulness.

The final observed theme was the use of KGs to capture complex patient information for 

further processing. Xie and colleagues (39) created patient-specific traditional Chinese 

medicine KGs by mapping patient data to a general traditional Chinese medicine–specific 

KG. Shang et al. (40) described a method for creating visit-level representations of patients 

from EHR data and mapping to a drug–drug interaction KG to provide personalized 

medication combination recommendations. Three papers focused on how to improve the 

presentations of complex information or results. Huang et al. (41) developed a novel tool to 

enrich and visualize patient data by incorporating KG embeddings. Singh et al. (42) 

developed an interactive tool built on Cytoscape (43) to help users interact with their 

network data. And Queralt-Rosinach et al. (44) introduced a novel approach to create 

custom systematic literature reviews by formulating the review as a biomedical KG that 

contains information relevant to specific hypotheses provided by a user.
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Biological Applications

In more basic research applications, broad themes included the use of KGs to produce 

embeddings for prediction or visualization in low-dimensional spaces (15, 45, 46), the use of 

link prediction methods over KGs to hypothesize previously unobserved relationships (36, 

40, 45, 47-56), and the use of KGs to generate complex mechanistic accounts of 

experimental data. Several efforts combined these themes, particularly the use of edge 

embeddings to improve link prediction (34, 48, 53, 57, 58).

Node and edge embeddings provide a powerful method to suggest relationships among 

entities via similarity functions, in ways that complement path traversal through the graph. 

Many of the reviewed papers leveraged semantic similarity–inspired hypotheses to identify 

valuable drug–drug (40,47, 51), drug–target (51), or protein–protein interactions (46, 48), 

many of which were in turn applied to drug repurposing. Additionally, some of the papers 

converted KG-based embeddings into low-dimensional spaces in order to visualize clusters 

in two- or three-dimensional projections (41) to better display entities of interest.

In a particularly innovative approach, Tripodi et al. (45) combined gene expression time 

series and KG-based embeddings from a human-centric KG (59) to create specific and 

detailed hypotheses regarding mechanisms of toxicity. The resulting KG subgraphs that 

made up the hypothesized mechanisms were far richer than the black box toxicity 

predictions that would have been otherwise presented. Further, these subgraphs were also 

used to generate natural language narratives describing the mechanisms and their sources of 

evidence.

Natural Language Processing Applications

KGs have been used to improve NLP performance in a wide variety of genres, including 

summarization or information extraction from EHRs and Q&A systems (15, 26, 27, 29, 40, 

60, 61). We observed that KG-derived embeddings used alone or in combination with other 

text-derived features (46) improved the performance of a variety of NLP tasks, including 

named entity recognition (62), coreference resolution (63), and relation extraction (64).

Additionally, several papers demonstrated the utility of KGs in information extraction 

methods. Ontologies can serve as formal dictionaries allowing for rapid indexing in named 

entity recognition and word sense disambiguation tasks (65, 66). Compared to lexicons, KGs 

offer far richer semantic context, identifying not only similar concepts but also rich 

collections of relationships that can be used to disambiguate or otherwise improve concept 

recognition in texts (65-68).

CONSTRUCTING KNOWLEDGE GRAPHS

Researchers have made substantial efforts in methods development and generated new 

results in the construction of KGs, as well as in extending, integrating, and evaluating them. 

Supplemental Table 2 provides a high-level summary of the papers surveyed on the 

construction of KGs (References 80-124).
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Efforts to produce domain-specific KGs have been made in a variety of areas, including 

biodiversity (80-82) and the microbiome (https://ncats.nih.gov/translator), as well as for the 

purpose of enriching clinical data (83, 84). The papers surveyed on biodiversity focused 

specifically on how a KG could be created and linked to identifiers in the literature (80, 81) 

or other important biodiversity resources (82). In contrast, papers using KGs for clinical 

enrichment aimed to use them as a way to link clinical data to sources of evidence to provide 

support for clinical observations (84-86) or to help make the data more interpretable with 

respect to underlying biological mechanism(s) (83) for improved diagnosis (87).

Historically, NLP information extraction efforts have often been used to construct KGs; two 

novel methods to do so were published last year. One proposed a minimum supervision-

based approach that combined traditional NLP pipelines for information extraction and 

biomedical context embeddings (88). The other focused on improving the extraction of 

biomedical facts from the literature by leveraging and refining specific seed patterns (80).

Although not a construction method per se, SemMedDB, one of the most widely used NLP-

constructed KGs, was recently evaluated by Cong et al. (81). They found many contradictory 

assertions in a variety of fundamental relationship categories, underscoring the need to be 

cautious regarding noise in NLP-derived KGs. Finally, an ontology called BioKNO and a set 

of associated tools leveraging OWL were presented to assist scientists attempting to share 

data according to FAIR principles (82).

ORGANIZATIONAL EFFORTS IN KNOWLEDGE-BASED BIOMEDICAL DATA 

SCIENCE

Both US and European scientific institutions support KG efforts. Perhaps the most ambitious 

of these is the National Institutes of Health’s National Center for Advancing Translational 

Sciences’ Biomedical Data Translator project (https://ncats.nih.gov/translator). The goal of 

the Translator is a computational system that integrates sources of existing biomedical 

knowledge in order to translate clinical inquiries into relevant biomedical research results 

that synthesize elements of the integrated knowledge to directly answer the inquiry or 

generate testable hypotheses (83). A recent funding call targets $13.5 million per year for up 

to five years toward the construction of what they call “knowledge providers and 

autonomous relay agents” (89). Knowledge providers are systems that seek out, integrate, 

and provide high-value data sources within a specific scope of Translator-relevant 

knowledge, and presumably they would primarily use KGs to do so. Relay agents are to take 

clinical queries in a standardized format, dispatch subtasks to appropriate knowledge 

providers, receive responses back from knowledge sources (presumably also as subgraphs of 

a KG), and process responses using scoring metrics in order to return the most relevant and 

highest quality potential responses.

Investigators at the University of California San Francisco (UCSF), Google, the Lawrence 

Livermore National Laboratory, and the Institute for Systems Biology were recently awarded 

the National Science Foundation’s Convergence Accelerator Award (84). A total of 21 

awards were given out, but the UCSF project was the only one that focused on solving 

biomedical and health-related problems. The awarded project, titled “A Multi-Scale Open 
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Knowledge Network for Precision Medicine,” aims to integrate several sources of publicly 

available data in order to build what they term a “biomedical knowledge engine.” The long-

term goal of this project is to create a resource that will help clinicians gain better insight 

into patient care, as well as provide a tool to aid biomedical research. The project will be 

developed using UCSF’s Scalable Precision Medicine Knowledge Engine (SPOKE) (85, 

86). By incorporating additional data from the UCSF Information Commons (https://

informationcommons.ucsf.edu/), SPOKE will extend Hetionet (87), which currently 

contains information from over 25 databases and links millions of drugs, diseases, and 

biological molecules. In collaboration with Google, SPOKE will eventually be made 

available to the public through Data Commons (90).

Elixir Europe (https://elixir-europe.org/) is a large multinational (and European 

Commission) project with the goal of managing and safeguarding the data generated by 

publicly funded life science research and integrating bioinformatics resources. In pursuit of 

those goals, Elixir’s interoperability platform promotes efforts in the European life science 

community to adopt standardized file formats, metadata, vocabulary, and identifiers, 

including work on the Semantic Web and the adoption of community-curated ontologies. 

The Elixir Core Data Resources (https://elixir-europe.org/services/tag/core-data-resources) 

are leaders in the production of interoperable knowledge resources and are widely used 

components of biomedical KGs.

Last year saw the announcement of GO-CAMs, a new approach to GO annotation (17). 

Although GO annotations are perhaps the most widely used knowledge representations in 

biomedical research, until GO-CAMs were introduced, the annotations could not be 

assembled into a coherent KG. While individual annotations implicitly linked GO classes to 

gene products, contextual information was lost: For example, the annotation process could 

not capture that cytochrome C participated in apoptosis only when it was in the cytoplasm. 

GO-CAM models and associated tooling are gradually replacing the traditional GO 

annotation process within the Alliance for Genomic Resources (81), meaning that future GO 

annotation will produce an increasingly rich, manually curated KG.

CONCLUSIONS AND RECOMMENDATIONS

As demonstrated by this review, the last year has seen tremendous amounts of new 

developments in both the construction and application of biomedical KGs. A significant 

number of the reviewed papers focused on the construction or application of KGs to solve 

problems within the clinical domain (e.g., providing evidence for traditional Chinese 

medicine, improving Q&A systems, and developing patient-level KGs). Another popular 

area observed in both biological and NLP-based applications of KGs was the development 

of novel methods to better utilize KGs (e.g., embedding algorithms to create alternative 

representations of data extracted from a KG and graph-based algorithms to improve 

information and relation extraction). Finally, we observed across all applications of KGs that 

while KGs provide an efficient way to present complex information (e.g., scientific and 

medical knowledge, biological interactions, and experimental results), user-friendly tools are 

still needed to help visualize and present this information. We also identified several 

challenges and barriers to construct and use KGs that emerged from these papers (and also 
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from our shared research experiences) that have helped us to brainstorm solutions and 

recommendations. Each of these areas is further detailed below.

Barriers

Current barriers to constructing and using KGs include KG and data availability, data 

licensing issues (sometimes there are different licenses for each data source), a lack of 

agreed upon standards for constructing KGs, and dependency upon resources (i.e., software 

languages or applications) that may be obsolete, deprecated, or outside of users’ skill sets or 

areas of expertise.

The first barrier to using KGs is that building a KG is challenging, so the reuse of existing 

resources is highly desirable. Table 1 provides a list of currently available KGs. While each 

of these KGs is a valuable resource, each was developed to solve a specific problem and thus 

there may be challenges in applying it to new tasks. GO-CAMs have great promise, but 

currently only a relatively small number have been curated (17). Reactome (18) provides a 

very high quality and extensive KG grounded in community-curated ontologies, but it is 

limited in scope to biochemical reactions and pathways. KGs derived from manual or 

automatic data integration, such as KaBOB (37), PheKnowLator (59), Hetionet (87), 

SPOKE (85), Bio2RDF (91, 92), DisGeNET (93), BioGrakn (94), and the Data Commons 

Graph (90), all require different amounts of domain knowledge or technical expertise to 

utilize. KaBOB is grounded in community-curated ontologies, but licensing restrictions 

mean that users must download software and build the KG themselves, which requires 

expertise and computational resources. PheKnowLator is also grounded in community-

curated ontologies, is deductively closed using ELK, and is publicly available, but it does not 

yet have a user interface. Bio2RDF, BioGrakn, the Data Commons Graph, DisGeNET, 

Hetionet, and SPOKE are constructed by combining several different types of data without a 

consistent set of primitives and are not fully grounded in ontologies. Finally, NLP-derived 

systems such as SemMedDB are noisy, making trustworthiness an issue. This review does 

not discuss all of the currently available biomedical KGs identified during our literature 

survey. Readers are referred to Table 1 for additional information.

KGs constructed from automatic methods also present significant barriers. KG construction 

from literature sources is usually framed as a relation extraction problem, where semantic 

triples are inferred from the text and then assembled into a KG. The correctness of this 

approach to KG construction can be determined either before the KG is constructed by 

evaluating the relation extraction process itself (a more traditional approach) or by 

evaluating the quality of the resulting KG itself. Evaluating the quality of the constructed 

KG allows for the use of the reasoning methods described above.

The final barrier is the lack of agreed upon standards for evaluating KGs. In fact, the lack of 

standards for constructing KGs within the biomedical domain may be one of the reasons 

why they are challenging to evaluate. Of the 25 reviewed papers on constructing KGs that 

evaluated their KGs, 4 provided qualitative evaluation (e.g., case studies, domain expert or 

focus group review of results, conceptual models, or prototypes), 5 provided quantitative 

evaluation (e.g., by applying machine learning to a specific holdout dataset or to a new 

dataset, by performing a KG completion task like edge prediction), and 16 provided both 
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types of evaluation. One of the reviewed papers that provided both types of evaluation 

utilized crowdsourcing as a means to validate triples from their KG (95).

Recommendations

Based on the articles surveyed, we provide a brief list of recommendations below. Two of 

the most significant areas that deserve attention are the use of dense vector representations 

(embeddings) of concepts and the integration of KGs in NLP applications.

Knowledge graph embeddings.—Given the high volume of papers covering KG 

embeddings and NLP-based KGs, we felt it necessary to share recommendations gleaned 

from these works. A very active area of research is the use of KGs to create knowledge-

based embeddings. Good embeddings are important to the performance of machine learning 

systems and therefore have wide applicability. KGs have been used to create embeddings for 

entities of many kinds (from genes to patients), as well as for relations, assertions, and more 

complex representations. Applications of these embeddings include prediction of drug–drug 

interactions, drug–target interactions, target discovery, and finding clinically relevant 

evidence. In addition to reusing embeddings from the surveyed papers, we recommend 

considering the tools described in the BioKEEN paper (96), which describes a Python-based 

library for training and tuning models to produce new knowledge-based embeddings.

Natural language processing-based knowledge graphs.—As previously described, 

a major theme of the reviewed literature is the use of text mining and NLP techniques to 

generate KGs. While this approach offers the potential for breadth missing from most 

manually curated KGs, it comes at the cost of a relatively large number of errors. Cong et 

al.’s (81) evaluation of SemMedDB, a widely used KG produced by the US National Library 

of Medicine, found nearly 500,000 inconsistent assertions, as well as a wide variety of 

apparently missing relationships. While they suggested methods that could be used to 

improve the quality of SemMedDB, our recommendation is to recognize that NLP-generated 

KGs are likely to be very noisy and need to be used with caution.

Future Work

The trends we observed in last year’s work are likely to continue. Applications of KGs will 

likely continue to involve generations of embeddings and other uses of KGs in machine 

learning. The close relationships between the development of NLP methods and KGs are 

likely to persist. The expansion of KGs to areas beyond molecular biology (e.g., biodiversity 

and traditional Chinese medicine this year) is also likely to continue. Some previous areas of 

research (e.g., KG-based enrichment analysis for gene sets) that did not see new results this 

year may also continue to be fruitful.

New methods applying KGs to analyze different sorts of experimental data such as images 

seem ripe for development. Robust and biologically meaningful ways to incorporate or add 

experimental data to biomedical KGs would help to improve the precision of predictions 

when used to generate novel hypotheses or as a means to interpret experimental results. 

Similarly, for clinical KGs, it will be important to find clinically meaningful ways to 

Callahan et al. Page 12

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2021 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incorporate quantitative measures (e.g., laboratory test results and biomarker measurements) 

and outcomes from EHR data.

Other than Table 1 of this review, there is no central reference site or repository where one 

can access or identify a current list of available biomedical KGs. Researchers need a more 

systematic approach to the development, maintenance, and interoperability of biomedical 

KGs that facilitates sharing and the use of clear documentation. Existing efforts on general 

frameworks and tools like BioKEEN (96), Protégé (97), and BlazeGraph (98), in addition to 

open biomedical ontologies (99), are important and could be further extended toward 

standardized tool development. As KG evaluation remains challenging, new methods or 

benchmarks will be valuable.

A final area for future work is the development of tools for interacting with KGs. Protégé 

(97) and SPARQL are two of the most commonly utilized tools within the field, but both 

have limitations that make them unable to serve as comprehensive tool suites. While Protégé 

is useful for constructing and editing ontologies and for performing logical reasoning, it was 

not designed to efficiently handle very large KGs and has limited support for visualizing 

ontologies and KGs. SPARQL’s limitations in pathway search (100) and ease of use make 

its broader adoption challenging. Recently developed applications like the Data Commons 

Graph web browser (90), ROBOKOP (61), and Grakn Enterprise’s Knowledge Graph 

Management System and Workbase (https://grakn.ai/grakn-kgms) provide promising 

examples of well-crafted, sustainable user interfaces, but all of these applications are written 

in different programming languages and their proper use requires differing levels of 

programming expertise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example of a knowledge representation for building a biomedical knowledge graph. 

Boxes represent different types of data, which are drawn from ontologies and other sources 

of linked open data. Boxes are connected by directed edges and represent semantically and 

biologically meaningful relationships.
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Figure 2. 
Paper selection process outline. Combining the results from PubMed and Google Scholar 

queries, we narrowed down the list of papers using a two-step process. First, we performed a 

quick review to reduce the initial number of papers. Then, we closely inspected each paper, 

which helped us to arrive at the final set of 83 papers.
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Table 1

Currently available biomedical knowledge graphs

Name
(Reference) Primitives

a
Domain Backend

Last 
updated

Construction

method
b

Bio2RDF (91) Mixed concepts Biomedical Virtuoso 09/25/14 Mixed integration

BioGrakn (95) Mixed concepts Biomedical Grakn.ai 09/27/19 Identifier-based integration

Data Commons Graph 
(90)

Concepts Demographics, health, 
economics, crime, 
education, employment, 
housing

GO, Python 2019 Identifier-based integration

DisGeNET (94) Ontology concepts 
(URIs)

Biomedical RDF 01/01/19 Mixed integration

Hetionet (87) Mixed concepts Biomedical Neo4j 07/08/19 Mixed integration

KaBOB (37) Ontology concepts 
(URIs)

Biomedical AllegroGraph 06/23/19 Semantic integration of 
OBOs

NGLY1 deficiency 
(44)

Mixed concepts NGLY1 deficiency Neo4j 08/08/19 Mixed integration

Ozymandias (101) Ontology concepts 
(URIs)

Biodiversity Blazegraph 2019 Linked data from ALA and 
ALD using CrossRef

PheKnowLator (59) Mixed concepts Biomedical RDF, Python 09/25/19 Mixed integration

ROBOKOP (61) Mixed concepts Biomedical GreenT, Neo4j 09/20/19 Mixed integration

SemMedDB (19) UMLS concepts Biomedical Relational 
database

06/2018 Mixed integration; Semantic 
Knowledge Representation 
program and the UMLS

Sparklis (32) Ontology concepts 
(URIs)

Pharmacovigilance Neo4j, JSON API 01/2019 Semantic integration of 
OBOs

SPOKE (86) Mixed concepts Biomedical Neo4j 2019 Mixed integration; extends 
Hetionet with other data in 
UCSF Information 
Commons

a
Mixed concepts are constructed from ontology concepts and other nonontology concepts found in sources of biomedical data.

b
Created using semantic integration (i.e., ontology-based) methods and methods that integrate data by matching up sets of identifiers (i.e., using 

other data sources like linked data, with standardized concept identifiers).

Abbreviations: ALA, Atlas of Living Australia; ALD, Australian Faunal Directory; API, application programming interface; GO, Gene Ontology; 
JSON, JavaScript Object Notation; NGLY1, N-glycanase 1; OBO, Open Biomedical and Biological Ontology; RDF, Resource Description 
Framework; UMLS, Unified Medical Language System; URI, uniform resource identifier.
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