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Neurotrophic factors (NTFs) have the unique potential to support neuronal survival
and to augment neuronal function in the injured and diseased nervous system. Numer-
ous studies conducted over the last 20 years have provided evidence for the potent
therapeutic potential of NTFs in animal models of neurodegenerative diseases. How-
ever, major obstacles for the therapeutic use of NTFs are the inability to deliver pro-
teins across the blood-brain-barrier, and dose-limiting adverse effects resulting from
the broad exposure of nontargeted structures to NTFs. Two recent developments have
allowed NTFs’ promise to be truly tested for the first time: first, recent improvements
in viral vectors that allow the targeted delivery of NTFs while providing a long-lasting
supply and sufficient therapeutic doses of NTFs; and second, improved animal models
developed in recent years. In this review, we will discuss some of the potential thera-
peutic applications of NTFs in neurodegenerative diseases and the potential contribu-
tion of disturbed neurotrophic factor signaling to neurodegenerative diseases.

Brain Pathol 2006;16:295–303.

INTRODUCTION

Substantial progress has been made over
the last two decades in elucidating the neu-
robiological function of neurotrophins and
other neurotrophic factors (NTFs) during
development and adulthood. Since the dis-
covery of nerve growth factor (NGF), the
first NTF described, it has become clear
that these naturally produced neuron sur-
vival-promoting factors are vital not only
for nervous system development but also
for the maintenance and functioning of the
adult nervous system. The accompanying
reviews focus on various aspects of neu-
rotrophins in human neurological disor-
ders (88, 127, 130, 150). In this review, I
will also discuss other NTFs that have
promise for treatment of neurodegenera-
tive disorders.

The discovery that NTFs support neu-
ronal survival and function in the adult
central nervous system (CNS) generated
broad interest in the use of these factors to
intervene in neurodegenerative diseases.
Numerous in vitro studies and in vivo stud-
ies in animal models of neuronal degener-
ation have provided proof-of-concept and

preclinical data that have led to several
clinical trials starting in the early 1990s
using peripheral or intracerebroventricular
(i.c.v.) protein administration, and con-
tinuing to date using more sophisticated
means of NTF delivery. Indeed, it has
become increasingly clear that the success-
ful implementation of NTF therapy
requires a targeted, localized delivery of
NTFs to avoid unwanted adverse effects
resulting from widespread receptor activa-
tion. These insights have led to the first
promising clinical trials of NTFs in Alzhe-
imer’s Disease (AD) and Parkinson’s Dis-
ease (PD). This review will highlight some
of the preclinical studies conducted to date
with NTFs in models of AD, PD and other
neurodegenerative disorders, and summa-
rize current and previous clinical trials.

More recently, several lines of research
have indicated that changes in neurotro-
phin signaling may also contribute to neu-
ronal degeneration in some CNS disorders
(see accompanying review by Twiss et al)
(150). Although defects in NTFs or their
receptors have not been found to be the
underlying cause of neurodegenerative dis-

orders, recent studies suggest that changes
in retrograde neurotrophin transport,
decreased neurotrophin synthesis, altered
processing of proneurotrophins or signal-
ing through p75NTR may contribute as a
secondary event to neuronal degeneration
in some CNS disorders.

NGF AND AD

NGF was the first neurotrophin that
was discovered in the search for neuron
survival-promoting factors in the nervous
system. Although initial  reports focused
on its effects in development and in the
peripheral nervous system (PNS), studies
indicating expression of NGF in the adult
neocortex and hippocampus (32, 84, 137)
have concluded that NGF also has impor-
tant activities in the adult CNS. In the
mid-80’s several groups reported concom-
itantly that i.c.v. infusions of NGF can
prevent the lesion-induced degeneration of
cholinergic neurons in the medial septum
(53, 57, 87, 157). As cholinergic neurons
in the basal forebrain undergo severe
degeneration in AD (122, 154, 155), and
this degeneration is likely to contribute to
the cognitive decline in AD (13, 123), it
was speculated that NGF might have ther-
apeutic potential in preventing or slowing
the cognitive decline in AD by targeting
the cholinergic component of neuronal
degeneration in AD (58).

Subsequent studies confirmed the
potent effects of NGF in primate models
of lesion-induced degeneration (40, 76,
79, 145, 146), and importantly also indi-
cated that NGF infusions can ameliorate
cholinergic neuronal atrophy and memory
deficits in aged rodents, and increase cho-
linergic activity (49, 50, 99, 100).

Taken together, these reports indicate
that NGF is highly potent in preventing
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cholinergic  neuronal  degeneration  and
in augmenting cholinergic function by
increasing acetylcholine production. These
studies led to a small clinical trial using
i.c.v. infusions of NGF, but treatments had
to be discontinued because of the develop-
ment of a pain syndrome in some patients
(46, 116). Several animal studies indicated
similar adverse effects, including hypoph-
agia, weight loss, Schwann cell hyperplasia,
sprouting of sensory and sympathetic neu-
rons, and pain syndromes (69, 92, 129,
156, 158) resulting from the broad expo-
sure of nervous system structures to NGF.

In parallel studies, a means of localized,
intraparenchymal NGF delivery was devel-
oped using cells genetically modified to
express  NGF.  Using  the  same  models
of cholinergic neuronal degeneration
described above, cellular grafts serving as
biological minipumps next to cholinergic
cell bodies were found to be equally
effective in preventing lesion-induced or
neurotoxin-induced degeneration in
rodents (37, 71, 102, 126) and primates
(40, 79, 147, 148). Cellular NGF delivery
was further shown to prevent age-related
neuronal degeneration in rodents (26) and
primates (28, 139), and to ameliorate
memory deficits in aged memory-impaired
rats (26, 101, 104). Additional safety and
dose-escalation studies in primates con-
firmed that localized NGF delivery to the
basal forebrain by genetically modified
fibroblasts is safe and well tolerated (M.H.
Tuszynski, unpub. data).

On the basis of these results, a phase I
study of ex vivo NGF gene therapy was
initiated, enrolling eight subjects with mild
AD (149). The aim of this study was pri-
marily to determine whether NGF gene
transfer is safe, but secondary outcome
measures included fluoro-deoxy-glucose
positron emission tomography (PET)
scans and cognitive testing. The rationale
for the enrollment of patients in early to
mid-stage of AD was twofold: first,
patients need to able to give informed con-
sent to an invasive experimental treatment;
and second, NGF needs to be administered
at a time when neurons are still alive to be
therapeutically effective. Primary autolo-
gous fibroblasts were cultivated from a skin
biopsy from each patient and genetically
modified to express NGF. The study design
included a staggered entry with a 3-month
surgery delay between patients, and a dose

escalation, with the first patients receiving
only unilateral injections, followed by
higher cell doses and bilateral cell injec-
tions. Cells were stereotactically implanted
into the basal forebrain adjacent to the
nucleus basalis of Meynert (NBM), which
provides  cholinergic  input  throughout
the neocortex. Initially, surgeries were per-
formed while patients were only sedated,
and abrupt movements during the cell
injection resulted in hemorrhages in two
patients. General anesthesia in subsequent
subjects allowed the safe completion of the
study and no adverse events related to
NGF delivery were observed. Cognitive
testing indicated an improvement in the
rate of cognitive decline, in particular after
longer time periods post surgery. PET
scans in bilaterally treated subjects also
indicated an increase in metabolic activity
throughout the neocortex, consistent with
the widespread modulation of cortical
activity from the NBM. In addition, histo-
logical analysis of the brain of one of the
subjects, who died 5 weeks after the sur-
gery, showed sprouting of cholinergic neu-
rons from the NBM into NGF-secreting
grafts, to a similar extent as previously
observed in the primate brain.

These data indicated for the first time
that basal forebrain cholinergic neurons
(BFCNs) in the Alzheimer’s brain remain
responsive to NGF. Although definitive
conclusions about the effectiveness of
NGF cannot be drawn from this small
open label trial, if effects of similar magni-
tude can be observed in placebo-
controlled, blinded trials, this would
represent a significant improvement over
current symptomatic treatments.

Since the initiation of the phase I trial
described above, substantial improvements
in gene therapy and vector design have
eliminated the need for labor-intensive
preparation of autologous cells, in vitro
gene transfer and cell characterization.
Direct in vivo injection of replication-
incompetent viral vectors, such as adeno-
associated virus (AAV) or lentivirus, allows
for the localized production of trophic fac-
tors in the CNS. Studies using in vivo
NGF gene transfer in animal models of
cholinergic neuronal degeneration have
confirmed the neuroprotective effects of
NGF on BFCNs (19, 21, 74, 75, 97, 159,
160). These studies, together with addi-
tional safety and toxicology studies (23),

have led to a second phase I study spon-
sored by Ceregene, Inc. to evaluate the
safety of AAV–NGF gene transfer in AD.
Should this study, conducted at Rush
University, Chicago, indicate that NGF
delivery by in vivo gene transfer is safe,
additional phaseII/III trials will likely pro-
vide an answer as to whether NGF gene
therapy is a valuable means of reducing
cholinergic neuronal degeneration, and
whether targeting the cholinergic compo-
nent of AD can delay the cognitive decline
in AD patients.

GDNF FAMILY LIGANDS IN PD

Although a large number of trophic
factors have been shown to enhance the
in vitro survival of dopaminergic neurons
affected in PD (10, 63, 66, 67, 86, 94,
107), recent studies have focused on glial
cell-line derived neurotrophic factor
(GDNF) and other members of the same
family, as these factors appear to have the
most robust effects on dopaminergic neu-
ronal survival (94).

GDNF, the first member of the GDNF
family ligands (GFLs) was initially charac-
terized as a highly specific NTF for mid-
brain dopaminergic neurons (15, 143).
Since the discovery of GDNF, several other
highly homologous members of this family
have been discovered, including neurturin
(85), persephin (107) and artemin (10).
Each of these molecules signals through
the receptor tyrosine kinase ret after bind-
ing preferentially to one specific GDNF
family receptor of the four family members
discovered to date (GDNF family receptor
(GFR)-alpha1-4). Signal transduction of
GDNF is mediated by binding to GFR-
alpha-1 and to a smaller degree to GFR-
alpha-2, followed by ret-induced intracel-
lular phosphorylation events.

GDNF has been tested in a significant
number of animal models of PD [reviewed
in (73)]. Starting in the mid-1990s, GDNF
injections had been shown to protect
dopaminergic neurons in the substantia
nigra (SN) from axotomy and from 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced lesions in rodents (15,
143) and in nonhuman primates (54).
Similar effects were obtained using en-
capsulated GDNF-producing cells:
dopaminergic neurons were rescued and
amphetamine-induced rotational abnor-
malities were normalized (42, 144).
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A subsequent phase I trial injecting
GDNF i.c.v. turned out to be not only
ineffective but resulted in severe adverse
effects, including anorexia, and severe nau-
sea hours to several days after injections;
weight loss occurred in the majority of sub-
jects (115). Adverse effects encountered in
this trial are not surprising, and clearly a
result of the exposure of nontargeted struc-
tures to GDNF. As mentioned above, sim-
ilar adverse effects have been observed with
i.c.v. infusions of NGF in rodents and in
AD patients. The lack of efficacy resulted
from insufficient diffusion of GDNF from
the lateral ventricle to the actual target
area, the striatum. Thus, the majority of
GDNF resided in the cerebrospinal fluid
without ever reaching the affected neurons
in the SN or their projections in caudate
and putamen.

To achieve sufficient concentrations in
the striatum, clinical trials of intrastriatal
GDNF infusions were initiated showing
much more promising outcomes (56, 95,
119, 138), including improvements in the
Parkinson’s rating scale, increased dopam-
ine uptake indicated by PET scans and
morphological responses in one patient
who had died, while adverse effects were
mild or absent. A subsequent larger
placebo-controlled trial did not replicate
these initial findings (89). However, the
mode of GDNF delivery was changed, the
dose was lower than in the previous trials,
potentially too low to see any clinical ben-
efit, and the patient population was atypi-
cal for PD (12). Thus, additional trials are
needed to determine whether GDNF will
benefit PD patients.

The relatively focused loss of dopamin-
ergic neurons in the SN makes PD an ideal
candidate disease for NTF gene therapy.
Promising results in models of PD using
GDNF delivery by recombinant adenovi-
ral (18, 27, 91), adeno-associated viral vec-
tors (38, 96, 98) and lentiviral vectors (17,
83) support the view that GDNF gene
therapy as a valuable alternative means to
localized infusions, which are complicated
by shifts in catheter positions, infections,
stability of trophic factors and the need to
refill infusion pumps.

In addition to GDNF, neurturin, a
trophic factor with similar properties as
GDNF (85), has been tested in animal
models of PD showing efficacy comparable
to GDNF (63, 128). Rodent and primate

efficacy and toxicology data (14, 24, 34,
61) have led to a phase I trial to test the
safety of AAV-2 mediated neurturin deliv-
ery to the striatum of PD patients. Should
the phase I trial currently underway at the
University of California, San Francisco,
and Rush University, Chicago indicate that
neurturin gene therapy is safe, blinded,
placebo-controlled phase II/III trials will
determine whether neurturin gene therapy
can protect dopaminergic neurons from
neuronal degeneration and improve motor
dysfunction in PD.

NTFS IN HUNTINGTON’S DISEASE (HD)

A large number of NTFs have also been
tested as neuroprotective agents in animal
models of HD to prevent striatal degener-
ation of medium spiny neurons. Many
studies have been conducted using striatal
neurotoxic lesions that do not fully repli-
cate the pathological changes of HD result-
ing from an autosomal dominant disorder
with progressive motor, cognitive and psy-
chiatric disturbances. Since the identifica-
tion of the genetic defect causing HD
(142), transgenic mouse models and viral
expression of huntingtin with variable
length of CAG poly-glutamine repeats
have allowed a better replication of the
pathological changes underlying the
disease.

In excitotoxic lesion models, all NTFs
tested have indeed been reported to be
neuroprotective to a variable degree,
including NGF (6, 35, 39, 51, 52, 80, 81,
103, 151), BDNF (52, 103, 121, 152),
NT-3 (6), NT-4/5 (3), GDNF (7, 120),
transforming growth factor-β (3) and the
neuropoetic cytokine CNTF (6, 41, 44).
The mechanism of some of the neuropro-
tective effects observed is not fully estab-
lished and might be indirect (82). It might
be necessary to re-evaluate some NTFs
reported to be neuroprotective after excito-
toxic lesions in improved animal models
that more closely resemble the human dis-
ease. For example, GDNF reported to be
effective in excitotoxic lesion models (7,
120) appears to be ineffective in transgenic
mouse models overexpressing mutant hun-
tingtin (124).

More recent studies have also evaluated
NTF gene transfer using AAV or lentivirus
as a means to provide long-term, localized
NTF support in animal models of HD.
Overexpression of BDNF, GDNF and

CNTF using AAV (72), adenovirus (16,
112) or lentivirus (36, 106, 125) were
found to be protective after excitotoxic
lesions.

The only NTF tested in a clinical trial
in HD patients is CNTF (9, 20). This trial
was based on animal studies using CNTF
protein delivery (6) or encapsulated
CNTF-producing cells in rodent (41, 43,
45) and primate models (44, 111). The
phase I study delivered CNTF into the
lateral ventricle of six patients using en-
capsulated CNTF-secreting cells. After re-
trieval of the capsules, low cell survival was
observed in about 60% of all retrieved cap-
sules and no clinical benefit was observed
in any of the treated subjects. The lack of
any clinical benefit might partially be a
result of the limited diffusion of CNTF
through the ventricular wall into the adja-
cent putamen (82) similar to the limited
diffusion of GDNF after intraventricular
injection.

As mentioned earlier, BDNF has also
been tested in several animal studies for its
neuroprotective effects after neurotoxic
lesions. Recent evidence points toward a
role of huntingtin in influencing BDNF
transport and BDNF expression, providing
additional rationale to investigate BDNF
as a potential therapeutic molecule in this
devastating polyglutamine disease (see
below).

NTFS IN ALS

Several NTFs have been found to have
potent effects on motor neuron survival in
vitro,  during  development,  after  injury
to motor neuron systems and in genetic
models of motor neuron degeneration,
providing a rationale to develop NTFs as
treatment for ALS, in which ventral motor
neuron degeneration is extensive. BDNF,
CNTF, insulin-like growth factor-1 (IGF-
1) and GDNF have been evaluated in ani-
mal models of motor neuron disease or
ALS using direct protein delivery, with
encouraging results (60, 65, 68, 77, 78, 93,
109, 110, 117, 118, 134–136, 161–163).
Based on these studies, clinical trials with
CNTF (5, 108, 140), BDNF (141) and
IGF-1 (22, 90) have been conducted. To
date, these clinical trials have essentially
failed, an outcome that is at least partially
attributable to the mode of NTF delivery
and/or the instability of the administered
molecules. The mode of administration
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likely led to subtherapeutic levels in the
CNS or dose-limiting adverse effects
caused by broad distribution centrally or
peripherally, including weight loss, severe
coughing, fever and muscle wasting.

Intrathecal infusions of CNTF or
intrathecal delivery of CNTF using encap-
sulated heterologous cells producing
CNTF in patients with ALS did not lead
to the same adverse effects previously
reported but also failed to deliver signifi-
cant clinical benefits, potentially because of
inefficient penetration of the spinal cord
parenchyma (1, 2).

More recently, improvements in gene
therapy vectors and the ability of viral
vectors to be retrogradely transported to
motor neurons after injection into periph-
eral muscle targets have shown some prom-
ise in transgenic mouse models of ALS.
Expression of vascular endothelial growth
factor (VEGF) in motor neurons via
retrograde transport of a VEGF-coding len-
tivirus from muscle (8) and expression of
IGF-1 in motor neurons after AAV-2 injec-
tion into muscle (70) improved animal sur-
vival and delayed motor neuron death in
transgenic mice overexpressing mutant
superoxide dismutase-1 (SOD-1). GDNF
expressed in muscle after AAV gene transfer
was also shown to be retrogradely trans-
ported to motor neurons, to delay motor
neuron degeneration and to prolong the
lifespan of SOD-1 expressing mice (153).

Re-evaluation of some previously tested
factors such as IGF-1 in clinical trials with
site-specific delivery may therefore allow
for therapeutic doses to be reached in ven-
tral spinal cord motor neurons without
adverse effects from widespread CNS and
PNS exposure.

NEUROTROPHIN PROCESSING, 
SIGNALING AND TRANSPORT IN 
NEURODEGENERATIVE DISORDERS

As mentioned earlier, NTFs, including
neurotrophins and GFLs, are vital for ner-
vous system development, indicated by the
lethality of many homozygous knockout
mice for NTFs or severe developmental
abnormalities in the nervous system and
other organs of homozygous and heterozy-
gous knockout animals [see (150)].

Although loss of NTF signaling during
development and adulthood has clearly
been shown to result in developmental
deficits and neuronal degeneration, no

direct evidence has been provided to link
the loss of neurotrophin signaling to the
etiology of any specific neurodegenerative
disease. Despite the lack of any direct evi-
dence for a role of NTF deficiency as the
underlying cause for neurodegenerative
diseases, impairment of target-derived sig-
naling by retrograde transport of NTFs
may contribute to neuronal dysfunction
and neurodegenerative diseases such as
AD, ALS or Huntington’s disease (64,
131) (Figure 1).

NGF is expressed in neocortex and
hippocampus, and normally retrogradely
transported to cholinergic cell bodies in
the nucleus basalis and medial septum,
respectively. In AD, several studies have
indicated that cortical NGF levels cortex
are stable (4, 114) or increased (33, 59,
133), whereas NGF levels in the nucleus
basalis are decreased, providing evidence
for a deficit in retrograde NGF transport
from cortical targets back to the basal fore-
brain. Further support for this hypothesis
comes form mouse models of Down’s syn-
drome, which demonstrate a marked age-
related atrophy of BFCNs, one that can be
reversed by NGF administration (62). The

degeneration of cholinergic neurons is
strongly associated with a highly dimin-
ished retrograde transport of NGF in these
animals (30), which can be directly linked
to the presence of an extra copy of amyloid
precursor protein (APP) (132). Dimin-
ished retrograde transport of NGF has also
been shown in aged rodents (29), one cor-
relational animal model for the cholinergic
atrophy observed in AD. Furthermore,
decreases in NGF receptor expression by
BFCNs precede cholinergic neuronal loss
in AD [reviewed in (31)]. Thus, early
decreases in receptor expression could
result in diminished retrograde NGF trans-
port from the cortex to the nucleus basalis
(29, 30, 113) and contribute to neuronal
degeneration. Current strategies aimed at
augmenting cholinergic function by NGF
gene therapy in AD therefore provide NGF
directly to cholinergic cell bodies, bypass-
ing the need for long-distance retrograde
transport. One potential concern is that
NGF delivery to the cell soma instead of
the normal target (cortex) could result in
the withdrawal of cortical cholinergic pro-
jections. However, data in aged primates
indicate that NGF delivery at the cell soma
in the basal forebrain increases cholinergic
innervation density in the cortex (28).

In HD, recent studies point toward a
role of mutant huntingtin in disrupting
BDNF expression and transport. Reduced
BDNF levels have been found in brain
regions most affected in HD patients (cau-
date and putamen) (48) and in transgenic
mice that express human mutant hunting-
tin (164). Two possible mechanisms
underlying these changes have been sug-
gested [reviewed in (105)]. Reduced
BDNF gene transcription (164) caused by
differential interaction of mutant hunting-
tin (containing expanded CAG repeats)
with the transcription machinery (165) has
been reported as one possible explanation.
However, it is also possible that mutant
huntingtin interferes with the anterograde
transport of BDNF from cortex to stria-
tum, contributing to BDNF depletion in
the striatum (55). Supporting the hypoth-
esis that defects in BDNF availability in
the striatum could contribute to neuronal
degeneration also comes from studies in
conditional BDNF knockout animals
which have shown that depletion of corti-
cal BDNF results in neuronal atrophy of
medium spiny neurons, followed by neu-

Figure 1. Schematic outline of potential changes
in neurotrophic factor (NTF) signaling that could
contribute to neuronal degeneration. Reduced
NTF expression by peripheral targets or central
nervous system target neurons, dysfunctional
proneurotrophin processing, diminished receptor
expression by affected neuronal populations, or
decreased anterograde and retrograde transport
of NTFs could impair NTF support and further
aggravate neuronal dysfunction.
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ronal loss with aging (11). In addition,
decreases in BDNF advance the onset of
motor dysfunction and neuronal degener-
ation in a mouse model of HD (25). Taken
together, these studies provide a rationale
to deliver BDNF into caudate and puta-
men to prevent or slow the degeneration of
medium spiny neurons in HD, but addi-
tional animal studies are needed.

Proneurotrophins may also play a role
in neurodegeneration. As discussed in
more detail in the previous review (150),
proneurotrophins appear to have antago-
nistic functions compared with the
mature form of neurotrophins. The signif-
icance of proneurotrophins in neuro-
degenerative diseases remains to be
determined. It appears that the majority
of NGF found in cortex is pro-NGF and
increased levels of pro-NGF have been
found in AD (47). Whether this increase
in pro-NGF is a result of decreased
processing of pro-NGF, changes in pro-
NGF transport or whether changes in
expression  underlie  the  increased  levels
is unknown. The possibility that pro-
neurotrophins could  induce  cell  death
in neurodegenerative diseases following
binding to p75NTR is a theoretical possibil-
ity that remains to be proven.

CONCLUSIONS

NTF delivery continues to be an
attractive neuroprotective treatment strat-
egy for neurodegenerative disorders. As
outlined in this review, the means of tar-
geted delivery is one key for the successful
implementation of NTF therapy.
Advances in viral vectors now allow for a
localized, long-term delivery of NTFs,
thereby avoiding adverse effects from the
broad exposure of CNS, PNS and other
organ systems. Clinical trials to be con-
ducted over the next years will allow us to
truly determine whether NTFs are effica-
cious in delaying or slowing neuronal
degeneration, thereby affecting some of
the associated cognitive, psychiatric and
motor dysfunctions.
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