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A major goal of modern medicine is to identify key
genes and their products that are altered in the dis-
eased state and to elucidate the molecular mecha-
nisms underlying disease development, progres-
sion, and resistance to therapy. This is a daunting
task given the exceptionally high complexity of the
human genome. The paradigm for research has his-
torically been hypothesis-driven despite the fact that
the hypotheses under scrutiny often rest on tenuous
subjective grounds or are derived from and depend-
ent on chance observation. The imminent decipher-
ing of the complete human genome, coupled with
recent advances in high-throughput bioanalytical
technology, has made possible a new paradigm in
which data-based hypothesis-generation is the ini-
tial step in the investigative process, followed by
hypothesis-testing. Genomics technologies are the
primary source of the new hypothesis-generating
capabilities that are now empowering biomedical
researchers. The synergistic interaction between
contemporary genomics technologies and the
hypothesis-generation paradigm is well-illustrated
by the discovery and subsequent ongoing study of
the role of insulin-like growth factor binding protein
2 (IGFBP2) in human glioma biology. Using gene
expression microarray technology, the IGFBP2 gene
was recently found to be highly and differentially
overexpressed in the most advanced grade of
human glioma, glioblastoma. Based on this discov-
ery, subsequent functional studies were initiated
that suggest that IGFBP2 overexpression may con-
tribute to the invasive nature of glioblastoma, and
that IGFBP2 may exert its function via a newly iden-
tified novel binding protein. The IGFBP2 story is but
one example of the power and potential of the new
molecular methodologies that are transforming
modern diagnostic and investigative neuropatholo-
gy.
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Background
The modern war against cancer has been actively

fought for over 30 years. Great strides have unquestion-
ably been made and some victories have been achieved;
however, cancer fighters have largely not enjoyed the
stunning successes experienced in the fight against other
types of formerly lethal diseases such as smallpox and
tuberculosis. There have been several obstacles to
progress, with 2 of the most significant being that the
pathogens underlying cancer often originate from with-
in, and the culprits are highly multiformed and mercuri-
al. To put it in the genetic terms, cancer is a highly vari-
able disease that is inherently characterized by multiple
heterogeneous alterations of both a genetic and epige-
netic nature (10, 25, 31, 42, 48, 61, 65, 66, 75). These
changes alter the balance of cell proliferation and cell
death, cell stability, and cell motility. The growth of the
list of genes responsible for these myriad alterations
shows no sign of abatement. 

Diffuse gliomas constitute the most common malig-
nant primary brain tumors. They are derived from neu-
roepithelial cells and are diverse with respect to anatom-
ic location, morphologic features, differentiation char-
acteristics, and response to therapy. Two major lineages
are traditionally recognized: astrocytic and oligoden-
droglial. Advances are rapidly being made in our under-
standing of the genetic alterations underpinning glioma
genesis and maintenance. For example, loss of het-
erozygosity (LOH) for large regions at 10p, 10q23, and
10q25, or loss of an entire copy of chromosome 10, con-
stitute the most frequent genetic abnormalities identified
in glioblastoma (1, 72). A potential tumor suppressor
gene located on chromosome 10, PTEN/MMAC1, has
been recently cloned and characterized (45, 73). 

Similarly, examination of gliomas that exhibit the
classical histologic features of oligodendroglial differ-
entiation has revealed an incidence of loss of heterozy-
gosity (LOH) for chromosomes 1p and 19q of 80 to 90%
(64). Certain specific genetic alterations may affect
treatment strategies. In the case of oligodendroglioma,
tumors that exhibit the characteristic 1p and 19q dele-
tions respond better to combination chemotherapy (eg,

SYMPOSIUM: New Molecular Methodologies in Diagnostic and Investigational Neuropathology

Insulin-like Growth Factor Binding Protein 2:
Gene Expression Microarrays and the
Hypothesis-generation Paradigm

Corresponding author:
Dr Wei Zhang, Director, Cancer Genomics Core Lab, Department of Pathology, Box 85, The University of Texas M. D. Anderson Can-
cer Center, 1515 Holcombe Blvd., Houston, TX 77030 (e-mail: wzhang@mdanderson.org)



procarbazine, cytoxan and vincristine; PCV) compared
to oligodendrogliomas that lack this molecular signature
(12, 54). 

Other altered genes for which there is evidence for a
role in glioma genesis or maintenance include mutation
of the p53 and p16 genes and amplification of EGFR
and PDGFR (9, 23, 33). Many of the genes that are
altered in gliomas have also been found to be abnormal
in other types of tumors. Based on this common obser-
vation, a currently popular paradigm dictates that when
a gene is newly discovered to be altered in one class of
tumor, a hypothesis is formulated that the same gene
may be altered in another cancer type(s), and experi-
ments are conducted to prove or disprove the hypothe-
sis. Tremendous progress has been made under this tra-
ditional hypothesis-driven research paradigm, although
the hypothesis generating process is often unimagina-
tive and derivative.

Genomics and Genomic Technologies
In order to achieve a fully comprehensive vantage

from which to study human biology, an international
effort was launched ten years ago to sequence the
human genome, which comprises approximately 3.2 bil-
lion base pairs (18, 32). By mid-2000 a draft of the
human genome was announced (21) and the results have
been recently reported in special issues of the journals
Nature and Science (see vol. 409 of Nature, 2001, and
vol. 291 of Science, 2001). The essence of genomics
research is the pursuit of biological insight through a
comprehensively broad and exhaustively detailed sur-
vey of individual genetic and molecular events in a cell
or cell population.

Among the roughly 3 billion base pairs comprising
the human genome, the number of genes is currently
estimated to be in the vicinity of 30000 (6, 36). In recent
years, effective high-throughput screening tools for the
evaluation of this gene pool have been developed. Both
cDNA microarrays (11, 17, 49, 56) and serial analysis of
gene expression (SAGE) (76, 77) can assess simultane-
ously the expression of very large numbers of genes in
a given cell population in a single experiment. By apply-
ing similar principles to comparative genomic
hybridization (CGH) (38), CGH arrays have also been
developed to screen for gene deletions and amplifica-
tions at the chromosomal level (58). 

Gene expression arrays are available in several dif-
ferent formats; the basic principle is the same in all.
Thousands of cDNAs or oligonucleotides are robotical-
ly deposited (printed) onto a solid matrix, such as a pre-
coated glass microscope slide or a nylon membrane, in

an organized fashion. Oligonucleotides can also be syn-
thesized directly in situ on a silicon chip (47). These
attached DNAs, representing thousands of genes, are
referred to as probes. To use microarrays to simultane-
ously profile the expression of genes in a given cell pop-
ulation, total RNA is first isolted, followed by the gen-
eration of cDNA by reverse transcription. During
reverse transcription, nucleotides labeled with fluores-
cent dyes (most commonly cy5 and cy3) or radioactive
isotopes are incorporated into the cDNAs to make “hot”
targets. The targets are then hybridized to the probes on
the microarray. After detection of the hybridized signals
with either a laser scanner or a phosphorimager an
expression profile is produced by quantification and
mathematical analysis of the generated image.

One limitation of the cDNA microarray approach is
that it constitutes a “closed” system, ie, each microarray
can only provide information about the particular set of
genes that are included on the array.  In contrast, SAGE
is an “open” system that can theoretically unmask any
gene that is expressed in the cells being analyzed (76,
77). SAGE takes advantage of the fact that a 9-10
nucleotide sequence (a “tag”) often contains enough
information to uniquely identify a gene. Generation of
gene tag concatemers and their subsequent sequencing
reveals the relative frequency at which each tag appears
in the library. This frequency represents the relative
expression level of that gene in the cell population under
study. 

Comparative genomic hybridization (CGH) (38) and
CGH arrays (58) can be considered complementary
genome screening tools. Developed in the early 1990s,
CGH provides a physical map of chromosomal region
gain or loss throughout the entire genome. To create this
map, chromosomal DNA obtained from the sample
being tested is labeled with a fluorochrome and DNA
obtained from a normal control is labeled with a differ-
ent fluorochrome. The 2 labeled samples are then cohy-
bridized to normal metaphase chromosome spreads.
Differences in signal intensity along the chromosome
indicate gene deletion and/or amplification. One limita-
tion of the routine CGH procedure is resolution; the
technique is able to detect only relatively coarse regions
of chromosomal alteration. In contrast, CGH microar-
rays  possess a significantly higher resolution capability
that permits more precise localization of the altered
chromosomal region. CGH microarrays are constructed
by printing large mapped DNA fragments, such as BAC
clones, on a glass slide in an alignment corresponding to
their respective chromosomal locations. To search for
tumor cell chromosomal regions harboring deletions or

88 IGFBP2: Gene Expression Microarrays and the Hypothesis-Generation Paradigm—Zhang et al



amplifications, the genomic DNAs prepared from tumor
cells and from control cells are labeled with different
fluorophores and cohybridized to the CGH array. A
skewed signal of a particular clone indicates possible
deletion or amplification at that locus. The enhanced
resolution of CGH arrays enables rapid identification of
the specific candidate gene involved in the chromoso-
mal aberration, and is a particularly powerful approach
when coupled with complementary techniques such as
customized cDNA arrays. 

Laser Capture Microdissection and Genomics
A major issue inherent to the study of human clinical

samples is purity. In large tissue samples many cell
types commonly comingle. To address this problem, one
approach is to physically isolate specific cells or cell
populations for analysis. A number of methods of dif-
fering precision exist for separating target elements
from extraneous tissue, including gross manual dissec-
tion, scalpel blade scraping of selected tissue from
unstained tissue sections on glass slides using an H&E-
stained serial section as a guide, selective “core biopsy”
of paraffin blocks using a tissue microarrayer, cell sort-
ing by flow cytometry, cell sorting by surface marker
selection techniques, and cell culture under selective
conditions. Among the most highly selective techniques
is laser capture microdissection (LCM) (7, 20), which is
particularly suited for molecular genetic applications
and was developed specifically for this purpose. With
LCM, isolation of individual cells, cell populations, or
extracellular components can be accomplished with a
high degree of precision under conditions that only min-
imally perturb the target tissue elements. Although LCM
allows the isolation of a highly purified study sample,
the material thus isolated is often of exceedingly limited
quantity and therefore requires a significantly higher
microarray protocol sensitivity. Thus, the use of LCM as
a tissue isolation procedure requires the adoption of an
amplification procedure. Several protocols that involve
a limited PCR amplification and T7 in vitro transcription
step have been described. For example, antisense RNA
amplification based on T7 transcription may permit
analysis of the mRNA population from a few hundred
living cells (57). Other techniques combine antisense
RNA amplification with a template switching effect
(78). Because amplification methods increase the risk of
false positive results, confirmatory studies are a necessi-
ty. 

With regard to the reductionistic LCM approach of
isolation and analysis of increasingly smaller and more
purely homogeneous samples, from an alternative per-

spective the targeted analysis of highly purified cancer
cells may be overly simplistic and completely miss
important cancer component interactions. According to
this line of reasoning, cancer cells do not live in a vacu-
um and an accurate analysis of cancer pathology must
address the full mixture and interaction of cancer cells,
surrounding stromal cells, infiltrating inflammatory
cells and vascular elements. These so-called “normal”
cells associated with a neoplasm are clearly distinct
from the populations of normal cells residing in non-
tumor regions. Support for this contention is provided
by the recent finding that tumor endothelial cells exhib-
it a unique gene expression signature (71). Hence, there
is an argument to be made for the genomic analysis of
more heterogeneous cancer tissue samples.

From Hypothesis-generation to Hypothesis-testing:
the IGFBP2 story

One of the major accomplishments of the genome
screening and associated technologies discussed above
has been the identification of heretofore unrecognized
cancer genes. The discovery of novel genes/markers/tar-
gets, however, is only the first step at the beginning of a
long chain of scientific investigation. The link between
contemporary hypothesis-generating genomic technolo-
gies and classical hypothesis-testing pathophysiological
investigation is well-illustrated by the recent discovery
and subsequent ongoing study of the role of insulin-like
growth factor binding protein 2 (IGFBP2) in human
glioma biology.

Initial glioma gene expression profiling studies per-
formed in the authors’ laboratories revealed that
IGFBP2, which is normally expressed in fetal cells and
subsequently turned off in adult cells, is highly overex-
pressed only in the highest grade of human glioma,
glioblastoma, compared to lower grade tumors (26).
This observation suggested that IGFBP2 expression
might be associated with anaplastic progression to
glioblastoma. IGFBP2 upregulation in glioblastoma has
subsequently been confirmed independently by a second
laboratory using a combined cDNA microarray and tis-
sue microarray approach (67). The hypotheses generat-
ed by these initial gene expression profiling studies are
that IGFBP2 may be involved in glioma progression and
may underlie some of the histopathological features of
glioblastoma. However, elucidation of the importance
and function(s) of IGFBP2  requires research specifical-
ly directed at characterization of the role(s) of IGFBP2
in the various critical areas of glioma biology. 
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Background: what is known about IGF and
IGFBP2. The IGFs (IGF-I and IGF-II) are polypeptide
mitogens that resemble proinsulin in structure and exert
metabolic and growth-promoting effects on many types
of cells (50, 62, 82). Human gliomas frequently secrete
elevated levels of insulin-like growth factors (IGFs) and
express increased numbers of IGF receptors compared
to normal brain tissue (52). Both IGF-I and IGF-II have
been demonstrated to be glial mitogens (44, 46, 50, 69).
The biological response of cells to IGFs is regulated by
various factors in the microenvironment. Among these
factors, the insulin-like growth factor binding proteins
(IGFBPs) play an important role in IGF-mediated cellu-
lar processes. IGFBPs comprise a family of structurally
homologous proteins that bind IGFs with high affinity
(37). Six different IGFBPs (IGFBP1 through IGFBP6)
with specific binding affinities for IGFs have been iden-
tified. Recent studies have indicated that there may be
additional members of this family, termed IGFBP-relat-
ed proteins, which exhibit low-affinity binding to IGFs
(37). IGFBPs undergo substantial post-translational
modifications, which affects their binding affinity for
IGFs. IGFBPs are able to bind to specific cell membrane
receptors as well as attach to the extracellular matrix
(15, 16, 37, 40).

IGFBPs have multiple and complex functions, which
can be either IGF-dependent or IGF-independent. With
respect to IGF-dependent function, IGFBPs are variably
able to inhibit or to enhance the action of IGFs, result-
ing in either suppression or stimulation of cell prolifer-
ation, respectively (16, 40). When binding to IGFs, IGF-
BPs serve to transport the IGFs, prolong the IGFs’ half-
lives by protecting them from degradation, and modu-
late their biological actions. The IGFBPs normally have
a higher binding affinity for the IGFs than does IGF-IR;
therefore, the binding of IGFBPs to IGFs blocks the
interaction between IGFs and IGF-IR, thereby suppress-
ing IGF action (16, 40). In addition, IGFBPs can also
enhance IGF effects by presenting and slowly releasing
the IGFs for receptor interactions while protecting the
receptor from down-regulation. The association of IGF-
BPs with the cell membrane or extracellular matrix may
also affect the binding affinity of IGFBPs to IGFs. In
addition to modifying IGF actions, direct IGF-inde-
pendent functions have been proposed for the IGFBPs,
including modulation of cell adhesion, migration and
anti-apoptosis (3, 28). The molecular mechanisms of
action of the IGFBPs at the cellular level both in modu-
lating IGF action and in exerting potential direct func-
tions require further investigation.

Unlike the other members of the IGFBP family,
IGFBP2 is predominantly expressed in fetal tissues and
has demonstrated involvement in the development of
the brain (13, 30, 74, 79). After birth, IGFBP2 expres-
sion significantly decreases in glial cells (43, 81). Dif-
ferential induction of IGFBP2 expression in the brain
has been associated with a variety of pathological con-
ditions, including hypoxia, regeneration, and trauma.
IGFBP2 is the major IGFBP in cerebrospinal fluid due
to its production by multiple neuronal populations (27,
41, 68). The IGFBP2 gene has been mapped to 2q33-
q34 and encodes a 289 amino acid protein with a molec-
ular weight of 36kDa under nonreducing conditions. 

With regard to IGFBP2 functions, both negative and
positive effects on IGF-dependent cell proliferation
have been observed (14, 22, 29, 55, 63, 70). IGFBP2
transgenic mice show a significant reduction of body
weight gain (35). Knockout mice that lack IGFBP2
expression do not show overt phenotypic alterations,
which may be due to the concomitant upregulation of
other IGFBPs and to functional redundancy within this
family of related proteins (59, 60, 80). On the other
hand, IGFBP2 augments the IGF-I anti-apoptosis func-
tion, and an IGF-independent anti-apoptosis action in
the developing mouse limb and brain has also been
reported (3, 5).

Clinical studies that have examined IGFBP2 concen-
trations in a number of different diseases suggest that
alterations of IGFBP2 expression may play a crucial
role in many of them. A variety of human tumor cells
produce IGFBP2, and markedly elevated IGFBP2 levels
correlate with the presence of pathological and neoplas-
tic alterations (8). In ovarian cancer, for example,
increased IGFBP2 correlates positively with the serum
tumor marker CA125 (24). Similarly, increased serum
levels of IGFBP2 have been proposed as a prognostic
marker for prostate cancer (39). Overexpression of
IGFBP2 resulting in increased tumorigenicity in Y-1
adrenocortical tumor cells and epidermoid carcinoma
cells has been reported (34, 51). Previous studies have
also shown that the introduction of IGFBP2 expression
increased tumorigenicity in a nude mice neuroblastoma
xenograph model (4), but the molecular mechanism(s)
through which IGFBP2 enhances tumor cell growth and
increases tumorigenicity remain undefined. Finally,
IGFBP-2 levels have been shown to be increased in the
cerebrospinal fluid in patients with central nervous sys-
tem tumors (53). 
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IGFBP2 in Human Gliomas
As stated previously, using cDNA microarray gene

expression profiling, we found that up-regulation of
IGFBP2 is the most consistent and distinct gene expres-
sion change in a comparison of different classes and
grades of human diffuse gliomas. IGFBP2 is expressed
at high levels only in glioblastoma and not in mid-grade
or low-grade gliomas (26). Furthermore, strong expres-
sion of IGFBP2 is associated with poor patient survival
in diffuse gliomas (19, 67). These data suggest that
IGFBP2 expression reflects biologically aggressive
behavior and may be associated with the formation of or
progression to glioblastoma. However, the role(s) of
IGFBP2 in specific aspects of tumor biology, such as
anti-apoptosis, angiogenesis and tumor invasion, and
the mechanism of action of IGFBP2 at the cellular level,
both in modulating IGF action and in exerting potential
direct actions, remain to be defined.

Because IGFBP2 is preferentially associated with
glioblastoma compared to lower grade gliomas, it may
contribute to the proliferative potential of cells. Sup-
porting this contention is the findings that IGFBP2,
when transfected, increased the proliferation of adreno-
cortical tumor cells and epidermoid carcinoma cells (34,
51). To further investigate this issue in gliomas, we
transfected IGFBP2-expressing vectors into 2 different
glioblastoma cell lines, U87MG and LN229. After
transfection, stable clones expressing different levels of
IGFBP2 were selected. Monolayer growth curves, sphe-
roid growth curves, and cell cycle profiles were ana-
lyzed. Results show that there is no major difference
between the growth capability of cells expressing differ-
ent levels of IGFBP2, which suggests that IGFBP2 does
not confer enhanced growth potential in glioma cells. 

Migration and invasion are prerequisites for the infil-
trative growth pattern seen in malignant gliomas and are
crucial aspects of the biology of this class of tumors.
Infiltrative growth prevents complete tumor resection
and causes significant neurological morbidity and mor-
tality. To evaluate whether IGFBP2 may contribute to
invasion in gliomas, we carried out an in vitro chemo-
invasion assay using the procedure of Albini et al (2),
with minor modifications, using stable clones with dif-
ferent levels of IGFBP2.  Preliminary results show that
clones expressing high levels of IGFBP2 have a higher
cell invasion index compared to vector-alone transfec-
tants (unpublished results), indicating that IGFBP2 may
play a role in cell invasion. Tumor cell invasion is a
complicated process involving a sequential series of
critical steps, including tumor cell adhesion, proteolysis
and migration. Current ongoing experiments are direct-

ed towards identification of which invasion aspects are
affected by increased expression of IGFBP2. 

Proteins in general do not function alone—they
interact with one or more partners to accomplish a bio-
logical mission. Biological signals are transducted via
the interaction of the protein with its downstream part-
ner(s). The nature of these partner interactions can be
either protein-to-DNA, protein-to-RNA, or protein-to-
protein. The study of protein-to-protein interactions is
complex but provides a global perspective on cellular
processes and networks; these analyses fall under the
emerging rubric of proteomics. One tool for identifying
and studying the potential interacting partners of
IGFBP2 is the yeast 2-hybrid system. To identify poten-
tial proteins that interact with IGFBP2, we screened a
human fetal brain cDNA library using the yeast 2-hybrid
system. After 3 levels of selection, 2 positive clones
have been isolated that interact with IGFBP2. Analysis
of these associated proteins and their interactions is cur-
rently in progress. The discovery, identification, and
characterization of new proteins such as these should
further our mechanistic understanding of the role of
IGFBP2 in cancer progression.

Conclusions
To achieve an understanding of any biological

process, 2 steps are involved: i) selection of a target for
study, and ii) functional characterization of the selected
target. Contemporary genomic technologies provide a
powerful tool for intelligent target selection and hypoth-
esis generation. The second step, commonly referred to
as the hypothesis-driven phase, involves functional
studies designed to gain deeper insight into molecular
relationships and interplay. As illustrated by this review
of the identification and study of IGFBP2 in gliomas,
both steps play an important role in the discovery
process. It is anticipated that genomic strategies, based
on rapidly advancing technologies, will play an even
larger part in re-shaping research paradigms over the
coming decade.
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