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INTRODUCTION
There is little doubt that overproduction 

of the Aβ peptide in the CNS plays a cen-
tral causative role in unleashing the elabo-
rate Alzheimer’s neuropathology. The most 
compelling evidence stems from findings 
that the overproduction of its precursor 
protein (AβPP, the Aβ amyloid precursor 
protein) in Down syndrome leads to an Al-
zheimer-like pathology (for review, see 47). 
Similarly, mutations in AβPP and the pre-
senilins result in the accelerated production 
of high levels of Aβ peptide in the famil-
ial forms of Alzheimer disease (AD) (21) 
with a neuropathology similar to the later 
onset and more protracted development of 
the sporadic forms of the disease. It needs 
to be acknowledged at this point that AD 
pathology is not only restricted to AβPP 
dysmetabolism and Aβ overproduction, 
but that it is also accompanied by neuro-
fibrillar (25, 37) and synaptic pathologies 
(50), oxidative stress (22) and inflamma-
tion. Aβ production and deposition could 
be affected by a number of factors, such as 
high cholesterol levels (45) and brain trau-
ma (53). As Aβ is found in diverse forms, 
amounts and localization in the CNS, the 
precise contribution of each in provoking 
Alzheimer syndrome remains an issue of 
great controversy and interest in the field.

In this commentary, I would like to sug-
gest that AβPP fragments, including Aβ 
itself, serve a physiological role under nor-
mal circumstances, but that this changes 
progressively from an intracellular to an 
extracellular neuropathology in the AD 
scenario. These ideas are based on our own 
observations in animal models and from 
the observations of others as cited in this 
opinion paper. 

A FUNCTIONAL ROLE FOR Aβ AND AβPP 
FRAGMENTS?

Aβ fragments appear to be produced 
under physiological conditions by the con-
certed action of 2 convertases referred to as 
β- and γ-secretases (for review, see 10, 62). 
The identities of these convertases have been 
elucidated. The main β-secretase is BACE 1 
(beta amyloid convertase enzyme) (55). On 
the other hand, the γ-secretase is a mem-
brane protein complex of which presenilin 
provides the catalytic function (for review, 
see 29). Activation of the γ-secretase gen-
erates intracellular C-terminal fragments 
from 2 membrane-resident proteins: Notch 
and AβPP. These resultant fragments are 
called NICD (Notch Intracellular C-termi-
nal Domain) and AICD (AβPP Intracellu-
lar C-terminal Domain), respectively. There 
is evidence that these fragments migrate to 

the nucleus and can directly or indirectly 
modulate gene expression (for review, see 
31, 32). The Notch pathway is implicated 
in the development of the CNS while the 
functions of the AICD fragment are less 
clear. Yet, the existence of such pathways 
suggests that therapies aimed towards the 
suppression of γ-secretase activity may 
eliminate vital neuronal regulatory func-
tions. Moreover, cleavage of AβPP by α-
secretases within the Aβ domain prevents 
the formation of Aβ amyloidogenic frag-
ments and releases into the extracellular 
domain the AβPP N-terminal fragment re-
ferred to as soluble AβPP alpha (sAβPPα). 
Presently, the methaloprotease, ADAM 10, 
is thought to be the best candidate for this 
role (1). This α-secretase activity is appar-
ently regulated by the CNS activation of 
muscarinic receptors (41), leading to the 
production of sAβPPβ fragments which 
apparently display neurotrophic effects in 
vitro (38). It is therefore plausible that in 
the early AD stages an overproduction of 
AβPP may generate sAβPPα, thus favoring 
the transient de novo formation of cortical-
hippocampal synapses. If this were the case, 
it could explain the initial up-regulation 
in the number of cholinergic synapses in 
pre-plaque stages (63) as well as the tran-
sient up-regulation of cortical glutamater-
gic and GABAergic synapses in early stages 
of plaque formation observed in cortical 
areas of AD transgenic models (3). In line 
with this, De Kosky and collaborators (9, 
24) have found an upregulation of choline 
acetyl transferase activity in the cortex and 
hippocampus of patients with mild cogni-
tive impairments (9) in which a trophic re-
sponse to sAβPPβ should not be rule out.

A pressing and somewhat neglected 
question is: Is there a physiological role for 
Aβ in the CNS? We know that a certain 
amount of Aβ appears to be generated in-
tracellularly and is transported axonally un-
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der normal conditions, however, its func-
tions at the synaptic level is not yet clear 
(27, 30, 46, 61). The prevailing notion is 
that pathological amounts of Aβ accumu-
late in extracellular spaces of the brain and 
participate in AD’s neuropathology as well 
as the demise of synapses. However, under 
basal physiological conditions, it is possible 
that Aβ plays a quite different role in re-
inforcing synaptic plasticity. For example, 
our laboratory has observed that undiffer-
entiated rat pheochromocytome PC12 cells 
display an activity-dependent (high molar-
ity K+ and forskolin-induced) up-regula-
tion of phospho-ERK2 along with an el-
evation in CRE-regulated gene expression. 
These responses were markedly greater in 
PC12 cells transiently transfected with mu-
tated forms of human AβPP and expressing 
modest amounts of endogenous Aβ (7, 13) 
(also Echeverria et al, unpublished data). In 
these transfected cells the stimulus-depen-
dent increase in CRE-directed gene expres-
sion was blocked by γ-secretase inhibitors, 
suggesting that this response was mediated 
by either Aβ or the AICD peptide. Con-
versely, the over-expression of the AICD 
fragment did not replicate the increase in 
CRE-directed gene expression, suggesting 
that Aβ was the responsible agent. Our 
observations, thus, would indicate that 
endogenously produced Aβ peptides, act-
ing on either intracellular or extracellular 
receptors, can facilitate CRE-directed gene 
expression. These observations are of func-
tional relevance as CRE-regulated gene ex-
pression plays a key role in the development 
of late LTP formation requiring de novo 
protein synthesis (for review, see 28, 58). 
We speculate that, at this stage, the Aβ pep-
tides are produced transiently and in rela-
tively low amounts, and that they facilitate 
rather than inhibit the CRE-directed gene 
expression. This regulatory mechanism ap-
parently requires the phosphorylation of 
the MAP kinase ERK 2, and the application 
of suitable inhibitors has shown that this 
signalling mechanism involves the Rap1-
MEK-ERK pathway (7, 13)( also Echever-
ria et al, unpublished data). It is therefore 
feasible that in normal circumstances, low 
levels (pM-nM concentrations) of Aβ 
would stimulate CRE-directed gene expres-
sion and neural plasticity in the CNS. On 
the other hand, at higher, non-physiologi-
cal levels, Aβ would inhibit CRE-directed 
gene expression. It is still unclear whether 

a similar mechanism would occur in vivo. 
In this regard it is interesting to note that 
some transgenic animal models expressing 
the AβPPSwe,Ind, unexpectedly display larger 
than normal LTP responses while in most 
models a down regulation of LTP forma-
tion is observed (for discussion, see 26). To 
explain these discrepancies, I would like to 
suggest that moderate levels of Aβ would, 
at least initially, facilitate synaptic plasticity 
through its effects on CRE-directed gene 
expression (Figure 1). As the levels of Aβ 
increase and accumulate extracellularly, the 
level of Aβ oligomers become detrimental 
to synaptic plasticity and to CRE-directed 
gene expression. Such changes are known 
to exert a negative effect on the formation 
of LTP in vitro (57) and can diminish the 
rate of the activation of CREB in isolated 
cortical neurons (51). Likewise, fibrillar Aβ 
inhibits the activity-dependent CRE-gene 
expression in PC12 cells (Echeverria et al, 
unpublished data). 

INTRACELLULAR Aβ ACCUMULATION 
AND AD-RELATED NEUROPATHOLOGY

There is evidence that Aβ is generated 
and sequestered intracellularly early in AD’s 
pathology (for review, see 11, 60, 61). In a 
review article (11), we referred to the ac-
cumulation of intracellular Aβ as “a sign 
of worse things to come.” This assertion 
is based on our own observations in a rat 

transgenic model in addition to abundant 
findings in the literature. We and others 
(notably the laboratories of Gunnar Gou-
ras, Frank La Ferla, Andrea Leblanc, Thom-
as Bayer and Mike D’Andrea) maintain the 
general hypothesis that the accumulation 
of intracellular Aβ within neurons plays a 
role in the early pathogenesis of AD. For 
example, Gouras and collaborators (49) 
proposed that while a certain amount of 
Aβ in intracellular compartments may 
always be present in the rodent and hu-
man CNS, the amounts of intracellular 
Aβ elevate markedly in Down syndrome 
(39) and in AD (2, 18). In addition, by 
injecting Aβ peptides in dissociated corti-
cal human embryonic neurons, Leblanc 
and collaborators (65) have demonstrated 
that relatively low concentrations of intra-
cellular Aβ peptides lead to apoptotic cell 
death with the involvement of a caspase 
cascade. Tabira and collaborators have also 
linked the accumulation of Aβ-immuno-
reactive material within cortical neurons 
with apoptotic signals in the AD human 
brain and in transgenic mice over-expres-
sion AD-related PS1 mutations (5). The 
possibility that Aββ plaques originate from 
the remnants of dead neurons that contain 
elevated amounts of Aββhas also been sug-
gested from microscopical observations in 
AD brains (8, 17). It is therefore likely that 
the accumulation of intracellular Aβ leads 

Figure 1. Schematic representation of Aβ-induced up-regulation of the activity-dependent expression 
of CRE-regulated genes and production of synaptic related proteins.
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to neuronal dysfunction including changes 
in synaptic plasticity. We have observed 
that the overexpression of APP in neurally 
differentiated P19 cells can provoke con-
siderable intracellular accumulation of Aβ 
peptides (19), and that this accumulation 
is accompanied by mitochondrial changes 
that include a shift to lower mitochondrial 
membrane potentials (20). This mitochon-
drial involvement is of interest in the con-
text of the AD pathogenesis given that it 
has been shown that intracellular Aß can 
specifically bind and distort the active site 
of mitochondrial alcohol dehydrogenase, 
a change that favors the formation of free 
radicals and neuronal cell death (36). 

Other organelles may also be negatively 
affected by the intracellular accumulation 
of Aβ. We have recently developed a num-
ber of transgenic rat models that over-ex-
press mutated forms of AβPP in which the 
most prominent phenotype has been the 
accumulation of intracellular Aβ in most 
neurons of the CA2 and CA3 regions of the 
hippocampus and within many large pyra-
midal neurons of the cerebral cortex (12). 
These Aβ-accumulating neurons displayed 
a significant increase in both the propor-
tional area occupied by the Golgi apparatus 
elements as well as the size of individual 
saccules in the hippocampus of transgenic 
rats as compared to controls. We also found 
an elevated number of lysosomes and lipo-

fuscin bodies in the hippocampi of trans-
genic rats, as well as an increase in the mean 
individual cross sectional area of lipofuscin 
bodies in the cortex of transgenic rats as 
compared to controls (35). These findings 
support the hypothesis that intracellular 
Aβ accumulation has a wide impact on 
subcellular compartments. Indeed, this rise 
in lipofuscin bodies signals the premature 
aging of Aβ-accumulating neurons. The 
up-regulation of lysosomes is also in line 
with observations for the involvement of 
this subcellular compartment in early stages 
of AD (42).

Besides alterations in organelles, the early 
intracellular accumulation of Aβ leads to 
changes in protein expression (56) (also 
Vercauteren et al, unpublished data) and, 
most importantly, in the activity of key 
proteins involved in cell signalling. In our 
transgenic rats with a phenotype of intra-
cellular Aββ accumulation, we observed 
a robust up-regulation of the MAP kinase 
ERK2 (12). This increase in ERK2 was ac-
companied by an augmented phosphoryla-
tion of tau, specifically in its MAP kinase 
phosphorylation sites (14). The dysregula-
tion caused by persistent ERK2 activation, 
as opposed to activity dependent ERK2 
activation (as discussed above), may have a 
negative impact on cell and synaptic func-
tion. Persistent ERK2 activation appears 
to diminish the degree of phosphorylation 

of pp90RSK, which would sequester the 
CREB binding protein (CBP) in cell sys-
tems (59). The sequestration of CBP leads 
to a down regulation of the CRE-directed 
gene expression of explicit genes that are in-
volved in the protein-synthesis component 
of late LTP (for review, see 28). Therefore 
elevated intracellular Aβ should cause syn-
aptic dysfunction and alterations in higher 
CNS functions. Evidence for the first was 
provided by La Ferla et al showing that a 
diminution of LTP responses occurs prior 
to the appearance of amyloid plaques, and 
corresponds to the accumulation intracel-
lular Aβ in their triple transgenic mouse 
model (43). Evidence for the second ef-
fect of Aβ on higher CNS functions was 
provided with by our rat transgenic model 
which displays a phenotype of elevated in-
tracellular Aβ in the absence of plaques. 
These animals displayed a mild but sig-
nificant learning deficit along with marked 
hypophosphorylation of pp90RSK, which 
should compromise CRE-regulated gene 
expression (14). How these findings cor-
respond to AD neuropathology is not yet 
fully established. However, Ferrer and col-
laborators (15) have found that activation 
of ERK2 is associated with early neurofi-
brillary pathology in AD. Likewise, an up-
regulation of the phosphorylated form of 
ERK1/2, p-ERK1/2, has been reported in 
the same brain regions as AD patients with 
neurofibrillary neurodegeneration Braak 
stages I-II, but who are devoid of amyloid 
deposition (44). Furthermore, evidence 
for diminished CREB phosphorylation in 
the hippocampus of AD sufferers has been 
observed (64), which might indicate that 
in AD (as in the transgenic rat) sustained 
ERK2 activation might lead to dysregula-
tion of protein phosphorylation patterns 
leading to the disarticulation of CRE-regu-
lated gene expression and early tau phos-
phorylation, even in the absence of amyloid 
plaques. 

ELEVATED EXTRACELLULAR Aβ AND AD-
RELATED NEUROPATHOLOGY

A complete discussion of the impact of 
extracellular Aβ is beyond the scope of this 
commentary, and can be found in many 
well noted and authoritative reviews and 
also within this volume. In this section, I 
will highlight key features regarding the 
relationship between toxic species of ex-

Figure 2. Schematic representation of the involvement of cortical transmitter systems as the Aβ burden. 
AD pathology evolves from a pre-plaque phase to the advanced formation of mature, neuritic plaques.
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tracellular Aβ and synaptic structure and 
function. 

Recently a link between extracellular and 
neurofibrillar pathology has been report-
ed. Thus, the extracellular accumulation 
of endogenously expressed Aβ in double 
transgenic mice (34) or the application of 
exogenous Aβ (16) resulted in the genera-
tion of neurofibrillary tangles akin to those 
observed in AD, and with those observed 
in transgenic mice that carry tau transgenes 
with mutations observed in frontotemporal 
dementias. The cytoskeletal disruption aris-
ing from tangle formation should compro-
mise axonal transport and, consequently, 
contribute to the severe cortical synaptic 
depletion observed in AD (50). It is likely, 
however, that the initial deleterious effects of 
extracellular Aβ on synapses are functional 
in nature. In some AD transgenic models 
there is evidence that cognitive deficits can 
be observed prior to plaque appearance (33, 
54) (intracellular Aβ? Aβ oligopeptides?). 
These observations correlate with the dem-
onstration that oligomeric Aβ molecules in 
the extracellular space are sufficient to in-
hibit LTP generation in the hippocampus 
(57), as discussed above. Although early 
functional deficits can be observed in AD 

transgenic models, there is well-supported 
evidence that the extent of the compromise 
of LTP formation correlates well with the 
amyloid plaque evolution (52).

Synaptic structural alterations in trans-
genic models might occur prior to the 
formation of amyloid plaques. Mucke and 
collaborators (40) have found a down-reg-
ulation of synaptophysin-immunoreactive 
sites while we have consistently observed an 
up-regulation (dysfunctional?) of cholin-
ergic presynaptic boutons in pre-amyloid 
plaque phase in the cerebral cortex of mu-
rine transgenic models of AD neuropathol-
ogy (23, 63). In our experience with trans-
genic models, these marked synaptic losses 
manifest themselves with the appearance 
and progression of amyloid plaque forma-
tion (4). We have been able to demonstrate 
that these structural synaptic losses follow a 
transmitter-specific pattern of vulnerability 
in which the cholinergic cortical presynap-
tic sites are the first to be affected followed 
by glutamatergic and GABAergic synapses 
(3, 4, 23, 63). Furthermore, the overt for-
mation of transmitter-immunoreactive dys-
trophic neurites in AD transgenic models 
only appears with amyloid plaque forma-
tion (3, 48, 63). In our lab, Bell and col-

laborators (6) have used several transgenic 
mouse models to demonstrate that cholin-
ergic fibres in the cerebral cortex are the first 
to be engulfed by the peri-plaque amyloid 
pathology and that a second wave of dys-
trophic neurites is composed of glutatergic 
elements, while GABAergic neurites appear 
fairly resistant to the plaque aggregation of 
fibrillar Aβ These views are schematically 
summarized in Figure 2.

These observations from transgenic mod-
els illustrate that the presence of extracel-
lular Aβ in the CNS per se is sufficient to 
produce functional and structural synaptic 
changes, even in the absence of overt neu-
rofibrillary tangles. While current trans-
genic models do not reproduce the full 
repertoire of AD neuropathologies, they 
have provided important insights into the 
diverse modalities by which Aβ, soluble or 
fibrillar, contributes to the synaptic pathol-
ogy of AD.

CONCLUSIONS
The conventional hypothesis for the 

pathophysiology of AD—the so-called “am-
yloid hypothesis”—states that Aβ plaques 
are the main cause of neurodegeneration 
and dementia. Consequently, the majority 

Figure 3. Schematic representation of the evolution of the Aβ-dependent AD neuropathology from an early intracellular phase to advanced stages of 
extracellular Aβ aggregation in the form of amyloid plaques. The broken lines of transition between intracellular to extracellular Aβ pathology highlight the 
lack of direct knowledge as to how one process relates to the other.
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of studies have focused on the neurotoxic 
effects of aggregated extracellular Aβ frag-
ments in AD and in AD animal models. 
However, in recent years the participation 
of intracellular Aβ accumulation has been 
seriously considered. In this commentary I 
have proposed that Aβ, in non-pathologi-
cal concentrations and situations, plays a 
physiological role stimulating, post-synap-
tically, the expression of proteins related to 
synaptic plasticity via CRE-regulated gene 
expression. Second, I have proposed that 
the abnormal accumulation of Aβ within 
intraneuronal compartments is an initial 
step in the AD neuropathology and leads to 
profound alterations in protein expression, 
their phosphorylation patterns (and thus 
activity), and thereby affects the structure 
and function of subcellular organelles and 
ultimately synaptic function. These chang-
es are most probably insufficient to provoke 
a dramatic change in higher CNS function 
however they might “prime” it for down-
stream pathologies. Finally, I have briefly 
discussed the possible consequences of Aβ 
fragment accumulation in the extracellular 
space, offering support for the notion that 
there is an incremental functional-to-struc-
tural compromise of synaptic elements and 
cortical neurites as the accumulation of Aβ 
proceeds from soluble oligomers to fibril-
lar aggregates and, finally, to toxic amyloid 
plaques. Indeed, I believe that this extracel-
lular Aβ pathology affects CNS transmit-
ter systems in a highly hierarchical and se-
quential manner. In short, I am proposing 
that the Aβ pathology seen in AD is a tale 
of 2 neuropathologies, which starts at the 
intracellular level and proceeds into the ex-
tracellular space, and which recruits in both 
compartments diverse cellular and molecu-
lar components as the pathology proceeds. 
These ideas are schematically represented in 
Figure 3.
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