
Age Dependent Damage in Mouse Brain—Xue & Del Bigio     273

IntroductIon
Intracerebral hemorrhage (ICH) is a 

consequence of hypertension, bleeding 
into an ischemic infarct, rupture of abnor-
mal blood vessels, or trauma. A significant 
proportion of premature births are also 
accompanied by bleeding into the brain. 
The incidence of periventricular/intraven-
tricular hemorrhage (PVH/IVH) increases 
progressively with decreasing gestational 
age, eg, from 1.6% at 38 to 43 weeks to 
up to 50.0% at 24 to 30 weeks of gesta-
tion (5). Periventricular hemorrhage that 
extends into the adjacent brain parenchyma 
has a poor outcome (16). Following ICH, 
prothrombin and plasminogen, which are 
the precursors of thrombin and plasmin in 
plasma, enter the brain substance. In vitro, 
thrombin induces apoptosis (11), causes 
morphological changes of astrocytes (39), 
and causes neurite retraction in cultured 
neurons (76) likely through protease acti-
vated receptors (PARs) (12, 58). In adult 
rodent brains, injected thrombin causes 
brain edema perhaps by digestion of vascu-
lar basement membrane (23, 33), as well as 

inflammation, brain necrosis and apoptosis 
(72). Plasmin is produced after cleavage of 
plasminogen by tissue type (tPA) or uroki-
nase-type plasminogen activators (uPA) 
(66). Injected plasmin also causes consider-
able brain edema, inflammation, and brain 
cell death (72). Following brain injury and 
ischemia, endogenous tPA and thrombin 
are capable of potentiating neuronal degen-
eration through various mechanisms (27, 
49, 55).

There are developmental changes in 
brain with regard to proteases. In mouse 
brain, uPA and its receptor are maximally 
expressed by neurons at 8 to 10 days (17). 
Neurons and glia are capable of expressing 
thrombin receptors (ie, protease activated 
receptors [PARs]) (76), which are most 
abundant in the neonatal rodent brain (14, 
47, 51). Endogenous brain thrombin and 
plasmin (3, 20) are implicated in migration 
of immature neurons, synaptogenesis, and 
formation of myelin. Endogenous inhibi-
tors of plasmin and thrombin, including 
neuroserpin (32, 75), plasminogen activa-
tor inhibitors (PAI) 1 and 2 (17), α2-mac-

roglubulin (37, 38), and protease nexin-1 
(PN-1) (41), are present in developing 
brain in general at higher concentrations 
than mature brain.

Because immature migrating cells nor-
mally use and respond to proteolytic en-
zymes, we hypothesized that brain damage 
related to plasmin and thrombin would 
be greater in young brains than in mature 
brains. To test the hypothesis we assessed 
the brain damage and inflammation fol-
lowing intracerebral injections of autolo-
gous blood or plasma enzymes in three ages 
in mice. Our previous data in adult rats 
showed that inflammatory cell infiltration 
and cell death peak 2 to 3 days after injec-
tion of autologous whole blood into the 
brain, therefore we chose a survival period 
of 48 hours (71, 73). Neonatal (1-2 day-
old) mice have a maturational state of the 
subependymal zone/ganglionic eminence 
roughly comparable to 24-26 week gesta-
tional age human brains (61). Ten-day-old 
mice are roughly comparable to neonatal 
human brains. Adult mice (7 weeks) are 
roughly comparable to young adult human 
brains (4, 36, 61).

MaterIals and Methods

Experimental group design. All experi-
mental procedures were done in accordance 
with guidelines of the Canadian Council 
on Animal Care. Protocols were approved 
by the local experimental ethics committee. 
Seventy-four CD-1 mice (Charles River 
Canada, St. Constant, Quebec) at 3 ages 
(neonatal 1-2 days weighing 1.42-1.95 
grams; 10 days weighing 5-7 grams; 8 week 
young adult weighing 22.0-26.5 grams) 
were used for this study. Young mice (5 
litters) were hosted with their mothers in 
litter sizes of 10. There were 12 groups (3 
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ages × 4 treatments). The treatment groups 
included saline injection as control, autolo-
gous blood injection, thrombin injection, 
and plasminogen injection (Table 1). Each 
experimental group consisted of 6 mice (no 
more than 2-3 mice from a given litter).

Animal model. Neonatal mice were anes-
thetized by cooling on an ice bed. Ten-day 
old and adult mice were anesthetized by 
intraperitoneal injection with ketamine/xy-
lazine (9.0/0.5 mg/kg). Autologous blood 
was collected in a sterile syringe by plac-
ing the tail in warm water for one minute, 
cleaning the skin with 70% alcohol, and 
cutting 2 mm off the tail tip as previous 
described (68). In the neonatal mice, the 
brain injections were done with the needle 
inserted percutaneously. In 10-day-old and 
adult mice, a midline scalp incision was 
made and a small hole was drilled in the 
skull. A 27-gauge needle was attached to 
the syringe and quickly introduced into 
the right striatum of the mouse brain with 
a custom-made guide to help stabilize the 
needle and guide it to the correct depth (in 
neonatal mice, 1.5 mm lateral to midline, 
0.5 mm posterior to the outer canthus of 
the right eye, 2.5 mm deep to the skull 
surface; in 10-day-old mice, 2 mm lateral 
to midline, 1.0 mm posterior to the outer 
canthus of the right eye, 3.0 mm deep to 
the skull surface; in adult mice, 2.0 mm 
lateral to midline, 1.5 mm posterior to the 
outer canthus of the right eye, 3.5 mm deep 
to the skull surface). The sites of injection 
were more lateral than those used in our 
PVH/IVH models (68) because we wanted 
to avoid blood escape into the lateral ven-
tricles. The volume of injected blood was 
15 µl in neonatal, 25 µl in 10-day-old, and 
50 µl in adult mice. Saline, thrombin, and 
plasminogen solutions were in the same vol-
umes respectively. We chose these volumes 
in an attempt to create a hematoma that 
was of equal proportion to the total brain 
weight in all ages. We based our calculation 
on prior studies that reported brain weights 
of approximately 150 mg in neonatal mice, 
250 mg in 10-day-old mice, and 420 mg in 
adult mice (44, 52). Saline, thrombin, and 

plasminogen solutions were injected in the 
same volumes as blood in each age. The to-
tal dose of thrombin (from bovine plasma; 
T-6634, Sigma Chemical Company) (3, 5, 
10 units in 3 ages respectively) and plasmin-
ogen (from bovine plasma; P-9156, Sigma) 
(0.03, 0.05, 0.1 units in 3 ages respectively) 
administered was the amount calculated to 
be in the blood volume injected at each age 
(Table 1). We chose plasminogen rather 
than plasmin because in a previous study 
showed that plasmin potency seemed to 
be reduced (72). We calculated the units 
of prothrombin and plasminogen in whole 
blood based on the following assumptions: 
plasma volume is ~60% total blood vol-
ume, each ml plasma contains 260 to 360 
units of prothrombin and 200 µg (1.95 
units) plasminogen (7, 13). Coded syringes 
were loaded by the senior investigator with 
thrombin, plasminogen, and saline; the ju-
nior investigator responsible for the analysis 
was thereby blinded to the identity of the 
injected agent. The plunger of the syringe 
containing blood or other solutions was 
depressed gradually over 40 to 60 seconds 
to prevent excessive pressure gradients; the 
needle was left in place for 30 seconds, and 
then removed slowly. The scalp (in 10-day-
old and adult mice) was sutured. Physi-
ological monitoring was not practical due 
to the small size of the mice. All mice were 
returned to the cages after the procedure, 
which took approximately 3 to 5 minutes. 
Adult mice were placed in a cage in groups 
of 4 to 5 with free access to food and wa-
ter.

Histological evaluation. Mice were over-
dosed with ketamine/xylazine at 48 hours 
after brain injections and perfused through 
the heart with ice cold 4% paraformal-
dehyde in 0.1 mol/L phosphate buffered 
saline (PBS). The brain was removed and 
stored in the same fixative for 1 to 10 day(s). 
Fixed brains were cut coronally to surround 
the injection sites, and the slices were dehy-
drated and embedded in paraffin. Sections 
(6 µm) were cut serially through the whole 
slice, and each 10th section was stained with 
hematoxylin and eosin (H&E). Near the 

lesion center, where the brain damage was 
maximal, a variety of histological and histo-
chemical stains were performed on adjacent 
sections.

Histochemistry. Ricinus communis ag-
glutinin lectin (RCA-1) labeling was used 
to demonstrate reactive microglial cells 
(40). Paraffin sections were dewaxed and 
rehydrated, washed, quenched with 0.3% 
H2O2, blocked with 10% normal sheep 
serum, and incubated with biotinylated 
lectin (diluted 1/2000, Vector Laborato-
ries, Inc., Burlingame, Calif ). Slides were 
then washed, incubated with streptavidin-
peroxidase (1/400, Dako Corporation, 
Carpinteria, Calif ), colored with diamino-
benzidine-H2O2 solution, washed and cov-
erslipped. Control sections were processed 
with omission of the biotinylated lectin. 
TUNEL (terminal deoxynucleotidyl trans-
ferase (TdT)-mediated deoxyuridine tri-
phosphate (dUTP)-biotin nick end label-
ing) was used to identify dying cells with 
damaged DNA. Paraffin embedded sec-
tions were dewaxed and rehydrated, then 
incubated in 20 µL/ml proteinase K for 15 
minutes. TUNEL was accomplished us-
ing Apoptag in situ kit (Intergen; Purchase, 
NY). After immersion in equilibration buf-
fer for 10 minutes, sections were incubated 
with TdT and dUTP-digoxigenin in a hu-
midified chamber and then incubated in 
the stop/wash buffer. Sections were washed 
before incubation in anti-digoxigenin-
peroxidase solution (1/500 in PBS), and 
colored with diaminobenzidine-H2O2 so-
lution. Sections were counterstained with 
methyl green. Negative control sections 
were treated similarly but incubated in the 
absence of TdT enzyme or dUTP-digoxi-
genin. Sections of brain were stained with 
Fluoro-Jade to show dying neurons (54) 
by incubating sections in 0.06% potassium 
permanganate for 15 minutes while gently 
shaking. Then 0.001% Fluoro-Jade (Histo-
Chem Inc.; Jefferson, Ark) staining solu-
tion was applied for 30 minutes, following 
by PBS wash, drying in air, and coverslip 
application.

Determination of damaged brain vol-
ume and cell counts. Using H&E stained 
sections of all affected levels, a “camera lu-
cida” was used to trace the brain damage 
area, which was defined by the presence of 
blood, tissue rarefaction, or necrosis. Com-

saline Blood thrombin Plasminogen

Neonatal 15 μl (n = 6) 15 μl (n = 6) 3 units in 15 μl (n = 6) 0.03 units in 15 μl (n = 6)

10-day old 25 μl (n = 6) 25 μl (n = 6) 5 units in 25 μl (n = 6) 0.05 units in 25 μl (n = 6)

Young adult 50 μl (n = 6) 50 μl (n = 6) 10 units in 50 μl(n = 6) 0.1 units in 50 μl (n = 6)

table 1. Experimental intracerebral injections into CD1 mouse brains.



Age Dependent Damage in Mouse Brain—Xue & Del Bigio     275

puterized planimetry was used to measure 
the cross sectional areas of damage and of 
brain. The volumes of damaged brain were 
calculated by adding the areas of damage 
on all levels multiplied by the distance 
between sections. Using an ocular reticule 
and 400× magnification (objective magnifi-
cation × 40), Fluoro-Jade positive neurons, 
TUNEL positive dying cells, extravascular 
neutrophils (identified on H&E sections 
by characteristic nuclear morphology), 
and RCA-1 binding cells were counted in 
4 fields (each area 540 µm × 540 µm) im-
mediately adjacent to the needle injec-
tion/damage site as previous described (68, 
71-73). Areas with large blood vessels were 
avoided. Counts were made near the edge 
of the lesion because the necrotic cores were 
devoid of viable cells. The cell counts and 
damaged brain areas were blindly assessed 
by the experienced junior author to mini-
mize the observation bias.

Statistical analysis. All data are expressed 
as mean ± SEM. Data were analyzed to en-
sure normal distribution. The initial test was 
2-way analysis of variance (ANOVA) using 
age and treatment as independent variables. 
Intergroup comparisons within a given age 
and between ages were made using Scheffé 
test, which allows for differences in varia-
tion between groups. The differences were 
considered significantly different when 
p<0.05. We used StatView 5.01 software 
(SAS Institute; Cary, NC).

results
Most mice tolerated the surgical proce-

dure well. There were no overt neurological 
deficits on casual observation. No seizures 
were observed. There were 2 deaths among 
the 10-day-old mice; these occurred imme-
diately after injection of whole blood and 
plasminogen (1 each) and were thought to 
be complications of anesthesia.

Following saline injection (Figure 1A) the 
brains exhibited small collections of blood 
and negligible edema around the needle 
tract in the striatum. Following autologous 
blood injection, an irregular hematoma 
characterized by edema, blood debris, and 
necrosis was located in striatum (Figure 
1B). Following injections of plasminogen 
and thrombin, the volume of damaged 
brain was large, especially in the neona-
tal mouse, where hemorrhagic infarction 
consistently extended into adjacent white 

matter and cerebral cortex (Figure 1C, D). 
Fluoro-Jade staining highlighted the dying 
neurons, which could also be seen on the 
H&E stained sections due to the hypereo-
sinophilic staining of their cytoplasm. Large 
and small TUNEL positive dying cells were 
also present, but their identity was seldom 
obvious. Neutrophils were identifiable at 
the periphery of the necrotic/hemorrhagic 
lesion. Reactive microglia/macrophages 
with ramified processes and swollen bod-
ies respectively were present adjacent to the 
damaged brain tissues, especially around 
blood vessels (Figure 2).

The quantitative comparisons are de-
tailed in Figures 3 to 5. Both age and 
type of injection had a significant effect 
on brain damage volume, dying neurons, 
and TUNEL positive cells. At the cellular 
level, destructive and reactive changes were 
roughly proportionate to the total volume 
of injury. Total brain damage volume and 
damage area on the most severely affected 
level were highly correlated (r = 0.897, 
p<0.0001). Saline injection was associated 
with only small volumes of brain damage. 
Injections of blood, thrombin, and plasmin-
ogen caused proportionally larger volumes 
of damage in neonatal mice than in 10-day 
old and adult mice (Figure 3). TUNEL 
positive dying cells were infrequently seen 
in the striatum of control brains in the neo-
natal group but never in the older mice. 

Peripheral to the necrotic core of the lesion, 
the quantities of TUNEL positive cells and 
Fluoro-Jade stained dying neurons were 
greater following the injections of blood, 
plasminogen, and thrombin compared to 
saline. In addition, the quantity of dying 
neurons was significantly greater after plas-
minogen and thrombin injection compared 
to blood injection in the neonatal group. In 
contrast, dying neurons were significantly 
fewer following plasminogen and throm-
bin injection compared to blood injection 
in the 10-day-old and adult mouse groups. 
TUNEL positive cells were significantly 
more abundant after plasminogen injection 
compared to blood injection in the neona-
tal group (Figure 4).

Accompanying the destructive change 
was an inflammatory response. Both age 
and type of injection had a significant effect 
on neutrophil infiltration. Only treatment, 
but not age, had significant effect on the 
quantity of RCA-1 labeled microglia/mac-
rophages. Neutrophils and microglia/mac-
rophages were more abundant 48 hours 
after blood, plasminogen, and thrombin 
injection compared to saline in all three age 
groups. In the neonatal group, both neu-
trophils and microglia/macrophages were 
significantly greater after plasminogen in-
jection compared to blood injection (Fig-
ure 5).

Figure 1. Low magnification photomicrographs of neonatal mouse brain coronal sections 48 hours after 
injection. After saline injection, there is small quantity of blood in the striatum along the needle tract 
(Figure 2A). Blood injection is associated with a localized hematoma in he striatum (Figure 2B). After 
plasminogen (Figure 2C) and thrombin (Figure 2D) injection, the damage areas are large; hemorrhagic 
infarcts extend to the white matter and lateral cerebral cortex.
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dIscussIon
The pathogenesis of brain damage that 

follows ICH has largely been studied in ma-
ture brain systems. ICH causes brain dam-
age through multiple mechanisms. Direct 
tissue destruction by dissection of blood 
along tissue planes occurs immediately. De-
layed damage likely occurs through a vari-
ety of mechanisms including local ischemia, 
release of toxins by blood breakdown prod-

ucts, and inflammatory responses (43, 67, 
69). Thrombin, which is involved in blood 
clotting, and plasmin, which is involved 
in clot lysis, cause damage and edema in 
adult rodent brain (34, 72). In the neona-
tal brain, thrombin inhibition is associated 
with reduced brain injury after blood injec-
tion (70). Thrombin can be indirectly toxic 
to neurons through microglia-mediated 
oxidative stress and can act as a chemoat-

tractant agent for leukocytes (9, 45). Acti-
vated leukocytes can cause secondary brain 
damage through the release of cytokines, 
reactive oxygen species, nitric oxide, matrix 
metalloproteinases (MMPs), and other pro-
teases (26). Systemic prestimulation of the 
immune system with lipopolysaccharide is 
associated with aggravation of brain injury 
that follows injection of blood into the neo-
natal mouse brain (74).

The main finding in this experiment was 
that injections of blood, thrombin, and 
plasminogen caused relatively more damage 
in neonatal mouse brain than in 10-day-
old or young adult mouse brain. In blood, 
thrombin converts fibrinogen into fibrin, 
which causes the blood to clot. Plasmin di-
gests fibrin to lyse blood clots. Thrombin 
receptors, PAR-1 and PAR-2 are located 
on neurons and endothelia of brain (2, 12, 
47). These receptors can be activated by low 
concentrations of thrombin (58). It is im-

Figure 2. Photomicrographs showing histopathologic features 48 hours following injections into 
neonatal mouse brain. Intact neonatal medial striatum exhibits tightly packed immature neurons (a). 
Damaged striatum after blood (B), plasminogen (c), and thrombin (d) injection exhibits collections of 
erythrocytes, pallor due to edema, and fewer neurons. RCA-1 lectin staining demonstrates negligible 
microglial cells in intact striatum (e), mild accumulation of activated microglia/macrophages in striatum 
after blood injection (F), and more substantial collections associated with plasminogen (G) and thrombin 
(h) injection. TUNEL demonstrates rare dying cells (brown) in intact neonatal striatum (I), and more 
dying cells in striatum after blood (J), plasminogen (K), and thrombin (l) injection. Fluoro-Jade shows 
no dying neurons in normal brain (M), and an increased quantity of dying neurons adjacent to blood (n), 
plasminogen (o), and thrombin (K) injection sites. Note that the histologic features in 10-day-old and 
young adult mice were qualitatively similar. Bar = 50 µm.

Figure 3. Bar graphs showing the brain damage 
volume in mouse brains 48 hours following saline, 
blood, plasminogen, and thrombin injections. 
Damage area (ANOVA, F[treatment] = 7.658, 
p<0.0005; F[age] = 6.605, p<0.005, respectively) 
and damage volume (ANOVA, F[treatment] = 7.099, 
p<0.0008; F[age] = 8.895, p<0.0008, respectively) 
were influenced by treatment and age, but there 
were no interaction effects (ANOVA, F[area] = 2.036, 
p = 0.0877, F[volume] = 1.356, p = 0.2602, 
respectively). There was a significant interaction 
effect between age and treatment (ANOVA, 
F[treatment] = 9.557, p = 0.0001; F[age] = 16.288, 
P<0.0001; F[interaction] = 5.843, p = 0.0003). There 
is a significantly larger volume of brain damage 
following injection of plasminogen in newborn 
mice compared to 10-day-old and adult mice 
(@p<0.001, ANOVA using age as independent 
variable). The volumes of damaged brain were 
greater after blood, plasminogen, and thrombin 
injection compared to saline control in all three 
ages. (*p<0.05; **p<0.01, ANOVA with Scheffé 
post hoc intergroup comparisons). Abbreviations: 
S = saline, B = blood, P = plasminogen, 
T = thrombin.
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portant to note that the effect of thrombin 
is concentration dependent (51). Through 
these receptors, thrombin can cause retrac-
tion of cell processes on cultured neurons 
(24) and is toxic to neurons in brain slices 
in a dose-dependent manner (60). Throm-
bin and plasmin can induce endothelin 
synthesis by astrocytes; this could cause va-
sospasm and aggravate ischemia (21).

Why is the brain damage more wide-
spread in neonatal mice? Several possibili-
ties exist. The first relates simply to diffu-
sion; toxic substances associated with the 
hematoma might diffuse more broadly in 
neonatal brain because the extracellular 
spaces are larger (35). Second, thrombin 
and plasmin are normally active in brain at 
low concentrations (76), especially during 
development and during reactive changes 
(47, 48). Immature cells in neonatal brain 
might be more sensitive to thrombin and 
plasminogen because they have more PARs 
(47, 48, 65). Third, the regulators of plas-
minogen activation and proteolysis such 
as PAI-1, protease nexin-1, and alpha 2 
macroglobulin are present in developing 
brain only in very small quantities, albeit at 
higher concentrations than in adult brain 
perhaps to control the proteolysis involved 
in development (17, 32, 37, 38, 41, 53). 
They can be upregulated following ex-
perimental brain damage (1), however the 
quantity and response time are probably in-
sufficient to deal with the large amounts of 
plasmin and thrombin that enter brain fol-
lowing hemorrhage. Finally, thrombin can 
cause endothelia to separate from basement 
membranes (63); and plasmin can directly 
degrade extracellular matrix proteins of vas-
cular basal lamina and can activate matrix 
metalloproteinases, which can also digest 
matrix proteins (8, 25). Therefore, damage 
to immature vessels (64) might explain the 
widespread hemorrhagic infarct in the mid-
dle cerebral artery distribution of neonatal 
brain following thrombin and plasmin in-
jections. Another possible explanation for 
hemorrhagic infarction is thrombosis of 
deep veins.

In summary, the explanation for neona-
tal brain hypersensitivity is likely multifac-
torial. This conclusion presupposes that 
our modeling of proportionate volume in-
jections was correct. We chose total brain 
volume because there are insufficient data 
concerning the postnatal growth of stria-
tum in mice (22, 57). Rapid changes oc-

cur in mouse striatum during the first few 
postnatal days. Corticostriatal connections 
form around day 2 (56), and the glia to 
neuron ratio drops rapidly between birth 
and day 10, after which it remains stable 
(61). We cannot exclude the possibility that 
our neonatal doses were too high relative to 
the number of cells; total brain protein at 
birth is disproportionately low relative to 
brain weight as a consequence of high wa-
ter content (29). Regardless of the precision 
of comparative dosing, the response of the 
neonatal mouse brain was qualitatively dif-
ferent with large hemorrhagic infarctions 
occurring in contrast to localized areas of 
necrosis.

A secondary finding in the experiment was 
that the neonatal mouse brain appeared to 
be relatively more sensitive to thrombin and 
plasminogen than to whole blood quanti-
ties presumed to contain the same amounts 
of these proteins. This is somewhat more 
difficult to explain than the differential age 
sensitivity. We can speculate that thrombin 
and plasmin in whole blood clot are less 
active than when an equivalent quantity 
is injected into the brain. In whole blood, 
the protein C anticoagulation system, an-
tithrombin, and others control the activity 

of thrombin (15, 19, 59). Furthermore, the 
activity of thrombin at a particular site can 
be very difficult to predict because it is self-
amplifying as well as rapidly inactivated. 
Plasmin activity is also regulated by several 
proteins, for example thrombin-activatable 
fibrinolysis inhibitor (TAFI) (42). Hence, 
all of the controls present in whole blood 
are not available when thrombin and plas-
minogen are injected alone.

In this study, the site of intracerebral 
blood injection was more lateral than that 
used in a previously reported model (68) 
because we wanted ensure that blood did 
not escape into the lateral ventricles. Be-
cause toxic substances were not diluted in 
cerebrospinal fluid, we observed more pa-
renchymal damage and inflammation than 
in that experiment. In regard to the identi-
fication of dying cells we must offer the fol-
lowing comment. Although the quantities 
of TUNEL positive cells and Fluoro-Jade 
stained dying neurons were similar, they 
might not reflect the same cell populations. 
TUNEL positive immature cells are report-

Figure 4.  Bar graphs showing dying neurons (per 
4 × 540 × 540 µm2 area) detected by Fluoro-Jade 
staining (upper panel) and cell death detected 
by TUNEL (lower panel), in mouse striatum 48 
hours after saline, blood, plasminogen, and 
thrombin injections. Both age and treatment had 
significant effects on TUNEL positive cells (ANOVA 
F[age] = 42.800, p<0.0001; F[treatment] = 9.599, 
p<0.0001; F[interaction] = 5.718, p<0.0003), 
on dying neurons (ANOVA F[age] = 145.375, 
p<0.0001; F[treatment] = 71.984, p<0.0001; 
F[interaction] = 53.798, p<0.0001). There is a 
significantly larger number of dying neurons 
and TUNEL positive cells following the injection 
of plasminogen and thrombin in newborn mice 
compared to 10-day-old and adult mice (@
p<0.001, 2-way ANOVA using age as independent 
variable). The quantities of dying neurons and 
TUNEL positive cells were greater adjacent to the 
blood, plasminogen, and thrombin injection sites 
compared to saline controls (*p<0.05; **p<0.01, 
compared to saline, ANOVA with Scheffé post hoc 
intergroup comparisons). Dying neurons were 
significantly more abundant after plasminogen 
and thrombin injections compared to blood 
injection in the neonatal group, whereas there 
were significantly fewer dying neurons after 
plasminogen and thrombin injection compared to 
blood injection in 10 days and adult mice (#p<0.05; 
##p<0.01, compared to blood, ANOVA with Scheffé 
post hoc intergroup comparisons). The number of 
TUNEL positive cells exhibited a similar pattern of 
differences. Abbreviations: S = saline, B = blood, 
P = plasminogen, T = thrombin.
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ed to be cleared from the immature rodent 
brain in a matter of several hours (62) while 
dead neurons that appear hypereosinophil-
ic on H&E staining can persist for days or 
weeks (10). Furthermore, TUNEL positive 
cells include neurons, glia, and leukocytes 
(46). Following autologous blood injection 
into adult rat brain we found that most 
 TUNEL positive cells are not neurons 
(18). 

There are several caveats that must be 
considered in the interpretation of this 
experiment. First, we have no way of de-
termining whether the proteolytic enzyme 
doses match the activity that actually occurs 
following hemorrhage. As indicated above, 
the purified enzymes were injected in the 
absence of control systems present in nor-
mal whole blood. Second, the plasminogen 
and thrombin that we used were bovine 
proteins; we cannot exclude the contribu-
tion of an immune response to foreign pro-
teins, although we consider this unlikely. 
Third, the neonatal and young mice are 
very small and have soft skulls. Therefore, 
the method of blood injection was associat-
ed with some variability in terms of depth. 

Nevertheless, our microscopic assessments 
of cellular changes were done in compa-
rable regions of the striatum and therefore 
the quantification is likely valid. Fourth, we 
did not assess long-term outcomes to deter-
mine if the response in older animals is de-
layed, although based on our prior work we 
think that is unlikely (71, 72). Finally, the 
anesthetic methods differed between age 
groups. Ketamine used in the older animals 
is a potentially neuroprotective glutamate 
antagonist (50) while hypothermia used in 
the neonates is also potentially neuropro-
tective (6, 28). In the future we will likely 
use isoflurane anesthesia to improve consis-
tency.

In summary, these results demonstrate 
that injections of blood, thrombin, and 
plasminogen into mouse brain are associ-
ated with cell death and inflammation in 
an age dependent manner. We postulate 
that the neonatal brain is more susceptible 
because the immature migrating brain cells 
and growing blood vessels, which normally 
utilize proteolytic mechanisms, are more 
sensitive to perturbations in the proteolytic 
environment. This observation comple-
ments Kolb’s findings that the neonatal 

rat brain recovers less well than juvenile or 
adult brains following cortical aspiration, 
presumably because developmental pro-
cesses are interrupted (30, 31). Thrombin 
and plasmin in the blood might play an 
important role in premature neonatal brain 
injury that follows brain hemorrhage. They 
therefore represent potential targets for 
therapeutic intervention (70).
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