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INTRODUCTION
at death of both neurons and oligo-

dendrocytes may contribute to the overall 
pathology of clinical and experimental 
brain trauma is becoming increasingly 
evident. While neuronal death is associated 
with focal injuries, death of oligodendro-
cytes may be a hallmark of diffuse brain 
trauma. A variety of studies (1, 39, 54, 
92) have suggested that focal contusions 
in the gray matter and diffuse injuries to 
axons in the white matter may be a conse-
quence of the biomechanics of the impact, 
ie, focal injuries arise due to contact forces 
to the head, while diffuse injuries result 
from non-contact, rotational forces to the 
brain (64). While multiple neurochemical 
processes and intracellular pathways appear 
to be invoked following a traumatic insult 
to the brain, it is unclear whether cell death 
in CNS injury follows the same pattern of 
initiation-commitment-execution stages 
that has been extensively characterized in 
models of developmental neuronal death 

(80). We review here the state of the cur-
rent literature describing the patterns of 
cell death following traumatic brain injury 
(TBI) in humans and animals, and the pos-
sible pathways that lead to apoptotic and/
or necrotic cell death following traumatic 
injury to the CNS. As more information 
regarding the pathologic changes and the 
underlying cellular and molecular phenom-
ena associated with TBI becomes available, 
it appears that TBI is a complex neuro-
degenerative disease. us, the strategies 
necessary to design a successful therapeutic 
regimen may need to be carefully planned 
and evaluated. While apoptotic pathway(s) 
may provide reasonable targets for thera-
peutic interventions, it may be simplistic to 
develop an approach that is based on a very 
limited number of targets.

REGIONAL CELL DEATH PATTERNS 
FOLLOWING TBI

TBI in humans results in neuronal loss 
in the cortex, hippocampus, cerebellum 

and thalamus (1, 54, 92), and these pat-
terns of cell death have been replicated in 
several animal models (38, 87). e depth 
and extent of contusions in various parts of 
the injured human brain have been quanti-
tatively evaluated (1), and bilateral loss of 
hippocampal neurons has been observed 
in 85% of fatal head injury cases as early 
as 48 hours following the traumatic event 
(54). In the early post-traumatic period 
(hours to days), injured neurons in contu-
sions appear swollen, but over time (days 
or weeks), they become shrunken and eo-
sinophilic, with pyknosis of the nuclei (12). 
In experimental models of brain injury in 
the rat, neuronal degeneration is evident in 
the injured cortex and hippocampus in the 
opening minutes to hours following impact 
(25, 45, 110). Electron microscopic analy-
sis of these degenerating neurons revealed 
a general swollen appearance, with swol-
len mitochondria, vacuolated cytoplasm 
and pyknotic nuclei (25, 110), suggestive 
of necrosis. Interestingly, observations of 
a time-dependent increase in the volume 
of the cortical lesion, and the presence of 
degenerating (dystrophic) neurons in the 
chronic post-traumatic period, have led 
to the suggestion that delayed or chronic 
neuronal degeneration may be a significant 
component of post-traumatic pathology (8, 
21, 25, 45). Injury to the white matter is 
characterized by the widespread distribu-
tion of injured axons, which, in the acute 
post-traumatic stage, appear as swollen 
fibers containing accumulated cytoskeletal 
proteins (39). Over time, these swollen 
axons eventually undergo complete axoto-
my reminiscent of Wallerian degeneration 
(86), a process that is associated with death 
of oligodendrocytes (5). Traumatic oligo-
dendrocyte death may also be induced by 
the reactive microglia and astrocytes pres-
ent in the white matter (23, 39, 102).

Apoptosis, the morphological manifes-
tation of programmed cell death (PCD), 
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is typically accompanied by internucleo-
somal DNA strand breaks. Gavrieli and 
colleagues (36) developed the terminal 
deoxynucleotidyl transferase-mediated 
dUTP nick end-lableing (TUNEL) tech-
nique which has been extensively utilized 
to identify these strand breaks in situ. 
Neurons and oligodendrocytes containing 
nuclear DNA fragments and exhibiting 
apoptotic morphology have been identi-
fied in humans following acute neurologic 
insults such as stroke, and brain and spinal 
cord trauma (18, 28, 62, 103). e contri-
bution of apoptosis to the neuropathology 
of experimental brain trauma has been es-
tablished using a variety of techniques such 
as TUNEL to detect DNA strand breaks in 
situ, the bis-benzimide dye to demonstrate 
nuclear DNA condensation, and electron 
microscopy to demonstrate apopototic 
morphology (17, 33, 76, 91, 121). Apop-
totic neurons have been observed in the 
cortex and hippocampus in both brain-in-
jured rats and mice (17, 20, 33, 52, 76). In-
terestingly, Conti and coworkers (22) have 
reported that there was a biphasic increase 
(at 24 hours and one week post-injury) in 
the number of apoptotic cells in the cortex, 
and a delayed appearance of apoptotic cells 
in the injured thalamus at one week post-
injury. In addition to neurons, oligoden-
drocytes and astrocytes appear to undergo 
apoptosis following experimental TBI (22, 
76). at neural cell apoptosis contributes 
to the pathology of TBI was confirmed by 
the presence of TUNEL(+) neurons and 
oligodendrocytes in human head-injured 
tissue (18, 103). In a recent series of stud-
ies, Graham and coworkers (101, 118) have 
demonstrated that apoptotic, TUNEL(+) 
cells are present in significant numbers 
predominantly in white matter tracts of 
traumatically-injured human brains up to 
12 months post-injury.

CALCIUM AND POSTTRAUMATIC CELL 
DEATH

Over a decade ago, it was suggested 
that calcium-mediated mechanisms were 
the “final common pathway” leading to 
cell death following CNS injury (125). 
Increases in intracellular calcium have 
been demonstrated following experimen-
tal TBI (32, 78, 100). One immediate 
consequence of increased intracellular 
calcium concentrations is the activation 
of the calcium-activated neutral proteases, 

calpains, which have been implicated in 
the pathogenesis of traumatic brain injury 
(49, 63, 75, 94). Calpain activation leads 
to the limited proteolysis of a number of 
intracellular proteins including cytoskeletal 
proteins, particularly in regions that exhibit 
cell loss (50). Although calpain activation 
may lead to either necrosis or apoptosis, 
in vitro studies have suggested that in the 
setting of CNS injury, activation of calpain 
may be predominantly associated with ne-
crotic cell death (116).

Evaluation of cell death mechanisms in 
in vitro systems has led to the hypothesis 
that low intracellular calcium concentra-
tion ([Ca]i) may selectively initiate apop-
totic pathways, whereas high [Ca]i induces 
necrosis (44). In contrast, cell death follow-
ing traumatic or ischemic insults in vivo 
may involve a more complicated scenario, 
involving altered anti- and pro-cell death 
signaling pathways. For example, the 
death-inducing activity of members of the 
Bcl-2 family (Bax, Bad, Bid, Bcl-xS) appears 
to be in a dynamic equilibrium with their 
survival-promoting cognates (Bcl-2, Bcl-xL) 
(65). As a result of these shifts in intracel-
lular levels of Bcl-2 family proteins, the 
death-inducing cysteine proteases, caspases, 
are activated (111). Disruption of the bal-
ance between mitogen activated protein 
kinase (MAPK)-mediated intracellular sig-
naling pathways may also control the fate 
of the cell—activation of c-Jun N terminal 
kinase (JNK) or p38MAPK may lead to 
cell death while extracellular-signal regu-
lated kinase (ERK1/2) and Akt kinase are 
critical regulators of cell survival (119). In 
addition, oxidative DNA damage may lead 
to the induction of transcription factors 
such as p53, which, in turn, may mediate 
cell survival and/or death (31). Moreover, 
the cross-talk between various signaling 
pathways within cells underscores the com-
plex nature of death-inducing stimuli.

CELL DEATH REGULATION BY THE BCL2 
FAMILY OF PROTEINS

Although originally characterized as 
genes that are associated with developmen-
tal cell death, recent evidence suggests that 
the Bcl-2 family of genes may participate 
in pathologic apoptotic and necrotic cell 
death (9). Neurotoxin- or ischemia-me-
diated apoptotic death was preceded by 
increased Bax mRNA and protein, and 
decreased expression of Bcl-2 in cells that 

are destined to die (40, 41), while an in-
crease in Bcl-2 immunoreactivity was ob-
served in neurons, glia and endothelial cells 
that survived focal ischemic injury (14). 
Similarly, increased expression of Bcl-2 
has been observed in neurons that survive 
the traumatic insult both in the rat and in 
brain-injured humans (17, 18), while Bax 
was observed to translocate to the nucleus 
of apoptotic cells following experimental 
brain injury (52). Alternatively, recent 
studies have suggested that decreases in 
intracellular Bcl-2 immunoreactivity, with 
little to no change in Bax proteins, in in-
jured brain regions may precede cell death 
following experimental brain trauma (88, 
90). Transgenic mice overexpressing the 
human Bcl-2 protein exhibited significant-
ly less neuronal loss in the injured cortex 
and hippocampus following experimental 
TBI, lending support to the idea that Bcl-2 
may participate in the neuronal cell death 
following TBI (71, 89). A pro-apoptotic 
member of the Bcl-2 family, Bid, has also 
been implicated in trauma-induced cell 
death in vivo—proteolysis of Bid preceding 
its translocation to the mitochondria has 
been demonstrated in the injured cortex 
(34). Bcl-2 family members may likely 
control cell death by regulating the release 
of cytochrome c from mitochondria (124), 
which has been observed in both neuronal 
cell bodies and axons following experimen-
tal brain trauma (11, 108). Once in the 
cytosol, cytochrome c aids in activation of 
the apoptosis-promoting cysteine family of 
proteases, caspases. 

CELL DEATH AND CASPASE ACTIVATION
Activation of caspases has been associ-

ated with neuronal and oligodendroglial 
cell death resulting from multiple kinds of 
stimuli such as growth factor deprivation, 
hypoxia, free radical generation, ionizing 
radiation, and ischemia (43, 72, 74, 83). 
Currently, 14 members of the mamma-
lian caspase family have been identified, 
separated into 2 categories: the “activator” 
caspases such as caspase-8 and -9, and the 
“executioner” caspases, such as caspase-2, -
3, -6 and -7 (111). Activation of caspase-9, 
which has been demonstrated in vivo fol-
lowing experimental cerebral ischemia (55) 
and traumatic spinal cord injury (105), has 
been suggested to occur prior to and medi-
ate the activation of caspase-3 (111). Ac-
tivation of caspase-3 has been reported in 
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injured cerebral cortex in the hours to days 
following experimental (7, 19, 53, 84, 108, 
121) and human (18) brain injury. Recent 
evidence has implicated both caspases-8 
and -9 as putative initiator caspases for 
trauma-induced caspase-3 activation, albeit 
in a regionally distinct manner (6, 53, 122). 
Activation of caspases-8 and -9 appear to 
precede caspase-3 activation in the injured 
cortex (6, 53, 122), while caspase-3 activa-
tion in the hippocampus and thalamus 
appears to be preceded predominantly by 
activation of caspase-9 (53).

at caspase-mediated cell death may 
participate in the pathobiology of CNS 
injury was further substantiated in stud-
ies employing both caspase inhibitors and 
transgenic mice overexpressing mutant cas-
pases demonstrating that reduced caspase 
activity led to neuroprotection in models 
of stroke (29, 35). Similarly, Yakovlev and 
coworkers demonstrated that post-trau-
matic apoptotic cell death and neurological 
deficits were reduced by administration of 
the caspase inhibitor, z-DEVD-fmk, fol-
lowing lateral fluid-percussion brain injury 
in the rat (121). More recently, Clark and 
coworkers reported that while post-trau-
matic administration of z-DEVD-fmk at-
tenuated neuronal apoptosis and reduced 
the extent of cortical injury following 
experimental brain trauma, brain-injured, 
z-DEVD-fmk-treated rats were as impaired 
in motor function as their vehicle-treated 
counterparts (19).

e current hypothesis regarding the 
mechanism of caspase-mediated cell death 
proposes that caspases cleave multiple 
proteins, the sum of which leads to cell 
death (111). For instance, caspases may 
cleave anti-apoptotic regulators such as the 
inhibitor of the nuclease responsible for 
DNA fragmentation, as well as cytoskeletal 
proteins (eg, spectrin and actin) resulting 
in the disassembly of the dying cell (58, 
59). e characteristic internucleosomal 
DNA fragmentation that is observed in 
apoptotic human cells has been suggested 
to be mediated via a specific endonuclease, 
the 40-kDa DNA fragmentation factor 
(DFF40) (61). DFF40 is present in the cy-
tosol as a heterodimer with a 45-kDa sub-
unit, DFF45, and upon cleavage of DFF45 
by activated caspase-3, translocates to the 
nucleus as the active nuclease (61). Cleav-
age of rat DFF45 homolog and subsequent 
translocation of DFF40-like protein to the 

nucleus has been demonstrated in the cor-
tex and hippocampus of rats following TBI 
(127). Moreover, the post-traumatic cleav-
age of the DFF45-like protein was attenu-
ated in brain-injured animals treated with 
the caspase-3 inhibitor, z-DEVD-fmk (19). 
Caspase-3-mediated cleavage of the cyto-
skeletal protein, actin, has been observed 
in the injured cortex in the acute post-trau-
matic period, and in the injured thalamus 
at 3 weeks post-injury (4). More recently, 
active caspase-3 has also been implicated in 
the pathogenesis of traumatic axonal injury 
with the observation of the specific forma-
tion of caspase-3-cleaved amyloid β-pep-
tide fragment in injured axons (107).

CELL DEATH REGULATION BY MAP 
KINASES

Both JNK and ERK1/2 are known regu-
lators of cell survival/death in a number of 
neural and non-neural systems in vitro. 
Phosphorylation (activation) of JNK sig-
naling has been associated with neuronal 
cell death and activation of ERK1/2 kinase 
linked to cell survival (119). In vivo, sys-
temic administration of kainic acid leads to 
an acute and sustained decrease in phospho-
ERK1/2 levels, and a concomitant increase 
in phospho-JNK in apoptotic neurons 
within the cortex and hippocampus (66). 
Delayed neuronal death following global 
cerebral ischemia is preceded by a sustained 
increase in activated JNK (82), while in-
creased ERK1/2 signaling is associated with 
neuroprotection in a model of ischemic 
preconditioning (99). Activated JNK was 
evident in both apoptotic neurons as well 
as in apoptotic oligodendrocytes following 
compressive spinal cord injury (70). Inhibi-
tion of JNK directly or blocking upstream 
activators of JNK has been reported to at-
tenuate apoptotic cell death in vitro (119) 
and in vivo (96). Recently, gene-targeted 
disruption of the brain isoform of JNK, 
JNK3, resulted in mice that were resistant 
to kainic acid-mediated hippocampal cell 
death and exhibited reduced seizure activ-
ity and mortality (123).

Recent studies in models of CNS in-
jury in vivo appear to suggest an alternate 
mechanism. Both ischemic (2) and trau-
matic (24, 68, 81) brain injuries appear to 
activate ERK1/2 in injured brain regions. 
Phospho-ERK1/2 appears to colocalize 
with both neuronal (24, 68) and astrocytic 
(81) markers in the injured cortex and hip-

pocampus. In contrast, JNK activation was 
not observed in the injured cortex (68), 
and only transiently in both vulnerable and 
invulnerable cells in the hippocampus (81), 
suggestive of a lack of correlation between 
trauma-induced cell death and JNK activa-
tion. Whether ERK activation in injured 
neurons is associated with cell death or 
is an attempt by injured cells to maintain 
normal function is yet to be determined. 
Pre-injury treatment of animals with a 
specific inhibitor of ERK phosphorylation, 
PD98059, has been observed to decrease 
ERK activation and the extent of cell death 
after injury (68), but appears to exacerbate 
cognitive and motor deficits in brain-in-
jured animals (24). 

DNA DAMAGE AND POSTTRAUMATIC 
CELL DEATH

Although controlled DNA fragmenta-
tion (ie, breakage of both DNA strands) is 
one biochemical hallmark associated with 
apoptosis (as shown above), it has also been 
reported that single and/or double DNA 
strand breaks may trigger apoptotic cell 
death (98, 114). While activation of en-
donucleases can result in double-stranded 
breaks in DNA, single stranded breaks typi-
cally occur due to oxidative damage (98). 
Damage to the DNA activates intracellular 
pathways that lead to either growth arrest 
and apoptosis or repair and elimination of 
damaged DNA(31), a choice that is made 
based on the cell type, extent of damage 
and/or environment. One major compo-
nent of the DNA damage response is the 
induction and upregulation of the tumor 
suppresser gene, p53, also termed the 
“guardian of the genome” (31). Induction 
of p53 mRNA has been associated with 
neuronal damage following excitotoxic and 
ischemic brain injuries (16, 48, 95). Fol-
lowing experimental brain injury, increased 
mRNA and protein for p53 were observed 
in regions that exhibit neuronal apoptosis 
and in neurons that were TUNEL(+) (52, 
73). Interestingly, despite reports that 
p53-deficient mice are resistant to both 
excitotoxic and ischemic injuries (69), p53-
deficient mice exhibited as much cortical 
and hippocampal damage as their wild-type 
counterparts following traumatic brain in-
jury (unpublished observations). Because 
wild-type p53 is a transcription factor for 
genes such as wild-type p53 activated frag-
ment (WAF1/p21)(3), the pro-apoptotic 
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factor, Bax (67), and the growth arrest and 
DNA damage-inducible gene, GADD45 
(126), the consequences of p53 induction 
are many. While WAF1 and GADD45 can 
cause cell cycle arrest and facilitate DNA 
repair and eventual cell survival, Bax can 
induce cell death.

Oxidatively damaged DNA may be re-
paired by the base-excision repair (BER) 
pathway and recent reports suggest that 
the DNA damage that occurs following 
ischemic brain injury may be subjected to 
BER (98). Indirect evidence for the activa-
tion of BER following ischemia and trauma 
arises from the observations of increased 
activity of poly (ADP-ribose) polymerase 
(PARP)(30, 56). Because PARP uses 
nicotinamide adenine dinucleotide as its 
substrate, thereby depleting cellular stores 
of energy, some studies have suggested that 
PARP activation following CNS injury 
may be detrimental, and post-injury inhi-
bition of PARP activity appeared to prevent 
cell death (27, 57, 117). Furthermore, a 
decrease in nuclear levels of the endonucle-
ase associated with BER following global 
cerebral ischemia suggests that neuronal 
apoptosis occurs as a result of a failure of 
DNA repair processes (51).

CELL DEATH MECHANISMS: A 
CONTINUUM BETWEEN APOPTOSIS AND 
NECROSIS? 

Until recently, it was widely believed that 
the morphology (mitochondrial swelling, 
nuclear pyknosis, disruption of the plasma 
membrane) of dying cells indicated that 
cell death following acute neurologic in-
sults such as hypoxia-ischemia, seizures or 
trauma was predominantly via necrosis. Al-
though a number of studies have implicated 
a role for the apoptosis in the mature CNS 
following ischemic or traumatic injury, 
these types of injuries to the adult CNS may 
not necessarily result in classical apoptosis, 
such as that described during development 
of the nervous system (93). Instead, the ap-
pearance of morphologic features of both 
necrosis and apoptosis in the same neural 
cell, and the presence of only some of the 
characteristics of developmental apoptosis, 
has led to the possibility that a continuum 
between apoptosis and necrosis exists (77, 
85). It is equally likely that the nature 
and/or intensity of the insult may regulate 
whether a complex cell such as a neuron 
undergoes apoptosis or necrosis. Although 

moderate-severe ischemia induces primarily 
necrotic cell death in the cortex (13), neu-
ronal apoptosis is the predominant pattern 
of cell death following mild focal ischemia 
(26). Experimental TBI of moderate sever-
ity results in both necrosis and apoptosis, 
with necrosis contributing to a greater ex-
tent than apoptosis to the number of all 
dying cells (22, 76). In contrast, apoptotic 
cells appear to contribute to a similar ex-
tent as necrosis within the injured cortex 
and subcortical white matter following 
mild lateral fluid-percussion brain injury in 
rats (88). Alternatively, it has been reported 
that activation of N-methyl-D-aspartate 
subtype of the glutamate receptor may lead 
to necrosis, while non-NMDA receptor 
activation may underlie apoptotic neuronal 
death (85). e presence of a continuum 
would suggest that intracellular pathways 
that lead to apoptosis and necrosis may also 
not be mutually exclusive. For example, al-
though calpains may mediate necrosis and 
caspase-3 is only activated in apoptotic cells 
(116), calpain activation may also lead to 
apoptosis (106).

Based on the dependence of apoptosis on 
energy in the form of ATP, some research-
ers have suggested that intracellular ATP 
concentrations may regulate whether a cell 
undergoes necrosis or apoptosis (42, 112). 
us, as long as ATP is present within the 
injured cell, apoptotic pathways may be 
initiated, and once ATP is depleted (as a 
result of damage to the mitochondria), 
the injured cell may shift towards necro-
sis. is hypothesis may, in part, explain 
why neurons dying as a result of a patho-
logic stimulus may exhibit features of both 
apoptosis and necrosis, ie, the apoptotic 
features may represent the temporal extent 
to which apoptotic pathways were active. 
Mitochondrial dysfunction associated with 
decreases in ATP has been documented fol-
lowing experimental TBI (109, 115, 120), 
although more recent data from the lateral 
fluid-percussion brain injury model suggest 
that TBI-induced decreases in ATP levels 
may not be sufficient to inhibit apoptosis 
(60). It has also been reported that reversal 
of trauma-induced mitochondrial damage 
by cyclosporin A treatment inhibits trau-
matic cortical cell loss (97), and axonal 
injury (10, 79).

BENEFITS OF APOPTOTIC CELL DEATH IN 
THE TRAUMATICALLYINJURED BRAIN

In the developing brain of both verte-
brates and invertebrates, apoptotic neuro-
nal death is a means by which the neurons 
that have not formed meaningful synaptic 
connections are removed. In addition, the 
occurrence of apoptosis during develop-
ment also serves to promote signal plastic-
ity (80). One of the hallmarks of apoptotic 
cell death is that there is minimal activation 
of the immune system as a result of cell 
loss, and thus, surrounding cells can remain 
relatively unaffected. us, it remains con-
ceivable that neuronal apoptosis following 
an ischemic or traumatic insult may rep-
resent a protective response by the brain, 
ie, a mechanism by which the brain is able 
to remove injured/damaged cells and only 
minimally affect the remaining brain tissue. 
In this regard, induction of apoptosis using 
staurosporine resulted in a larger cortical 
lesion in rats subjected to focal cerebral 
ischemia (15). Clark and coworkers (19) 
demonstrated that although caspase-3 in-
hibition reduced the number of apoptotic 
neurons in the cortex following experimen-
tal TBI, caspase inhibitor-treated animals 
were as impaired in motor function as their 
vehicle-treated counterparts. Similarly, the 
cortical and hippocampal damage follow-
ing TBI in transgenic mice overexpressing 
the anti-apoptotic protein, Bcl-2 was sig-
nificantly reduced compared to that in the 
wild-type mice, but motor and cognitive 
deficits in brain-injured Bcl-2 transgenic 
mice were not alleviated (71, 89).

Outside the mature CNS, apoptosis is a 
typical mechanism by which cells within 
the immune and circulatory systems are 
removed, to be replaced by newly-born, 
healthy cells. In addition, lymphocytes in 
autoimmune spinal disease and activated 
microglia in injured peripheral nerves are 
eliminated over time via apoptosis (37, 
113). Inflammation is a significant com-
ponent of the early pathologic response 
after TBI, characterized by the infiltration 
of macrophages and neutrophils and the 
activation of resident CNS microglia (46, 
47, 104). e numbers of these inflamma-
tory cells peak within 2 to 3 days following 
TBI, and over the following days or weeks 
return to control (baseline) levels. However, 
it is unclear whether some of the apoptotic 
cells in the traumatically-injured rat brain 
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may represent dead or dying macrophages 
and/or microglia.

 
CONCLUSIONS

Taken together, the concepts outlined in 
this review highlight the heterogeneity of 
the pathologic and molecular responses to 
TBI. While great strides are being taken in 
the understanding of the regional and tem-
poral patterns of the cellular and molecular 
responses in the traumatically injured brain, 
the ever-increasing amount of information 
underscores the complexity of the disease. 
ough the quest to identify potential tar-
gets to inhibit neuronal cell death and to 
develop strategies for the treatment of the 
clinical condition must continue, this path 
must be tempered with a rational approach 
to treatment design.
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