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INTRODUCTION
Angiogenesis is recognized as a key event 

in the natural progression of gliomas (15, 
40, 197). Of all solid tumors, those of the 
brain show the highest degree of vascular 
proliferation (28). Newly formed brain tu-
mor blood vessels possess a defective blood-
brain barrier that contributes to the patho-
genesis of tumor-associated edema (47, 
182, 203, 207). They are associated with 
increased risk of intratumoral hemorrhage 
(41, 105) and are responsible for contrast 
enhancement (39, 45, 53, 179, 203). Un-
like tumors in other locations, intracranial 
tumors rarely metastasize to distant organs 
and their malignant behavior and prognosis 
are determined by their histological grade. 
The WHO classification distinguishes low 
grade from high grade diffuse astrocyto-
mas by the presence of microvascular pro-
liferation as a diagnostic criterion and an 
independent prognostic parameter (1, 32, 
45, 94, 169). Neovascularization in brain 
tumors correlates directly with their bio-
logical aggressiveness, degree of malignancy 
and clinical recurrence and inversely with 
the post-operative survival of patients with 

gliomas (32, 45, 94). Diffuse astrocytomas 
tend to progress from grade II to grade III 
tumors with a time interval of several years, 
whereas, progression of grade III to grade 
IV is more rapid, typically 2 years. The time 
intervals for tumor progression are variable 
and the pathologic mechanisms driving 
the change in biologic behavior between 
different grades remain unclear. GBMs 
that arise from a low-grade glioma lesion 
are called “secondary glioblastoma” (94). 
However, in most cases, GBMs appear “de 
novo” and are thus termed “primary glio-
blastoma” (95). Regardless of their mode of 
progression, primary and secondary GBMs 
are morphologically indistinguishable and 
show their histologic hallmarks, ie, “glo-
meruloid” microvascular tufts and necrosis 
(Figure 1A, B). 

The characteristic vascular morphology 
in the GBMs has led to the hypothesis that 
the formation of new blood vessels or an-
giogenesis is crucial to their growth. GBMs 
were first recognized to be angiogenic, 
eg, capable of inducing vascular sprout-
ing, when implanted in the rabbit cornea, 
a well-characterized angiogenesis assay 

(27). In addition, glioma cells were found 
to have angiogenic activities, eg, capillary 
morphogenesis and endothelial mitogenic 
activities in vitro (2, 170). Subsequently, 
vascular endothelial growth factor (VEGF), 
characterized as an endothelial-cell mi-
togen (60) and a permeability factor (52, 
148), was found to be present in pseudo-
palisading tumor cells adjacent to necrotic 
zones and hyperplastic vessels, implicating 
its role in glioma angiogenesis (140, 163). 
The discovery of hypoxia inducible factor-
1 (HIF-1) (161) and the observation that 
hypoxia-induced HIF-1α expression in 
pseudopalisading cells (Figure 1C) (209) 
was concomitant with the expression of 
one of its target genes, VEGF (140, 163), 
established a biological link between hy-
poxia and angiogenesis (161). Since then, 
the field of angiogenesis research in gliomas 
has evolved rapidly (15, 22, 46, 121). 

The formation of new blood vessels oc-
curs physiologically during embryogenesis 
(34, 194). In adult life it is observed in 
the female reproductive system and during 
wound healing (175) and in a wide range 
of pathologic settings, such as ischemic 
diseases, chronic inflammatory reactions, 
and neoplasia (35, 65). During embry-
onic development, blood vessels are newly 
formed from endothelial precursors and 
hematopoietic stem cells, a process known 
as vasculogenesis (194). In contrast, angio-
genesis, the sprouting of new blood vessels 
from pre-existing ones (65, 74, 194) results 
from an altered balance of proangiogenic 
factors (Table 1) and antiangiogenic factors 
(Table 2). The role of endothelial cell pro-
genitors in angiogenesis is unclear and will 
be discussed below. 

For the most part, cells need access to 
the vascular system to provide a source of 
nutrients and oxygen as well as to elimi-
nate metabolic waste products. To a limited 
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extent, this can be accomplished by diffu-
sion if the cells are situated within ~100 
µm of the nearest blood vessel (64, 147). 
In several experimental tumor systems, the 
balance between proliferation and apop-
totic rates is characteristic of the dormant 
state (64, 74). It is now well accepted that 
a change in this balance is associated with 
malignant transformation and that the re-
cruitment of a new blood supply is critical 
for tumor growth (74). Angiogenesis results 
in exponential growth of the tumor beyond 
the limit of a few millimeters seen in the 
absence of angiogenesis (64). The sequence 
of events leading to the formation of new 
blood vessels is well characterized and in-
volves an initial VEGF-mediated increase 
of vascular permeability leading to extrava-
sation of plasma proteins associated with 
dilatation of native vessels and reduction in 
their pericyte coverage. Subsequently, en-
dothelial cells migrate and proliferate. For 
this cascade to occur, deposition of a pro-
angiogenic matrix for the newly sprouting 
vessel is essential. This involves breakdown 
of the vascular basement membrane and 
extracellular matrix (ECM) through the 
action of cathepsin B, matrix metallopro-
teases (MMPs) and other enzymes as well 
as the expression of matrix proteins such as 

fibronectin, laminin, tenascin-C and vitro-
nectin (68, 106, 122, 200, 201). Several of 
these ECM molecules enhance phosphory-
lation of focal adhesion kinase, a critical 
step in glioma angiogenesis (75, 202, 208). 
Finally, the angiogenic process culminates 
in the assembly of endothelial cells to form 
a vascular lumen followed by the elabora-
tion of a new basement membrane and the 
recruitment of pericytes (52, 65, 74). The 
important roles that ECM and proteases 
play in mediating angiogenesis in gliomas is 
reviewed in the accompanying articles (see 
Wang et al and Lakka et al; this issue). 

As described above, early models of tu-
mor growth presumed that tumors showed 
angiogenic activity only when they had 
grown to a size beyond that which the tu-
mor cells could no longer be nourished by 
mere diffusion (64). However, recent in 
vivo experiments performed with experi-
mental gliomas provided evidence contrary 
to this notion (80, 198). In contrast to the 
accepted dogma that tumor development 
occurs in 2 phases (avascular and vascular), 
we observed that tumor growth in the brain 
follows 2 vascular phases. In the first vas-
cular phase, the vessels are native cerebral 
vessels, which are coopted by tumor cells, 
while in the second phase, there is true neo-

vascularization arising from existing vessels. 
During the transition period between these 
two phases, hypoxia driven HIF-1 expres-
sion occurs which results in VEGF secretion 
and the induction of neovascularization. As 
illustrated in Figure 2, glioma cells first ac-
cumulate around existing vasculature (Stage 
I). This is associated with a mechanical dis-
ruption of the normal contact between en-
dothelial cells and the basement membrane 
by the insinuating glioma cells lifting off 
the astrocytic foot processes (198). In re-
sponse, the endothelial cells of the coopted 
blood vessels express angiopoietin-2 (Ang-
2) (80, 198, 204). This leads to the desta-
bilization of the blood vessel wall associated 
with decreased pericyte coverage (80, 198, 
204). In Stage II, perivascular prolifera-
tion takes place. In Stage III, these blood 
vessels become apoptotic and undergo in-
volution (80, 198). This vascular collapse 
results in the loss of neighbouring tumor 
cells. In Stage IV, angiogenesis adjacent to 
the necrotic area is triggered in response to 
increased expression of HIF-1α and VEGF, 
a process that rescues the remaining tumor 
cells (80, 198). Thus, our experimental evi-
dence suggests four sequential steps in gli-
oma progression (Figure 2): i) perivascular 
organization, ii) proliferation, iii) vascular 
regression followed by necrosis, and iv) an-
giogenesis (198). 

In addition to the vascular collapse de-
scribed above, it has been suggested that 
a procoagulative state combined with the 
inherent genetic instability of the tumor 
could elicit the necrosis typically observed 
in GBMs (142). Necrosis has been consis-
tently used as a grading criterion in gliomas 
(32, 94, 127) and reported to predict poor 
patient outcome (14, 98). For example, tis-
sue factor, the catalyst of the extrinsic path-
way of hemostasis, is overexpressed under 
hypoxic conditions and could be involved 
in vascular thrombosis (26, 150). Thus, 
vascular regression and necrosis constitute 
necessary events for the subsequent de-
velopment of angiogenesis. As mentioned 
earlier, this angiogenic response results 
from an altered balance of a large number 
of proangiogenic (Table 1) and antiangio-
genic factors (Table 2). Among the proan-
giogenic factors described in gliomas, the 
best characterized and the most important 
in glioma progression include VEGF and 
the angiopoietins.

Figure 1. Imunohistochemistry for tenascin-C (TN-C), HIF-1α and carbonic anhydrase (CA9) expression in a 
GBM. A, B. TN-C immunoreactivity decorates the hyperplastic vessels seen adjacent to a necrotic zone (N); 
C, D. HIF-1α and CA9: Pseudopalisading cells around areas of necrosis (N) show intense immunoreactivity 
for HIF-1α (C) and CA9 (D); (immunoperoxidase, A ×100; B ×200; C, D ×50).
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THE VEGF FAMILY
The VEGF family includes 6 secreted 

glycoproteins referred to as VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, VEGF-E, 
and placental growth factor (PLGF) (11, 
12, 60, 78). VEGF-A, the prototype of 
the VEGF family, is simply referred to as 
VEGF in this review. VEGF mRNA un-
dergoes alternative splicing to yield several 
mature isoforms, with VEGF165 being the 
predominant isoform expressed in a variety 
of human solid tumors (60, 78). VEGF is 
required for normal development of blood 
vessels, and loss of a single allele during 
embryonic development is lethal (34). In 
postnatal life, VEGF expression levels are 
minimal, except at sites of physiologically 
active angiogenesis, such as the uterus or 
during wound healing (175). In tumors, 
overexpression of VEGF leads to increased 
vascularity and vascular permeability. In 
fact, VEGF was first described as “vascular 
permeability factor,” since it was observed 

to render both existing and newly formed 
tumor blood vessels leaky (52, 148).

The migration and proliferation of endo-
thelial cells occur along the proangiogenic 
ECM (201, 208) following chemotactic 
signals mediated by growth factors, such 
as VEGF (212). Using a murine glioma 
model, overexpression of VEGF was shown 
to produce formation of hyperplastic mi-
crovascular proliferations known as “glo-
meruloid bodies” which share structural 
similarities with the glomeruloid prolifera-
tion seen in GBMs (171). The microvascu-
lar glomeruloid proliferations in GBMs are 
composed of hyperplastic endothelial cells 
surrounded by a basement membrane of ir-
regular thickness and a discontinuous layer 
of smooth-muscle actin positive pericytes 
and vascular smooth muscle cells. Astrocyt-
ic foot processes are typically absent (189). 
These microvascular proliferations regress 
upon VEGF withdrawal (171).

The VEGF isoforms exert their function 
through three cognate VEGF receptor ty-

rosine kinases: VEGFR-1/Flt-1, VEGFR-2 
Flk-1/KDR, and VEGFR-3 and 2 neuro-
pilins receptors, NRP-1 and NRP-2 (48, 
49, 61, 123, 183). NRP-1 and NRP-2 are 
VEGFR co-receptors. The VEGF receptors 
are primarily expressed on tumor endothe-
lium, but are absent in normal surrounding 
tissue (139). VEGFR signaling triggers in-
creased vascular permeability and prolifera-
tion, differentiation, survival and migration 
of endothelial cells (97, 183, 211). The ef-
fect of VEGF signaling depends on the re-
ceptor subtype (61, 77, 211). For example, 
VEGFR-2 is primarily responsible for pro-
liferation (77, 78). 

VEGF mRNA is highly expressed in 
pseudopalisading cells around necrotic 
zones (17, 140, 163). The expression of 
VEGF and VEGFR-l and VEGFR-2 corre-
lates with the grade in diffuse astrocytomas, 
is crucial for glioma growth, and displays 
a temporal and spatial correlation with the 
angiogenesis seen in human gliomas (1, 17, 
40, 100, 139, 140, 156, 165, 177, 199). 

Factors Descriptions Ligand Chromosomal 
Locations*

Cognate 
Receptors

Receptor Chromosomal 
Locations* References

Tyrosine Kinase Receptor Ligands

Angiopoietin-1, -4 Tie2 agonists 8q22, 20p13 Tie2 9q21 121

EGF Epidermal Growth Factor 4q25 EGFR/HER1 7p12.3-p12.1 51

aFGF acidic Fibroblast Growth Factor, FGF-1 5q31 FGFR-1/-2 8p11.2-p11.1, 10q26 51

bFGF basic Fibroblast Growth Factor, FGF-2 4q25-q27 FGFR-1/-2 8p11.2-p11.1, 10q26 51, 121

HGF/SF Hepatocyte Growth Factor/Scatter Factor 7q21.1 c-Met 7q31 46

PDGFAA Platelet-Derived Growth Factor, A homodimer 7p22 PDGFRα 4q12 51, 121

PDGFBB Platelet-Derived Growth Factor, B homodimer 22q12.3-q13.1 PDGFRα/β 4q12, 5q31-q32 51, 121

PLGF-2 Placental Growth Factor-2 14q24-q31 VEGFR-1, NRP-1 13q12, 10p12 6, 78

TGFα Transforming Growth Factor, Alpha 2p13 EGFR/HER1 7p12.3-p12.1 51

TGFβ Transforming Growth Factor, Beta 19q13.1 TGFBR-1/-2 9q33-q34, 3p22 51, 121

VEGF-A, -B Vascular Endothelial Growth Factor 6p12, 11q13 VEGFR-1/-2, NRP-1 13q12, 4q12, 10p12 30, 70, 78, 
121

Other Receptor Type Ligands

Adrenomedullin calcitonin-like peptide 11p15.4 CRLR/RAMP2/3 17q12-q21.1, 7p13-p12 46

Endothelin-1 survival/antiapoptotic peptide 6p24-p23 EDRNA/B 4q31.2, 13q22 54

IGF-1, -2 Insulin-like Growth Factor-1, -2 12q22-q24.1, 11p15.5 IGF1R 15q25-q26 79, 108

IGFBP-2, -3 IGF Binding Protein-2, -3 2q33-q34, 7p14-p12 69, 103

Interleukin-6 cytokine 7p21 IL6R 1q21.3 107

Interleukin-8 CXCL8 chemokine 4q12-q13 IL8RA/B 2q35, 2q35 25

Pleiotrophin angiogenic/mitogenic heparin-binding protein 7q33 RPTPzeta 7q31.3 121

SDF-1 Stromal cell-Derived Factor-1, CXCL12 10q11.1 CXCR4 2p21 144, 155

PGE2 prostaglandin E2 n.a. EPs many 31, 128, 178

Table 1. Endogenous proangiogenic factors in gliomas. Abbreviations: CRLR/RAMP2/3, calcitonin receptor-like receptor/receptor activity-modifying protein-
2/-3; CXCL, CXC chemokine ligand; CXCR, CXC chemokine receptor; EDRNA/B, endothelin receptor type A or B; EP, prostaglandin E2 receptor; HER1, human 
epidermal growth factor receptor 1; n.a., not applicable; NRP-1, neuropilin-1; RPTPzeta, receptor protein tyrosine phosphatase zeta; Tie2, Tyrosine kinase 
with Immunoglobulin and Epidermal growth factor homology domain 2. *Chromosomal locations with known gene overexpression, mutation or loss of 
heterozygosity are indicated in bold (See accompanying article by Gagner et al; this issue). Chromosomal location information was obtained from the Online 
Mendelian Inheritance in Man website.
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Similarly, PLGF and NRP-1 are upregulat-
ed in GBMs and their expression correlate 
with tumor grade  (30, 49, 130, 135). 

PLGF deficient mice showed normal 
vascular development, but impaired tumor 
vascularization (36). PLGF acts synergisti-
cally with VEGF in increasing tumor vascu-
larization (6, 11, 12, 36, 110) and recruits 
hematopoietic stem cells to the tumor vas-
culature (76). However, such contribution 
of endothelial progenitor cells and hemato-
poietic stem cells to tumor vasculature has 
not been entirely elucidated. Specifically, 
the capacity to recruit these precursors to 
the vascular bed may depend on the tumor 
type and production by the tumor of mo-
bilization signals for endothelial precursor 
cells (71, 86, 111, 112, 114). 

Regulation of VEGF expression. The 
transcriptional activation of VEGF is en-
hanced largely through the transcription 
factor HIF-1 (161). Other transcription 
factors capable of inducing VEGF tran-

scription, include ETS-1 proto-oncogene 
and STAT-3 (107, 181). Through binding 
to specific ETS response element DNA se-
quences, ETS proteins activate genes such 
as VEGFR-1 and VEGFR-2, integrin β3, 
some MMPs and urokinase plasminogen 
activator (uPA) (151). VEGF itself, induces 
ETS-1 in adjacent endothelial cells, there-
fore enhancing VEGFR signaling (181). 
Accordingly, ETS-1 expression is increased 
in GBMs compared to low grade astrocyto-
mas. Its distribution correlates with vascu-
lar proliferation, with the most prominent 
expression observed in the glomeruloid 
tufts of GBMs (181). Inactivation of ETS-
1 reduced rat C6 glioma cell proliferation 
(151). In addition to transcription factors, 
cytokines and growth factors, including 
TGF-β, EGF, PDGF-B, basic FGF, up-
regulate VEGF (43, 62, 73, 107, 138, 176, 
185). Genetic alterations seen in gliomas, 
such as EGFR activation and PTEN muta-
tion (13, 50, 102, 109, 133, 134, 141, 167, 
187), lead to enhanced VEGF expression 

thereby promoting angiogenic activity as 
described in more detail below. 

THE ANGIOPOIETIN FAMILY 
The angiopoietins are important endo-

thelial growth factors which signal via the 
Tie2 receptor tyrosine kinase expressed on 
endothelial cells. In particular, Ang-1 and 
-2, have been implicated in glioma an-
giogenesis (80, 168, 196, 198, 202, 204). 
Ang-1 mediated activation of Tie2 is re-
quired for stabilization, remodelling and 
maturation of blood vessels (115). Over-
expression of Ang-1 in a rat glioma model 
promotes angiogenesis and tumor growth 
and is associated with an increased number 
of highly branched vessels covered by peri-
cytes (113). While VEGF and Ang-1 may 
act in concert (proliferation and matura-
tion), Ang-2 has been implicated in further 
remodeling of the initial microvasculature 
(80, 168, 198, 204). Increased expression 
of Ang-2 on GBM microvasculature ap-
pears early during glioma angiogenesis 
(168, 198, 204). However, binding of Ang-

Factors Descriptions
Chromosomal 

Location† of Parent 
Molecules

Cognate Receptors or Target 
Mechanisms

Protein or Recep-
tor Chromosomal 

Locations†
References

Matrix and Plasma-Derived Proteins

Angiostatin internal fragment of plasminogen 6q26 αvβ3 integrin, others many 132, 143

Endostatin C-terminal fragment of collagen type XVIII 21q22.3 α5β1 integrin, HSPG, others many 132, 143

PEX C-terminal fragment of MMP-2 16q13 αvβ3 integrin, MMP-2 many 132, 143

TFPI-2 Tissue Factor Pathway Inhibitor-2 7q22 TF - FVIIa - FXa many 193

TIMP-1 Tissue Inhibitor of Metalloprotease-1 Xp11.3-p11.2 MMPs, VEGF, others many 132, 143

TIMP-3, -4 Tissue Inhibitor of Metalloprotease-3, -4 22q12.1-q13.2, 3p25 MMPs, VEGF, others many 126, 132, 143

TSP-1, -2, -3 Thrombospondin-1, -2, -3 15q15, 6q27, 1q21 CD36, MMPs, others 7q11.2, many 132, 143

Factors and Receptors

Angiopoietin-2* antagonist to angiopoietin-1 8p23 Tie2 9q21 121

BAI-1, -2, -3 Brain-specific Angiogenesis Inhibitor-1, -2, -3 8q24, 1p35, 6q12 n.d. n.d. 92

Vasculostatin proteolytic extracellular domain of BAI-1 8q24 n.d. n.d. 89

ING4 Inhibitor of Growth 4 12p13.3 n.d. n.d. 66

Interferon-α, -β cytokine 9p22, 9p21 IFNAR-1 21q22.1 132

Interleukin-4 cytokine 5q31.1 IL4RA 16p12.1-p11.2 132, 152

PEDF Pigment Endothelial-Derived Factor, SERPINF1 17p13.3 TSP-1, VEGF, others many 132, 143

Platelet factor-4 CXCL4 chemokine 4q12-q13 CXCR3, HSPG, others 8p12-p11.2, many 121, 143

16KDa PRL 16 KDa fragment of prolactin 6p22.2-p21.3 16KDa PRL receptor n.d. 42, 44

PRP Proliferin-Related Peptide n.d. n.d. n.d. 16, 44

Somatostatin peptide hormone 3q28 somatostatin receptor-2, -3 17q24, 22q13.1 38, 120

VEGI Vascular Endothelial Growth Inhibitor, TNFSF15 9q33 n.d. n.d. 191

sVEGFR-1/Flt-1 soluble VEGFR-1/Flt-1 13q12 acts as decoy receptor 13q12 100, 132

Table 2. Endogenous antiangiogenic factors in gliomas. Abbreviations: CXCL, CXC chemokine ligand; CXCR3, CXC chemokine receptor 3; HSPG, heparan sulfate 
proteoglycan; IFNAR-1, interferon alpha, beta, and omega receptor 1; MMP, matrix metalloprotease; n.d., not determined; SERPINF1, serine protease inhibitor 
F1; TF - FVIIa - FXa, tissue factor-factor VIIa-factor Xa complex; Tie2, Tyrosine kinase with Immunoglobulin and Epidermal growth factor homology domain 2; 
TNFSF15, tumor necrosis factor ligand superfamily 15. *Isolated expression of Angiopoietin-2 not followed by VEGF signaling leads to endothelial cell apoptosis 
(80).
† Chromosomal locations with known gene overexpression, mutation or loss of heterozygosity are indicated in bold (See accompanying article by Gagner et 



Angiogenesis in Gliomas: Biology and Molecular Pathophysiology—Fischer et al     301

2 to the Tie2 receptor on endothelial cells 
antagonizes this receptor’s phosphoryla-
tion, thereby disrupting contacts between 
endothelial and periendothelial support 
cells and disengaging pericytes from the 
tumor vessels during initiation of vessel 
sprouting or regression (80, 115, 204).  
Examination of the expression patterns of 
angiopoietins and their receptors suggest 
a role in GBM vasculature and malignant 
transformation (168, 177, 196, 198, 204). 
For example, increased Tie2 expression has 
been observed with increasing grade of hu-
man astrocytoma (196). Ang-2 and Tie2 
expression are absent in the normal brain 
vasculature but are induced in tumor en-
dothelium of coopted tumor vessels prior 
to their regression (168, 198, 204). Of par-
ticular importance, treatment of glioma cell 
derived mouse xenografts with a dominant 
negative form of Tie2 results in a significant 
decrease in tumor growth (196). The role 
of angiopoietins in glioma angiogenesis is 
reviewed in an accompanying article (see 
Reiss et al; this issue). 

OTHER ANGIOGENIC FACTORS
A number of other factors modulate the 

neovascularization seen in GBMs (197) 
as shown in Table 1. These include fibro-
blast growth factor (FGF), platelet de-
rived growth factor (PDGF), hepatocyte 
growth factor (HGF) and tumor necrosis 
factor (TNF)-α, (29, 51, 121, 197). The 
FGF family includes several proteins that 
share structural properties. Both acidic 
FGF (FGF1) and basic FGF (FGF2) are 
upregulated in GBMs (158, 206) and are 
responsible for resistance of endothelial 
cells to apoptosis (7). The presence of basic 
FGF in cerebrospinal fluids from children 
and adults with brain tumors has been cor-
related with tumor microvessel formation 
(101). Furthermore, in vivo tumor growth 
of C6 glioma cells is inhibited when the 
cells are transfected with dominant nega-
tive FGF receptor (FGFR1 or FGFR2), an 
effect associated in part with inhibition of 
angiogenesis (10). PDGF-B and PDGFR-
β mRNA are upregulated in GBMs (162, 
164). PDGF’s effects on angiogenesis are 
mediated, at least in part, by VEGF (73, 
185). In gliomas, the expression of HGF, 
also known as Scatter Factor (HGF/SF), 
correlates with microvessel density (124, 
158). In addition, c-met, the HGF receptor 
is upregulated by hypoxia (137). The exact 

role of TNF-α in glioma’s angiogenesis re-
mains unclear. Although enhanced VEGF 
expression has been reported in TNF-α-
treated glioma cells (125), treatment of 
brain microvascular endothelial cells with 
TNF-α inhibits their proliferation (129).  
Among the other factors that have been 
linked to angiogenesis in GBMs are in-
terleukins (IL)-6 and -8, adrenomedullin, 
insulin-like growth factor binding proteins 

(IGFBPs), and stromal cell derived factor 
(SDF-1) (Table 1). Many of these factors 
are overexpressed with increasing tumor 
grade in gliomas (9, 23, 25, 55, 79, 144, 
149, 154, 155) and predict adverse clinical 
outcome (9, 149). 

Figure 2. Schematic representation of distinct stages of glioma growth. Stage I: Perivascular organization 
in which tumor cells are concentrated around some native vessels. Endothelial cells express Ang-2. Stage 
II: Proliferation phase when tumor cells actively proliferate around existing viable blood vessels. Stage 
III: Vascular involution of the host vascular cells resulting in degeneration of blood vessels. This leads to 
necrosis and hypoxia, which in turn promotes tumor-derived VEGF expression and angiogenesis. Stage 
IV: Angiogenesis occurs as blood vessels grow towards and vascularize the now necrosing tumor (N). 
The overexpression of HIF-1α and VEGF mRNA in pseudopalisading cells leads to the release of VEGF and 
induction of angiogenesis in neighboring blood vessels.
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NATURALLY-OCCURRING ANGIOGENESIS 
INHIBITORS 

A number of endogenous inhibitors of 
angiogenesis have been identified in glio-
mas as shown in Table 2. They exert their 
effects through multiple protein-protein 
or protein-proteoglycan interactions (eg, 
angiostatin, endostatin) or through specific 
receptor binding (eg, interferons). In many 
but not all studies, the expression level of 
some of these inhibitors was actually in-
creased in GBM tumor biopsies compared 
to low grade gliomas, which suggests the 
existence of a host antiangiogenic response 
that partially antagonizes the tumor-driven 
angiogenesis (143). For example, the levels 
of angiostatin, endostatin, thrombospon-
din (TSP)-1 and –2, and tissue inhibitor of 
metalloprotease (TIMP)-1 were predomi-
nantly expressed in the hyperplastic vessels 
of GBMs. On the other hand, the expres-
sion of other endogenous inhibitors corre-
lated inversely with glioma histologic grade 
in some studies (90, 143; Wang et al; this 
issue). Some examples are pigment endo-
thelial-derived factor (PEDF) and TIMP-4. 
These factors mediate some of their anti-
angiogenic effects through inhibition or 
downregulation of VEGF or other proan-

giogenic molecules (132, 143). Therefore, 
in addition to a potential host antiangio-
genic response, stimulation of angiogenesis 
as a result of reduced expression of endog-
enous inhibitors also occurs during glioma 
progression.

HYPOXIA, HIF-1 AND GLIOMA 
PROGRESSION

Eukaryotic cells require oxygen for their 
metabolism and survival. The condition of 
low oxygen or hypoxia results in growth ar-
rest or apoptosis. Cells can respond acutely 
to hypoxia, at the cellular level, by a vari-
ety of molecular mechanisms. For example, 
upregulation of glucose transporters on the 
cell membrane and switching from aerobic 
to anaerobic metabolism, ensure continued 
ATP supply. This adaptation is mediated 
by the upregulation of a wide variety of 
hypoxia-inducible genes induced by sev-
eral transcription factors including HIF-
1, NFκB, and Activator Protein-1 (AP-1) 
(96, 99, 159, 161, 195). Of these, HIF-1 
is of special interest, since it is regulated by 
a unique oxygen-sensing mechanism (160). 
HIF-1 overexpression has been consistently 
linked with malignant progression and un-

favourable outcome in various tumor types 
(173, 214). 

Hypoxia-inducible factor-1. The tran-
scription factor HIF-1 and its target genes 
play a critical role in glioma-induced angio-
genesis. The HIF-1 transcriptional complex 
is a heterodimer composed of two bHLH 
(basic helix loop helix)-PAS subunits, HIF-
1α and HIF-1β (also termed aryl hydro-
carbon nuclear translocator (ARNT) (160, 
161). To date, three HIF-α isoforms have 
been described, with the best characterized 
being HIF-1α and HIF-2α. HIF-2α was 
first designated HRF/EPAS-1/HLF (HIF-
related factor/endothelial PAS protein-1/
HIF-like factor) (57, 63, 188). In GBMs, 
HIF-1α is overexpressed in pseudopalisad-
ing cells around necrotic foci (Figure 1C; 
209), a pattern similar to that of VEGF 
mRNA. Moreover, the expression of HIF-
2α is upregulated in GBMs both at the 
mRNA and at the protein level (4, 91). 

HIF-1 regulation. Whereas the β-sub-
unit of HIF-1 is constitutively expressed, 
the α-subunit is subject to complex regula-
tory mechanisms at the transcriptional and 
posttranslational levels. The stability of the 
HIF-1α protein is tightly regulated by an 
oxygen-sensing as well as other mechanisms 
as shown in Figure 3. Under normoxic con-
ditions, HIF-1 activity is inhibited follow-
ing hydroxylation of prolyl residues by pro-
lyl hydroxylase (PHD) enzymes leading to 
rapid degradation of the HIF-1α subunit 
(160). The oxygen-, 2-oxoglutarate-, iron-, 
and ascorbate dependent prolyl hydroxylase 
PHD1-4 isozymes mediate the hydroxyl-
ation of the HIF-1α subunit at proline resi-
dues 402 and 564. This hydroxylation al-
lows for binding of the von-Hippel-Lindau 
protein (pVHL), which mediates ubiqui-
tination of HIF-1α and subsequent protea-
somal degradation (81, 84, 104, 116-118). 
The prolyl hydroxylases themselves are also 
subject to proteasomal degradation. Physio-
logically, the VHL E3 ubiquitin ligase plays 
a similar role in the regulation of both HIF-
1α and HIF-2α. Since the prolyl hydroxyl-
ation requires oxygen for catalysis, HIF-1α 
protein accumulates only under hypoxic 
conditions. Subsequently, HIF-1α translo-
cates to the nucleus where it dimerizes with 
the β-subunit and binds to the hypoxia-re-
sponsive element (HRE) of a wide array of 
hypoxia inducible target genes, activating 

Figure 3. Oxygen-dependent and -independent posttranslational regulation of HIF-1α. In tissues, O2 is a 
limiting substrate and the enzymes Factor Inhibiting HIF (FIH-1) and Prolyl Hydroxylase Domain proteins 
(PHDs) serve as oxygen sensors because of their utilization of O2. Under normoxic conditions, hydroxylation 
of HIF-1α at asparagine 803 catalyzed by FIH-1 prevents the recruitment of coactivator p300/CBP (cAMP-
response element binding protein (CREB)-Binding Protein) and inhibits the transcriptional response. 
Also, hydroxylation of HIF-1α at prolines 402 and 564 by PHD isozymes targets the HIF-1α subunit to 
the von Hippel-Lindau (pVHL) ubiquitin ligase complex that mediates its proteasomal degradation. 
However, under hypoxic conditions, these hydroxylases are inactive, resulting in accumulation of the 
constitutively expressed HIF-1α protein. This subunit is phosphorylated by Extracellular signal-Related 
protein Kinase (ERK)-1/2 and translocated to the nucleus, where it dimerizes with the HIF-1β subunit, 
recruits p300/CBP, binds to hypoxia response elements (HRE) upstream of HIF-1-regulated target genes 
and initiates their transcription. Other oxygen-independent posttranslational modifications of HIF-1α 
include acetylation of lysine 532 by ARrest Defective-1 (ARD1) acetyltransferase and acetyl-coenzyme 
A (AcCoA), which promotes HIF-1α binding to the pVHL ubiquitin ligase complex. The interdependence 
among these different modifications (eg, ARD1 and PHDs) has been simplified for illustration purposes 
and is still being investigated (24).



Angiogenesis in Gliomas: Biology and Molecular Pathophysiology—Fischer et al     303

their transcription (Figure 4). The coacti-
vator proteins p300/CBP, Ref-1, SRC-1, 
and thioredoxin activate the transcriptional 
complex (37, 56). In addition, HIF-1 is 
hydroxylated at asparagine residue 803 by 
factor inhibiting HIF-1 (FIH-1), which 
prevents the binding of the coactivator 
p300/CBP thereby interfering with HIF-
1 mediated target gene transcription. Ad-
ditional posttranslational modifications of 
HIF-1α also occur, including acetylation, 
phosphorylation, and SUMOylation (24). 
Finally, the recently characterized 35-kDa 
protein CITED2/p35srj is upregulated by 
hypoxia and by HIF-1 and competes with 
HIF-1 for the coactivator p300/CBP, thus 
representing a negative feedback mecha-
nism (18).

HIF-1 is further regulated at the tran-
scriptional level through intracellular sig-
naling pathways induced by growth factors. 
These growth factors include EGF, TGF-α, 
PDGF-A, IGF-1 and -2, insulin, angioten-
sin, and thrombin (5, 82, 146, 210), many 
of which have proangiogenic properties 
(Table 1) and also upregulate VEGF (62, 
73, 176, 185, 192). Growth factor induced 
transcription of HIF-1 is part of several 
positive feedback-loops. For example, bind-
ing of TGF-α to EGFR activates the intra-
cellular PI3K pathway and induces HIF-1α 
transcription. HIF-1 itself activates TGF-α 
transcription through binding to an HRE 
in the promoter region of the TGF-α gene 
(161). In a similar fashion, activation of 
IGFR-1 induces HIF-1, which activates the 
transcription of HRE-regulated genes en-
coding the ligand for the IGFR-1 receptor 
and for the IGFBPs (59, 161). GBMs often 
express high levels of IGFs, IGF receptors 
and IGFBPs compared with normal brain 
tissue (55, 213).

Effects of HIF-1 transcriptional activity. 
HIF-1 activity in gliomas induces a wide 
variety of genes as shown in Figure 4 (99, 
159, 161, 195). The protein products of 
these genes play crucial roles in angiogenesis 
and vascular tone, pH regulation, apopto-
sis, iron metabolism, cell proliferation and 
survival, transcriptional regulation, and ex-
tracellular matrix metabolism and invasion, 
which confers increased resistance of the 
tumor cells to the hostile tumor microen-
vironment. Hypoxia through HIF-1 is one 
of the most potent stimulators of VEGF ex-
pression in vitro and in vivo (161). HIF-1 

binds to the HRE in the VEGF promoter 
region leading to increased VEGF tran-
scription (161). To control energy metabo-
lism glucose transporters, such as GLUT-1 
and GLUT-3, and enzymes of the glycolytic 
pathways are induced to ensure an adequate 
supply of ATP for the cells under hypoxic 
conditions. Lactate, one of the endproducts 
of the glycolytic pathways, contributes to 
the typically acidic microenvironment of 
gliomas and the transcriptional activation 
of the carbonic anhydrase CA9 by HIF-1, 
which enables glioma cells to regulate their 
intracellular pH (85, 161, 190). CA9 ex-
pression is increased in pseudopalisading 
cells of GBMs showing colocalization with 
HIF-1α (Figure 1D). HIF-1 target genes 
include growth factors such as adreno-
medullin that sustains glioma growth (93). 
In addition, HIF-1-induced genes include 
uPAR and plasminogen activator inhibitor-
1 (PAI-1) (161) known to be upregulated 
in gliomas (8). These genes act in synergy 
with the MMPs to aid in the breakdown of 
the ECM, facilitating endothelial cell mi-
gration during the angiogenic process (8). 

More recently, HIF-1 activity, in relation 
to apoptosis, has been investigated (33, 83). 
Upregulation of HIF-1 has been associated 
with both proapoptotic (20, 33, 136) and 
antiapoptotic (83) effects. For example, 
HIF-1α activates the proapoptotic proteins 
BNIP3 and NIX (20, 166). Similarly, over-
expression of HIF-2α in rat gliomas en-
hances angiogenesis but reduces growth of 

these tumors, in part by increasing tumor 
cell apoptosis (4). 

GENETIC ALTERATIONS AND HYPOXIA IN 
GLIOMA PROGRESSION

During progression from low grade to 
high grade, gliomas accumulate genetic 
alterations in tumor suppressor genes and 
oncogenes (109, 184). These include loss 
of function of p53, amplification of EGFR 
and chromosome 10 alterations, including 
inactivation of PTEN through mutations 
and loss of heterozygosity (13, 50, 102, 
133, 134, 167). Also, loss of heterozygos-
ity of chromosomes 1, 10, 19, and/or 22 
would be associated with loss of gene loci 
encoding proangiogenic (Table 1) and/or 
antiangiogenic (Table 2) factors or their 
receptors in patients with gliomas harbor-
ing these chromosomal abnormalities (re-
viewed in Gagner et al; this issue). These 
genetic alterations combine with hypoxia 
to drive chromosome instability (145, 186) 
promoting continual selective growth ad-
vantage for the tumor cells (Figure 5). In 
support of this concept that the hypoxic 
microenvironment of GBMs drives ge-
nomic instability, comparative genome hy-
bridization (CGH) analysis of GBM xeno-
graft specimens showed increased number 
of genetic alterations in poorly vascularized 
and hypoxic xenografts compared with 
well-vascularized and less-hypoxic ones 
(67). Some of these genetic alterations also 
affect HIF-1 activity and thus angiogenesis. 

Figure 4. Examples of genes transcriptionally activated by HIF-1.
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Several studies looking at gene expression 
profiling of gliomas have demonstrated 
clusters of genes highly linked to the an-
giogenic phenotype, eg, VEGF, VEGFR-
1, IGFBP2, pleiotrophin, AP-1 (69, 103, 
119, 131, 153). These results support the 
crucial role of genetic changes, hypoxia and 
angiogenesis in glioma growth and progres-
sion.

Tumor suppressor genes. In addition to 
growth factors, tumor suppressor genes and 
oncogenes modulate HIF-1 activity and 
angiogenesis in gliomas. For example, wild 
type PTEN downregulates HIF-1 mediated 
gene expression (215). In addition, induced 
expression of PTEN in glioma cells has been 
shown to decrease accumulation of HIF-1α 
in vitro and induce TSP-1 expression and 
reduce angiogenesis in vivo (3, 187, 215). 
The tumor suppressor gene p53 competes 
with HIF-1 for its coactivator p300 under 
hypoxic conditions (157). Cells with mu-
tant p53 upregulate basic FGF expression 

(172) that could be suppressed when the 
mutant cells are transfected with wild-type 
p53 (180). VHL mutations are rare in glio-
mas (88). As described above, VHL protein 
is essential for proteasomal degradation 
of the HIF-1α subunit. Therefore, loss 
of function of pVHL leads to a constitu-
tive activation of HIF-1 and consequently 
to the upregulation of HIF-1 target genes 
such as VEGF, erythropoietin, CXCR4 and 
CA9 (161, 205). 

Oncogenes. Both Ras and v-src have been 
shown to modulate angiogenesis in gliomas 
(72, 174). Genetic alterations in EGFR, 
EGFRvIII and PDGFR in GBMs activate 
the Ras signaling pathways (72, 82, 133). 
Chronically active Ras and PI3K pathway 
signaling enhanced angiogenesis in GBMs 
whereas Ras inhibition in vitro, achieved 
by trans-farnesylthiosalicylic acid, down-
regulates HIF-1α and its target genes (21). 
V-src expression in gliomas has been shown 
to modulate angiogenesis (174) and v-src 
induces HIF-1 expression and its transcrip-
tional activity (87).

Thus, independently of hypoxia-induced 
HIF-1 expression, genetic alterations can 
affect HIF-1 expression at the transcrip-
tional or at the proteasomal degradation 
level leading to the upregulation of proan-
giogenic factors to promote angiogenesis 
(Table 1). This “pseudohypoxic” HIF-1 
activation, ie, the involvement of an on-
cogenic stimulus rather than a physiologic 
stimulus as a source for HIF-1α expression 
is highly relevant for GBM progression (19, 
209).

CONCLUSION
GBMs are amongst the most angiogenic 

tumors. Both proangiogenic and antiangio-
genic mechanisms control tumor neovascu-
larization. The observation that angiogenic 
inhibitors decrease tumor growth in vivo 
suggests that angiogenesis is not merely 
an epiphenomenon of malignancy. For ex-
ample, the VEGFR-1, PDGF-B, and ba-
sic FGF tyrosine kinase inhibitor SU6668 
decreased tumor growth in a rat glioma 
model, which is associated with decreased 
vascularization and peritumoral edema 
(58). Because diffusely infiltrating gliomas 
are mostly refractory to current surgical 
and adjuvant treatments, the topic of an-
giogenesis and its relation to tumor growth, 
progression, and resistance to therapy is of 

special interest. A variety of antiangiogenic 
approaches are currently undergoing pre-
clinical or clinical trials (22). In the future, 
these experimental strategies may develop 
and find wide clinical applications equiva-
lent to “traditional” radiotherapy and che-
motherapy. Progress made in imaging an-
giogenesis and hypoxia in gliomas and in 
developing antiangiogenic therapeutics are 
reviewed in an accompanying article (see 
Gagner et al; this issue).
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