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A B S T R A C T   

Unprecedented travel restrictions due to the COVID-19 pandemic caused remarkable reductions in anthropo-
genic emissions, however, the Beijing area still experienced extreme haze pollution even under the strict COVID- 
19 controls. Generalized Additive Models (GAM) were developed with respect to inter-annual variations, sea-
sonal cycles, holiday effects, diurnal profile, and the non-linear influences of meteorological factors to quanti-
tatively differentiate the lockdown effects and meteorology impacts on concentrations of nitrogen dioxide (NO2) 
and fine particulate matters (PM2.5) at 34 sites in the Beijing area. The results revealed that lockdown measures 
caused large reductions while meteorology offset a large fraction of the decrease in surface concentrations. GAM 
estimates showed that in February, the control measures led to average NO2 reductions of 19 μg/m3 and average 
PM2.5 reductions of 12 μg/m3. At the same time, meteorology was estimated to contribute about 12 μg/m3 in-
crease in NO2, thereby offsetting most of the reductions as well as an increase of 30 μg/m3 in PM2.5, thereby 
resulting in concentrations higher than the average PM2.5 concentrations during the lockdown. At the beginning 
of the lockdown period, the boundary layer height was the dominant factor contributing to a 17% increase in 
NO2 while humid condition was the dominant factor for PM2.5 concentrations leading to an increase of 65% 
relative to the baseline level. Estimated NO2 emissions declined by 42% at the start of the lockdown, after which 
the emissions gradually increased with the increase of traffic volumes. The diurnal patterns from the models 
showed that the peak of vehicular traffic occurred from about 12pm to 5pm daily during the strictest control 
periods. This study provides insights for quantifying the changes in air quality due to the lockdowns by ac-
counting for meteorological variability and providing a reference in evaluating the effectiveness of control 
measures, thereby contributing to air quality mitigation policies.   

1. Introduction 

The coronavirus 2019 (COVID-19) pandemic has been an immense 
threat to public health security, and corresponding lockdown measures 
have caused worldwide economic recessions (Wang et al., 2020c). The 
World Health Organization reported that, as of December 4, 2020, the 
cumulative number of infections and deaths of COVID-19 cases has 
exceeded 71.5 million and 1.6 million, respectively (World Health Or-
ganization, 2020). To control the spread of COVID-19 from person to 

person, the Chinese authorities implemented a city-wide lockdown of 
Wuhan on January 23, 2020, and other cities also took a series of dra-
matic actions within a few days (Tian et al., 2020; Bao et al., 2020; 
Sulaymon et al., 2021). Beijing initiated first-level emergency response 
on January 24, 2020 which lasted until April 30, 2020 (Xinhua Net, 
2020). The strict regulations at the beginning of the pandemic were 
taken to minimize human outdoor activities, e.g. public transportations 
outages, restaurants closures, and construction and non-essential fac-
tories suspensions (Bao and Zhang, 2020). 
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The COVID-19 lockdown resulted in dramatic drops in traffic and 
industrial emissions, and demonstrated significant improvements to air 
quality on local and regional scales (Fan et al., 2020; Chu et al., 2020; 
Venter et al., 2020; Diamond et al., 2020; Silver et al., 2020). According 
to TROPOMI instrument observations in Chinese cities, the nitrogen 
dioxide (NO2) vertical column densities dropped by about 40% in 
January–April 2020 compared with the same period in 2019 (Bauwens 
et al., 2020). The decreased nitrogen oxides (NOx) levels during the 
lockdown in eastern China, approximately 70–80%, can be attributed to 
the reduced transportation emissions and 20–25% can be attributed to 
the reduced industrial emissions (Huang et al., 2020). During the control 
period, there were smaller reductions in PM2.5 compared to NO2 as 
PM2.5 is primarily due to household and industrial coal-burning emis-
sions, and these activities were relatively less impacted by the lockdown 
(Diamond and Wood, 2020; Silver et al., 2020). The primary sources of 
PM2.5 reduced by 30–50% and the secondary aerosol species reduced by 
12–15% in 2020 based on a six-year chemical species analysis during 
Chinese New Year (Sun et al., 2020). 

Meteorology plays an important role in the formation, trans-
portation, and diffusion processes of air pollutants, especially during the 
winter (Wang et al., 2016; Wang et al., 2017; Griffith et al., 2020). An 
unexpected haze episode was observed with high-level PM2.5 concen-
trations during the first week of the COVID-19 lockdown in the Beijing 
area (Huang et al., 2020; Chang et al., 2020; Wang et al., 2020b; Cui 
et al., 2020). The extreme air pollution was mainly caused by unfavor-
able meteorological conditions, specifically, high relative humidity 
promoted the rapid growth of secondary aerosol particles and stagnant 
airflow contributed to the accumulation of pollutant (Sun et al., 2020; 
Chang et al., 2020; Le et al., 2020). 

Due to the unexpected haze events during the pandemic, meteoro-
logical impacts are crucial to evaluating the effects of the COVID-19 
lockdown. The widespread use of the concentration difference be-
tween the lockdown in 2020 and the same period in previous years to 
evaluate the impacts of COVID-19 control measures on air quality could 
be biased (Fan et al., 2020; Otmani et al., 2020). Multiple linear re-
gressions have been widely used to account for meteorological impacts 
and thus quantify the COVID-19 lockdown impacts more accurately 
(Venter et al., 2020; Diamond and Wood, 2020; Liu et al., 2020). 
However, regression methods often assume that there is a linear rela-
tionship between meteorology and pollutant concentration. Machine 
learning methods that normalize the influence of weather have high 
predictive performance, but are usually black box models that lack 
interpretability (Petetin et al., 2020; Grange et al., 2019). Clarifying the 
impact of human activities and meteorological factors on air quality 
during major events is crucial to the formulation of pollution control 
policies during major events and the long-term air pollution control 
policies of Beijing. Generalized Additive Models (GAM) can balance the 
fitting performance and have high interpretability, it is a useful tool to 
estimate the air quality responses to human activities and meteorology 
(Zhou et al., 2012; Ma et al., 2020). Ma et al. (2020) used GAM to es-
timate the effects of meteorology on tropospheric ozone in Lanzhou, 
China, and found that the method gave improved estimates with respect 
to the temporal variations. In contrast to parametric models, GAM does 
not need prior knowledge and can determine relationships in the mea-
surements using data-driven analysis (Zhou et al., 2012). The GAM 
method captured the variation of PM2.5 better than linear models for the 
calibration of particulate low-cost sensors by meteorology adjustment 
(Hua et al., 2021a). 

In this study, a GAM was developed to quantify the meteorology and 
lockdown effects with respect to multi-temporal patterns and nonlinear 
impacts from meteorological parameters using hourly PM2.5 and NO2 
measurements from January to June 2015 to 2020. The whole study 
period was divided into six groups: the pre-lockdown period (the days 
before January 23, 2020) and roughly every month from February to 
June in 2020. Inter-annual trends, seasonality, and holiday effects were 
considered separate from the influence of the COVID-19 lockdown. 

Boundary layer heights and wind components were used to characterize 
the vertical mixing ratio and horizontal dispersion. The spatial patterns 
of time-varying lockdown effects and diurnal profiles were analyzed 
according to various land-use types. 

2. Materials and methods 

2.1. Ground-based air quality measurements and traffic data 

The hourly PM2.5 and NO2 measurements from January to June in 
2015–2019 were obtained from the Beijing Municipal Environmental 
Monitoring Center (http://www.bjmemc.com.cn/). The network in-
cludes 34 monitoring sites (Fig. S1) in Beijing. For each site, the data 
availability was more than 90% over the entire period, which means 
there were more than 23,500 data points out of 26,112 h (Table S1). The 
34 air quality monitoring sites were classified into three groups based on 
urbanization levels (Hua et al., 2021b). The sites within the Fifth Ring 
Road were defined as downtown, and had the highest level of urbani-
zation. The sites between the Fifth Ring Road and the Sixth Ring Road 
were defined as suburban, while the remaining sites with the lowest 
level of urbanization and sparse population density were categorized as 
the rural areas. 

The weekly congestion levels at Beijing were obtained from public 
real-time traffic reports (https://www.tomtom.com/en_gb/traffic-ind 
ex/beijing-traffic/) which are calculated from hourly data. In this 
study, the congestion level differences in 2020 relative to 2019 were 
used to represent changes in traffic volumes in 2020. 

2.2. Meteorological observations 

Meteorological observations and simulations from three sources 
were used as potential inputs for the analysis, and the model selected the 
variables that gave the best fit as described in Section 2.3. The meteo-
rological data sources were the fifth-generation atmospheric reanalysis 
dataset from the European Centre for Medium-Range Weather Forecasts 
(ERA5, https://cds.climate.copernicus.eu/); the observations from Bei-
jing Capital International Airport (40.08◦N, 116.585◦E) (Figure S1) 
from the Integrated Surface Database of the National Oceanic and At-
mospheric Administration (NOAA) (ISD, https://www.ncdc.noaa. 
gov/isd/data-access); and 14 meteorological stations (Figure S1) oper-
ated by the Beijing Meteorological Bureau (BJ). The meteorological 
variables from ERA5 included boundary layer height (BLH), zonal ve-
locity (U), meridional velocity (V), relative humidity (RH), air temper-
ature at 2 m above the surface (T2M), dew point temperature at 2 m 
above the surface (D2M), and surface pressure (SP). The original grids 
with 0.25◦ resolution were linearly interpolated to 0.01*0.01◦ and a 
time series for each station can be extracted from the nearest grid. The 
hourly surface meteorological parameters obtained from ISD and BJ, 
included U, V, RH, T2M, D2M, SP and U, V, RH, T2M, SP, and precipi-
tation (P). The observation data from 14 stations of Beijing Meteoro-
logical Bureau were matched with the nearest air quality station in order 
to obtain local meteorological conditions. 

The hourly boundary layer heights were converted to rolling aver-
ages from one to 3 h to perform optimal variable selections. The hourly 
precipitation was converted to 24-hr cumulative precipitation. Hourly 
RH, T2M, D2M, and SP were calculated as 24-hr rolling averages to use 
as inputs for the models. The time of all data points was unified to China 
Standard Time (CST, UTC + 8). 

2.3. Generalized additive model (GAM) analysis 

A GAM including multi-temporal variations and meteorological pa-
rameters was used to quantify the impact from each factor on PM2.5 and 
NO2 concentrations. In this study, the temporal variables include inter- 
annual trends, seasonal cycles, day of the week patterns, different 
lockdown periods and diurnal variations (Table 1). The meteorological 
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factors included BLH, U, V, RH, T2M, D2M, SP and P (Table 1). The types 
of functions for temporal variables characterized the change of emis-
sions and the types of functions for meteorology characterized the 
relationship between meteorology and air quality. The selections of 
function type for interannual, seasonal, weekly, diurnal and meteo-
rology were referenced from some previous studies (Zhou et al., 2012; 
de Foy, 2018; de Foy and Schauer, 2019) and were also tested for the 
Beijing area in our recent study (Hua et al., 2021b). The interannual 
variable used a linear trend to characterize the decline in air pollutant 
concentrations. This was mainly influenced by the long-term control 
policies. The seasonal variation used a non-linear function which was 
mainly related to the variation of meteorology and the emissions for 
heating during the winter. The category functions for weekly and 
diurnal were mainly related to human behaviors, such as most people 
work on weekdays and have a rest on weekends and holidays, the 
diurnal variation related to traffic volumes during a day. The function 
type of lockdown variable was applied in this study which was based on 
the consideration of the sudden implementation of strict control mea-
sures at the beginning of COVID-19 pandemic and the economic re-
covery level was different at different stages. The relationship between 
air quality and predictors as preliminary definitions (Table 1) can be 
obtained from GAM analysis (Fig. S2). The models are described by Eq 
(1): 

log(Concs + offset)=αyrtyr + s1(tmonth)+
∑5

n=1
αwkdn twkdn +

∑6

k=1
αldk tldk +

∑3

i=1

×
∑24

h=1
αhri,h thri,h + s2(BLH)+ s3(U,V)+ s4(Optimized Input) +αbaseline +

∈

(1)  

Concs are the time series of PM2.5 or NO2 concentrations at s site from 
January to June during 2015–2020. In order to approximate normal 
distribution, the hourly measurements were logarithm transformed and 
added offset of 3 μg/m3 for PM2.5 and of 16 μg/m3 for NO2, respectively. 
The offset value of PM2.5 and NO2 were based on preliminary tests. α are 
the regression coefficients and αbaseline is derived from model and used to 
represent the average concentrations after accounting for the impacts 
from all the factors in the model. s() are the smooth functions used to 
characterize the non-linear impacts of seasonal variations and meteo-
rological parameters on air quality. 

t denotes temporal term, including signals for yearly, monthly, day of 
the week, the lockdown and each hour of the day. tyr is the continuous 
number of days labeled from January 1, 2015 to June 30, 2020. tmonth 
represents the month from January to June in each year. twk denotes the 

dummy variables categorized to the weekdays (n = 1), weekends (n =
2), and holidays (n values are from 3 to 5). The holidays were classified 
by three groups: n = 3 means the holidays during the heating season 
(including New Year’s Day, Chinese New Year, and Lantern Festival), n 
= 4 means Tomb Sweeping Day, and n = 5 means the holidays during 
the non-heating season (Labor Day, Dragon Boats Festival). The detailed 
information about dates of each holiday as shown in Section 1 in Sup-
plementary Materials and also provided in Table S2. 

To identify the impacts of the COVID-19 control measures on air 
quality over time, tld were separated into 6 categories: the pre-lockdown 
period, and then roughly every month from February to June during 
2020. GAM analysis for hourly PM2.5 and NO2 measurements used thri,h 

for each hour of the day for different lockdown periods to represent 
diurnal variations. h is each hour of the day. i represents separated 
diurnal factors for the pre-lockdown period (Pre-LD: the data points 
before January 23, 2020), during the lockdown period (LD: the data 
points from January 23 to March 31, 2020), and post-lockdown period 
(Post-LD: the data points from April 1 to June 30, 2020), for a total of 3 
sets of 24 factors. Overall, the whole period was grouped into 3 cate-
gories for diurnal variations and 6 categories for lockdown effects, 
detailed information about lockdown definitions as shown in Section 1 
in Supplementary Materials and also provided in Table S3. 

BLH and wind components were included in the models to charac-
terize the impacts of vertical and horizontal diffusion on air quality. BLH 
was selected as the one with the highest correlation coefficients squared 
(r2) from preceding 1-hr to 3-hr rolling means. Wind components were 
selected as the variables with the highest fitting performance from 
ERA5, ISD, and BJ data sources based on iteratively runs. Optimized input 
was selected using a stepwise forward process from meteorological 
candidates as described in (de Foy et al., 2015; de Foy et al., 2019). The 
model started with only one candidate variable and gradually added the 
one with the greatest contribution to r2 until an increase in r2 of at least 
0.005. The meteorological candidates include 24-hr cumulative of P and 
24-hr running average of RH, T2M, D2M, and SP from ERA5, ISD, and 
BJ, respectively. This was done to cancel out the diurnal variability of 
climatology such as the BLH rise, which began in the morning and 
reached a maximum in the afternoon (Chu et al., 2019; Mehta et al., 
2017), so that the diurnal profiles of GAM results would be closer to the 
emissions changes (de Foy and Schauer, 2019; Wang et al., 2020a). 
Meteorological parameters were linearly scaled to approximate a 
normal distribution of zero mean and unit standard deviation to reduce 
the effects of extreme observations, hence, their impacts on average 
baseline concentrations were close to 0. 

Except for αbaseline, a weighting factor of 1 was used as a penalty term 
forcing coefficients to get minimum values (de Foy et al., 2015b; de Foy 
et al., 2020). Iteratively Reweighted Least Squares (IRLS) method was 
used to remove the outliers: the data points with a residual greater than 
four times the standard deviation of all the residuals were excluded from 
the analysis. Block-bootstrapping with 7-day chunks was used to esti-
mate the uncertainty from GAM analysis (de Foy et al., 2020; de Foy, 
2018; de Foy et al., 2016). The models ran 100 times with randomly 
resampled same size data points from the original dataset and the 
standard deviation of regression coefficients were obtained from 100 
realizations. This method avoids the estimation bias caused by extreme 
situations, such as the occasional appearance of a haze episode. 

The results can be interpreted in three ways (de Foy and Schauer, 
2019). The time vectors (such as twd, tld, thr) with values of 1 represent 
during the time interval and values of 0 represent the other time in-
tervals, namely baseline conditions. Therefore, the first way to interpret 
the results is the Percent Relative Effect of each factor on concentrations 
(p) using Eq (2) which represent the percentage change of concentra-
tions relative to baseline. The second way is the difference in concen-
trations relative to the baseline level (ΔC) based on Eq (3), it indicates 
how much the concentrations deviated from the expected values. The 
third way is the adjusted concentrations (Cadj) with respect to 

Table 1 
The type of functions to characterize the relationships between predictors and 
pollutant concentrations, and the definition of each factor including in GAM 
analysis. Categorial functions represent the variables are dummy vectors with 
values of 1 during the time interval otherwise the values are 0. Variables in 
brackets indicate the list of meteorological candidates. More details can be seen 
in the main text.  

Predictors Functions Factors 

Interannual Linear Time series of days since January 1, 2015. 
Monthly Smooth January to June. 
Weekly Category Weekdays, Weekends, Holidays in the heating season, 

Tomb Sweeping Day, Holidays in the non-heating 
season. 

Lockdown Category Pre-lockdown, every month from February to June in 
2020. 

Diurnal Category Three factors (Pre-lockdown, lockdown, Post- 
lockdown) for each hour of the day. 

Meteorology Smooth Boundary layer height, winds, (relative humidity, dew 
point temperature, air temperature, surface pressure 
and precipitation).  
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meteorology and the temporal influences, the calculation method is Eq 
(4). 

p=(eα − 1) × 100% (2)  

ΔC=(eα − 1) × eαbaseline (3)  

Cadj = eαeαbaseline − offset (4)  

3. Results and discussions 

3.1. Characteristics of air quality measurements and meteorological 
observations 

3.1.1. Seasonal variations 
The time series of the 10 days rolling average concentrations of air 

quality measurements in each year at GC are shown in Fig. 1. The site is 
located in the western suburban area and surrounded by mixed com-
mercial and residential areas, which are strongly influenced by human 
activities. The annual time series shows high variability of concentra-
tions from year to year due to changing emissions and meteorological 
impacts. The differences in concentration between 2020 and the previ-
ous 5 years (2015–2019) is therefore not a reliable estimate of the 
lockdown effect, as shown in Figs. 2a and 2b. An average decline of 19 
μg/m3 for NO2 (Figs. 2a) and 17 μg/m3 for PM2.5 (Fig. 2b) was observed 
between the 2015–2019 average and 2020, reflecting the effects of air 
clean control policies in recent years and the influences of the COVID-19 
shut down measures in 2020 (Venter et al., 2020; de Foy et al., 2016; 
Baumgartner et al., 2019; Shang et al., 2018; Tian et al., 2019; Zhang 
et al., 2016a). It exhibited high seasonal variability with the maximum 
occurring in the winter and the minimum occurring in the summer. For 
the 2015–2019 period, the concentration almost followed a downward 
trend from January to June except for February. Average concentrations 
of NO2 and PM2.5 in February 2015–2019 were lower than the expected 
seasonal levels. This was strongly associated with favorable diffusion 
weather conditions in February, with higher wind speed (Fig. 2d) and 
lower relative humidity relative to the adjacent period (Fig. S3). 

Although, February 2020 was in the strictest control period, PM2.5 
concentration was considerably higher than the same period during the 
preceding five years with a 17 μg/m3 increase (Fig. 2b), primarily 
attributed to the extreme stagnant and humid meteorological conditions 
at the start of the COVID-19 lockdown period (Chang et al., 2020; Le 
et al., 2020), corresponding to 52% lower boundary layer height 
(Figs. 2c), 24% lower wind speed (Figs. 2d) and 29% higher relative 
humidity (Fig. S3) as compared to the average level in other periods. The 
frequent southern winds also transported air pollution from the south of 
Beijing (Fig. S3). The reductions in NO2 and PM2.5 concentrations 
caused by the lockdowns were probably offset by meteorological im-
pacts, especially for PM2.5. A clear difference for meteorology between 
April and May in 2020 was observed with favorable diffusion conditions 
in April and relatively poor diffusion conditions in May (Fig. 2c and d). 
Although the observed PM2.5 concentrations in April 2020 were lower 
than that of May, the levels in April could be primarily attributed to 

emissions changes, while the levels in May were mainly associated with 
meteorological impacts. 

3.1.2. Diurnal variations 
The diurnal variations of average NO2 (a) and PM2.5 (b) concentra-

tions using all measurements at GC by Pre-LD, LD and Post-LD are shown 
in Fig. 3. There were large differences in pollutant concentrations be-
tween different periods with the highest level in Pre-LD and the lowest 
level in Post-LD. The patterns were caused by the combination of 
weather conditions, seasonal changes, and atmospheric chemistry (Sil-
ver et al., 2020; Singh et al., 2020). 

For the diurnal variations of NO2, it presented the characteristic of 
reaching a minimum during the day and a maximum at night (Fig. 3a). 
NO2 retains high and stable levels at night due to equilibrium chemical 
reactions (Richards, 1983) and stable boundary layer heights, then as 
the sun rises, NO2 is rapidly destroyed by photochemical reactions and 
the boundary layer heights promote the dispersion of pollutants (Chu 
et al., 2019; Wang et al., 2020a). The highest level occurred at 
11pm-8am with means of 54 μg/m3 and 28 μg/m3 for Pre-LD and LD, 
respectively. The highest concentration occurred at 11pm-6am with a 
mean of 34 μg/m3 for Post-LD. NO2 concentration declined earlier 
during Post-LD, which was mainly due to the earlier sunrise time in the 
summer than the winter. The concentrations kept dropping until 2–5pm 
when they reached the lowest level with means of 29 μg/m3, 16 μg/m3 

and 12 μg/m3 for Pre-LD, LD, and Post-LD, respectively. 
Due to the diurnal variation of the heights of the boundary layer, the 

PM2.5 diurnal patterns (Fig. 3b) also presented the characteristics of an 
afternoon minimum during the day and a maximum occurring at night 
(Manning et al., 2018). The difference was that there was a small peak 
for PM2.5 during the day, while no clear peak for NO2, which probably 
related to different chemical reaction processes for PM2.5 and NO2. NO2 
is destroyed by active photochemical reactions during the day, while 
vigorous new particle formation due to increased precursor emissions 
and atmospheric oxidation during the day (Zhou et al., 2020). For 
Pre-LD and Post-LD, the daytime peak of PM2.5 occurred from about 8am 
to 2pm with means of 64 μg/m3 and 39 μg/m3, respectively. During LD, 
there was a delayed increase from 10am to 5pm with a mean concen-
tration of 60 μg/m3. 

3.2. Evaluation of the GAM analysis 

The meteorological variables input for the GAM for 34 sites are 
shown in Table S4. The 3-hr rolling average of ERA5 BLH was included 
for all sites. Sensitivity analysis was used to detect the optimal data 
source from ERA5, ISD, and BJ for hourly wind factors. The winds from 
ISD were the optimal choice for most sites, with exception that ERA5 
was used at the sites located mostly in the rural area. This was because 
the ground meteorology observation stations are usually concentrated in 
the urban area, far away from the air quality monitoring sites in the rural 
areas. An approximation to the local weather conditions for rural sites 
can be obtained from the interpolated high resolution ERA5 dataset. For 
additional optimal variables, the ERA5 D2M, BJ RH, and BJ T2M were 

Fig. 1. The time series of preceding 10 days rolling average concentration of NO2 (a) and PM2.5 (b) in each year.  
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the most frequent variables used in the NO2 models, whereas ISD D2M, 
BJ RH, BJ T2M, and BJ P were frequently included in the PM2.5 models. 

After accounting for the optimal variables’ selection and excluding 
outliers based on the Iteratively Reweighted Least Squares method for 
the model of each site, r2 was in a range of 0.51–0.71 for NO2 and a 
range of 0.57–0.63 for PM2.5 depending on the sites (Table S1). The 
square root of the variance of the residuals (RMSE) varied from 0.16 μg/ 
m3 to 0.54 μg/m3 for NO2 models and from 0.52 μg/m3 to 0.67 μg/m3 for 
PM2.5 models. The model can explain about 60% of the variance of NO2 
and PM2.5 concentrations. The limit of model performance is determined 
by the uncertainty in the meteorology dataset, for example uncertainties 
in the simulation of the boundary layer height. The r2 was somewhat 
lower and RMSE was somewhat higher for the hourly models than for 
the daily models (Hua et al., 2021b) mainly due to the high variability of 
hourly measurements and the greater difficulty in simulating the diurnal 
profiles. The lower model performance for the sites located in rural areas 
relative to the sites located in downtown and suburban can be seen in 
Table S1. This is probably mainly due to the sparse ground meteoro-
logical observation stations (Fig. S1). Although the interpolated ERA5 
was used to try to approximate the local weather conditions, model 
simulations still have higher uncertainty than ground-based observa-
tions. The residuals from model results for NO2 (Fig. S4) and PM2.5 
(Fig. S5) are normally distributed, taking GC as an example. 

To estimate the uncertainty of the lockdown scaling factors obtained 
from the GAM analysis, the standard deviations were calculated from 
100 bootstrapping realizations (Table S5). For the scaling factors of NO2, 

the average standard deviation was 8% for FEB, 6.6% for MAR, 6.2% for 
APR, 7.8% for MAY, and 7% for JUN. The standard deviations of PM2.5 
factors were around 16.5% for FEB, 14.9% for MAR, 15.2% for APR, 
18.9% for MAY, and 15.6% for JUN. The uncertainty for PM2.5 was 
somewhat larger than for NO2, mainly because PM2.5 is influenced by 
complex factors such as transport, various emission sources, and day to 
day carry over, while NO2 is mostly influenced by local emissions 
(Khuzestani et al., 2018; (Zhang et al., 2016b); Liu et al., 2019). The 
uncertainty expressed by differences in concentrations for each period as 
shown in Fig. S6 presents the probability density distribution of NO2 
concentration changes at GC. The standard deviations for difference in 
NO2 concentrations are about 8 μg/m3 for FEB and MAR, 5 μg/m3 for 
APR to JUN, and 2 μg/m3 for Pre-LD. The uncertainty in PM2.5 con-
centrations are about 13 μg/m3 for FEB, MAR, and MAY, 10 μg/m3 for 
APR and JUN, and 5 μg/m3 for Pre-LD. The relatively higher uncertainty 
for FEB to JUN than Pre-LD might be because there are fewer data 
points. 

The changes of r2 and RMSE were stable between sites and the 
changes of uncertainty were stable with the change of site and time 
suggesting that the model results were robust. The probability density 
functions of the concentration changes in Fig. S6 show that there are 
robust differences between the monthly factors. The effects estimated 
during each period were consistent across most bootstrapped simula-
tions and were not influenced by extreme conditions. 

Fig. 2. First two panels: time series of preceding 10 days rolling average observed concentrations of NO2 (a) and PM2.5 (b) and the meteorological observations for 
boundary layer height (c) and wind speed (d) grouped by 2015–2019 (green lines) and 2020 (purple lines) using all data points. Bottom: time series of preceding 10 
days rolling average with the concentration changes due to the lockdowns (red lines) and local meteorological factors (blue lines) estimated from GAM analysis for 
NO2 (e) and PM2.5 (f) at GC. The orange lines represent the relative congestion level in 2020 compared to 2019. The shaded region represents the standard deviation 
of pollutant concentrations. The black dotted lines represent the first day of COVID-19 lockdown (January 23, 2020). The gray background represents the Chinese 
New Year (CNY) and Second Wave (SW) of COVID-19 in Beijing. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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3.3. Separated meteorology and lockdown effects 

The GAM analysis provides a Percent Relative Effect (Eq. (2)) of each 
factor in the analysis, including both temporal and meteorological im-
pacts. These were averaged monthly to estimate the contributions of 
meteorology and the lockdown to the variability in NO2 and PM2.5 
(Fig. 4). The Percent Relative Effect represents the percentage changes 
of pollutant concentrations relative to the baseline in the GAM simula-
tion over the entire measurement time period. The seasonal factor in-
cludes the monthly factors, as well as the factors for temperature and 
relative humidity which covary with the seasons, because the relative 
humidity plays the most important role in air quality among the three 
factors. The seasonal factors are therefore mostly related to humid 
weather conditions. As reported in a related study (Hua et al., 2021b), 
the opposite holiday effects of NO2 and PM2.5 were also observed. The 
interannual trends suggested that long-term control policies contributed 
to reductions of 26% for NO2 and 46% for PM2.5 from 2015 to 2020 
during January to June. Frequent strong cold local horizonal winds 
during the winter contribute to disperse pollutant and the breeze hori-
zonal winds during the summer contribute to increase of concentrations. 
Favorable vertical dispersion frequently occur in the summer and un-
favorable vertical dispersion frequently occur in the winter. BLH and 
seasonal factors had the largest contributions to pollutant concentration 
increases in January and February. In particular, lower vertical mixing 
favored increased NO2 concentrations and more humid conditions 
favored reduced PM2.5. In February, the lockdown measures caused 
large reductions while meteorology offset a lot of the decrease in surface 
concentrations. BLH caused 17% increase of NO2 and humid conditions 
caused 64% increase of PM2.5 relative to the baseline level. 

The lockdown effects of NO2 showed a clear pattern with the 

strongest reduction in FEB and gradually increased emissions until JUN. 
This corresponds to NO2 reductions of 19 μg/m3 in FEB, 13 μg/m3 in 
MAR, 9 μg/m3 in APR, 8 μg/m3 in MAY and 5 μg/m3 in JUN (Fig. 2e). 
The patterns were consistent with the relative congestion level in 2020 
compared to 2019, which can be used as a reference to reflect traffic 
volumes. There are limitations to using TomTom Data to represent the 
traffic in Beijing because it is not as popular for vehicle navigation 
systems or cell phone maps as AutoNavi. For the lockdown effect of 
PM2.5, the concentration declined by 12 μg/m3 in FEB, 12 μg/m3 in 
MAR, 11 μg/m3 in MAY, 6 μg/m3 in JUN, while it rebounded in APR 
with value of 1 μg/m3 higher than normal levels (Fig. 2f). The temporal 
variation of PM2.5 was consistent with the study of the Centre for 
Research on Energy and Clean Air (2020b) which found that PM2.5 levels 
over China clearly rebounded in April and had a 15% reduction in May 
and June in 2020 compared to the previous year after normalizing for 
weather. The reason that PM2.5 rebounded in APR might be attributed to 
the recovery of industrial production which caused a large increase in 
coal consumption. The outputs of cement and metals were 4% higher in 
April 2020 compared with the previous year, whereas they were 18% 
lower in March, implying a fast recovery of high emissions industries in 
China (Centre for Research on Energy and Clean Air, 2020a). There was 
less of a decline for PM2.5 than NO2 in the start of the lockdown period 
mainly due to different emission sources, NO2 emissions are dominated 
by transportation activities while PM2.5 has a strong relationship with 
residential coal burning and industrial activities, which were less 
influenced by the lockdowns (Diamond and Wood, 2020). Especially in 
the heating season, reduced outdoor activities during the lockdown 
period probably led to an increase in indoor coal burning for heating 
activities (Hua et al., 2021b). 

Unfavorable weather had a large contribution in air pollution in FEB 

Fig. 3. Top: diurnal variations in averaged measured concentrations of NO2 (a) and PM2.5 (b) for the pre-lockdown, during lockdown and post-lockdown periods at 
GC. Bottom: changes in concentrations based on GAM analysis of NO2 (c) and PM2.5 (d) for the pre-lockdown, during lockdown and post-lockdown periods at GC. 
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and the meteorological conditions in MAY contributed to higher PM2.5 
concentrations than in APR. The contributions of meteorology to NO2 
and PM2.5 show consistent variation. The GAM analysis estimates that 
meteorology contributed to NO2 changes of about 12 μg/m3 in FEB, 3 
μg/m3 in MAR, − 3 μg/m3 in APR, − 1 μg/m3 in MAY, and − 2 μg/m3 in 
JUN (Fig. 2e). For PM2.5, meteorological factors had a pronounced in-
fluence with a contribution of about 30 μg/m3 in FEB, 7 μg/m3 in MAR, 
− 13 μg/m3 in APR, 10 μg/m3 in MAY, and 2 μg/m3 in JUN (Fig. 2f). The 
contribution of meteorology was larger than expected in January 

compared to baseline and long-term trend. 

3.4. Spatial-temporal patterns of the lockdown effects 

3.4.1. Monthly changes 
Fig. 5 presents the spatial patterns of NO2 percentage changes for 34 

sites from FEB to JUN relative to Pre-LD based on GAM analysis. The 
sites close to the industrial area went back to normal fast, for example, 
TZ, YF, YLD, and YG average NO2 concentrations increased by about 

Fig. 4. The Percent Relative Effect of holidays, lockdown, annual, BLH, local wind components and seasonal factors on NO2 (a) and PM2.5 (b) concentrations. The 
seasonal factor includes monthly variation and the combined influence of RH, T2M, D2M and SP. The holiday and lockdown effects represent the percentage changes 
of pollutant concentrations relative to the non-holidays and non-lockdowns, the effects of other factors represent the percentage changes of pollutant concentrations 
during the time interval relative to long-term trends. 
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22% in MAR than in FEB and almost returned to the expected level in 
APR (Table S6). This was attributed to the economic recovery over 
China (Xinhua News Agency, 2020). DSH, NSH, QM, XZMB and YDMN 
are sites that typically experience busy traffic. These had not yet 
returned to the expected level by JUN. This was likely due to reduction 
in the willingness of people to travel even after the COVID-19 epidemic 
was brought under control. 

The strength of NO2 reductions was strongly associated with ur-
banization. Downtown areas show the largest reduction in NO2 con-
centrations for MAR, APR, MAY, and JUN with reductions that were 
about 2%, 9%, 8%, and 8% larger than the suburban sites and about 4%, 
11%, 11%, and 7% larger than at the rural sites (Table 2). In FEB, NO2 
concentration for the downtown area was 6% higher than the suburban 
area and 4% higher than the rural area. The possible reason for this was 
that the strict COVID-19 control measures resulted in a sharp initial drop 
in the traffic volume of heavy-duty diesel vehicles, which were normally 
only allowed to pass in the outside of the Fifth Ring Road (Yang et al., 
2015; Wang et al., 2020d). Chinese New Year coincided with the lock-
downs, even though the holiday effect was separated from the lockdown 
effect in this study, millions of commuters returned to their hometown 
before Chinese New Year, and public transportation suspensions in FEB 
resulted in sharply drop in traffic volumes in the suburban area (Zhao 
et al., 2020; Chen et al., 2019). 

The spatial pattern of PM2.5 lockdown effects (Fig. 6) show that the 

largest rebound of PM2.5 concentration in APR occurred at YLD and TZ, 
the sites closest to manufacturing factories with higher concentrations 
than normal, 49% and 44%, respectively. The rebounding of PM2.5 in 
APR at the rural, suburban, and downtown areas gradually weakened, 
corresponding to 44%, 40%, and 34% increases from MAR. This 
consistent rebound over all sites suggests that PM2.5 concentrations are 
strongly related to regional emissions. For a few downtown sites (e.g. 
ATZX, DS, DSH, NZG, QM, TT, YDMN), which experienced approxi-
mately 60% reductions in FEB and MAR, the concentrations had not 
reached the normal level even after a rebound. 

The overall strength of PM2.5 changes from FEB to JUN shows that 
the largest reduction was in downtown areas and the lowest reduction 
was in suburban areas. PM2.5 was majorly influenced by industrial and 
residential emissions, which usually existed in the outside of Fifth Ring 
Road, and less influenced by control measures (Hua et al., 2021b; Zhi 
et al., 2017; Cai et al., 2018; Zhang et al., 2008). 

3.4.2. Diurnal profiles 
The diurnal profiles from the GAM analysis can separate the impacts 

from meteorology and temporal changes on concentrations of NO2 and 
PM2.5. By accounting for vertical mixing and horizontal dispersion the 
diurnal profile from the GAM analysis approximate the diurnal profile of 
estimated emissions (Fig. 3c and d). Although meteorology has different 
effects on NO2 and PM2.5, the GAM diurnal profiles show similar 

Fig. 5. Time-varying percentage changes of NO2 concentrations for 34 sites from FEB to JUN relative to Pre-LD based on scaling factors from GAM analysis. (a): The 
sites outside of Fifth Ring Road. (b): The sites within Fifth Ring Road. The subplot within the black rectangle represents mean lockdown effects of the sites within 
Fifth Ring Road. The blue bars represent mean percentage changes in NO2 concentrations. The upper and lower error bars represent the uncertainty of lockdown 
effects obtained from 100 bootstrap runs. All bars have the same scales. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 2 
Time-varying lockdown effects of NO2 and PM2.5 concentrations at the downtown, suburban and rural areas based on the scaling factors from GAM analysis. Scaling 
factors represent the percentage changes of concentrations in a certain period relative to the Pre-LD period.  

Region NO2 PM2.5 

FEB (%) MAR (%) APR (%) MAY (%) JUN (%) FEB (%) MAR (%) APR (%) MAY (%) JUN (%) 

Downtown − 39 − 29 − 23 − 15 − 11 − 47 − 51 − 16 − 30 1 
Suburban − 45 − 27 − 14 − 7 − 3 − 28 − 24 16 − 26 4 
Rural − 43 − 25 − 12 − 4 − 4 − 32 − 30 14 − 26 − 8  
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patterns. The diurnal changes of NO2 concentrations from GAM analysis 
(Eq. (3)) were grouped to Pre-LD, LD, and Post-LD. For both Pre-LD and 
Post-LD periods, NO2 concentrations at GC show a substantial increase 
from 5am to 10am, being 14 μg/m3 higher than baseline conditions and 
a sharp decline from 6pm to 8pm, with levels 11 μg/m3 lower than the 
24-hr average (Fig. 3c). These changes related to increased traffic vol-
umes during the early morning, and decreased traffic at night (Jing 
et al., 2016). During LD, the morning increase was more gradual and the 
afternoon decrease occurred sooner. A small daytime peak occurred 
from 12pm to 5pm, with an average of 11 μg/m3 NO2 concentrations 
higher than the baseline (Fig. 3c). (Huang et al., 2020) reported that the 
secondary aerosol reached the minimum level from 12pm to 5pm in the 
day-time during the lockdowns, therefore, the peak was probably 
because of the increased traffic volumes due to people going outside for 
necessities. Two small travel peaks were observed from 1 to 4pm and 
8–10pm during Pre-LD, NO2 emissions in LD and Post-LD were both 
lower than the same period in Pre-LD, this could be due to the impacts of 
the COVID-19 pandemic, resulting in reduced entertainment activities 
(China Urban Transportation Report, 2020). For diurnal variation in 
PM2.5 concentration changes, it demonstrates a similar travel peak in the 
early afternoon during LD, with a 13 μg/m3 increase relative to the 24-hr 
average (Fig. 3d). 

The spatial patterns of NO2 (Fig. S7) and PM2.5 (Fig. S8) diurnal 
variations in adjusted concentrations (Eq. (4)) for 34 sites based on GAM 
analysis were similar with emissions increased during the daytime and 
declined at night. The travel peak at about 12pm–5pm during LD was 
more pronounced in the suburban area. In downtown, the sites (e.g. DS, 
FTHY, NZG, WSXG) mainly of residential areas, and demonstrated a 
travel peak in LD, whereas the sites close to major ring roads (e.g. DSH, 
NSH, QM) had lower NO2 emissions during LD than the same period 
during Pre-LD, reflecting that people preferred to travel only short dis-
tances for necessities during the strictest lockdown period (China Urban 
Transportation Report, 2020). There were more variations for the 

diurnal changes at rural sites. BDL and DGC show different patterns as 
they are located in forested areas and are far away from built-up areas. 
Consequently, they are less influenced by human activities (Fig. S7). 

4. Conclusions 

GAM was developed based on hourly measurements of NO2 and 
PM2.5 from 34 sites in Beijing, China, from January to June in 
2015–2020 to quantitatively identify the effects of the COVID-19 lock-
down measures and meteorological impacts on air quality. The mea-
surements showed that Beijing experienced extreme haze episodes at the 
start of the lockdown along with unfavorable weather conditions. The 
COVID-19 lockdown effects and diurnal changes from the models were 
not consistent with the measured trends, suggesting that meteorology 
had a significant impact on pollutant concentrations. During the COVID- 
19 lockdown period, control measures led to 19 μg/m3 reductions in 
NO2 and 12 μg/m3 reductions in PM2.5, whereas meteorology contrib-
uted about 12 μg/m3 increase in NO2 and larger in PM2.5 with about 30 
μg/m3 increase. Among meteorological factors, BLH caused 17% in-
crease in NO2 and humid conditions caused 64% increase in PM2.5 
relative to the baseline level. The results of this study show that air 
pollution control strategies need to be implemented at different levels 
according to different weather conditions. The effects on NO2 and PM2.5 
due to the COVID-19 lockdown varied with time and depending on the 
sites, it is necessary to implement key managements for hotspot emission 
areas. 

The GAM method developed in this study can provide a more 
quantitative estimate of air quality changes caused by control measures, 
and it can be used for the evaluation of long-term control such as Action 
Plan on Prevention and Control of Air Pollution and temporary control 
measures such as APEC Blue impacts on air quality, thereby contributing 
to the formulation of Beijing’s air pollution control policies. 

Fig. 6. Time-varying percentage changes of PM2.5 concentrations for 34 sites from FEB to JUN relative to Pre-LD based on scaling factors from GAM analysis. (a): The 
sites outside of Fifth Ring Road. (b): The sites within Fifth Ring Road. The subplot within the black rectangle represents mean lockdown effects of the sites within 
Fifth Ring Road. The blue bars represent mean percentage changes in PM2.5 concentrations. The upper and lower error bars represent the uncertainty of lockdown 
effects obtained from 100 bootstrap runs. All bars have the same scales. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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Pando, C., 2020. Meteorology-normalized impact of the COVID-19 lockdown upon 
NO2 pollution in Spain. Atmos. Chem. Phys. 20, 11119–11141. https://doi.org/ 
10.5194/acp-20-11119-2020. 

Richards, L.W., 1983. Comments on the oxidation of NO2 to nitrate——day and night, 
1967 Atmos. Environ. 17, 397–402. 

Shang, J., Khuzestani, R.B., Huang, W., An, J., Schauer, J.J., Fang, D., Cai, T., Tian, J., 
Yang, S., Guo, B., Zhang, Y., 2018. Acute changes in a respiratory inflammation 
marker in guards following Beijing air pollution controls. Sci. Total Environ. 624, 
1539–1549. https://doi.org/10.1016/j.scitotenv.2017.12.109. 

J. Hua et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.jenvman.2021.112676
https://doi.org/10.1016/j.jenvman.2021.112676
https://doi.org/10.1016/j.scitotenv.2020.139052
https://doi.org/10.1016/j.scitotenv.2020.139052
https://doi.org/10.1021/acs.est.9b02061
https://doi.org/10.1029/2020gl087978
https://doi.org/10.1016/j.envpol.2018.03.036
https://doi.org/10.1016/j.envpol.2018.03.036
https://energyandcleanair.org/wp/wp-content/uploads/2020/05/China-air-pollution-rebound-final.pdf
https://energyandcleanair.org/wp/wp-content/uploads/2020/05/China-air-pollution-rebound-final.pdf
https://energyandcleanair.org/tracker/covid-19-air-pollution-rebound-tracker/
https://energyandcleanair.org/tracker/covid-19-air-pollution-rebound-tracker/
https://doi.org/10.1029/2020gl088533
https://doi.org/10.1029/2020gl088533
https://doi.org/10.1016/j.atmosenv.2019.01.029
https://doi.org/10.1016/j.atmosenv.2019.01.029
http://huiyan.baidu.com/reports/landing?id=63
http://huiyan.baidu.com/reports/landing?id=63
https://doi.org/10.1016/j.jes.2020.06.031
https://doi.org/10.1016/j.atmosres.2019.04.017
https://doi.org/10.1016/j.scitotenv.2020.140840
https://doi.org/10.1016/j.scitotenv.2020.140840
https://doi.org/10.1525/journal.elementa.384
https://doi.org/10.1525/journal.elementa.384
https://doi.org/10.1016/j.atmosenv.2017.12.028
https://doi.org/10.1016/j.atmosenv.2017.12.028
https://doi.org/10.1016/j.envpol.2020.114380
https://doi.org/10.5194/acp-15-2405-2015
https://doi.org/10.5194/acp-15-2405-2015
https://doi.org/10.1038/srep35912
https://doi.org/10.1038/srep35912
https://doi.org/10.1029/2020gl088913
https://doi.org/10.1029/2020gl088913
https://doi.org/10.3390/rs12101613
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.1016/j.scitotenv.2020.140214
https://doi.org/10.1016/j.scitotenv.2020.140214
https://doi.org/10.1080/02786826.2021.1873911
https://doi.org/10.1016/j.scitotenv.2020.141575
https://doi.org/10.1016/j.scitotenv.2020.141575
https://doi.org/10.31223/osf.io/hvuzy
https://doi.org/10.5194/acp-16-3161-2016
https://doi.org/10.1007/s11356-018-1514-4
https://doi.org/10.1126/science.abb7431
https://doi.org/10.1126/sciadv.abc2992
https://doi.org/10.1126/sciadv.abc2992
https://doi.org/10.1021/acs.est.9b02523
https://doi.org/10.1021/acs.est.9b02523
https://doi.org/10.1016/j.atmosenv.2020.117342
https://doi.org/10.1016/j.atmosenv.2020.117342
https://doi.org/10.1021/acs.estlett.8b00573
https://doi.org/10.5194/acp-17-531-2017
https://doi.org/10.5194/acp-17-531-2017
https://doi.org/10.1016/j.scitotenv.2020.139541
https://doi.org/10.1016/j.scitotenv.2020.139541
https://doi.org/10.5194/acp-20-11119-2020
https://doi.org/10.5194/acp-20-11119-2020
http://refhub.elsevier.com/S0301-4797(21)00738-6/sref36
http://refhub.elsevier.com/S0301-4797(21)00738-6/sref36
https://doi.org/10.1016/j.scitotenv.2017.12.109


Journal of Environmental Management 291 (2021) 112676

11

Silver, B., He, X., Arnold, S.R., Spracklen, D.V., 2020. The impact of COVID-19 control 
measures on air quality in China. Environ. Res. Lett. 15, 084021 https://doi.org/ 
10.1088/1748-9326/aba3a2. 

Singh, V., Singh, S., Biswal, A., Kesarkar, A.P., Mor, S., Ravindra, K., 2020. Diurnal and 
temporal changes in air pollution during COVID-19 strict lockdown over different 
regions of India. Environ. Pollut. 266, 115368. https://doi.org/10.1016/j. 
envpol.2020.115368. 

Sulaymon, I.D., Zhang, Y.X., Hopke, P.K., Zhang, Y., Hua, J., Mei, X., 2021. COVID-19 
pandemic in Wuhan: ambient air quality and the relationships between criteria air 
pollutants and meteorological variables before, during, and after lockdown. Atmos. 
Res. 250, 105362. 

Sun, Y., Lei, L., Zhou, W., Chen, C., He, Y., Sun, J., Li, Z., Xu, W., Wang, Q., Ji, D., Fu, P., 
Wang, Z., Worsnop, D.R., 2020. A chemical cocktail during the COVID-19 outbreak 
in Beijing, China: insights from six-year aerosol particle composition measurements 
during the Chinese New Year holiday. Sci. Total Environ., 140739 https://doi.org/ 
10.1016/j.scitotenv.2020.140739. 

Tian, H., Liu, Y., Li, Y., Wu, C.-H., Chen, B., Kraemer, M.U., Li, B., Cai, J., Xu, B., 
Yang, Q., 2020. An investigation of transmission control measures during the first 50 
days of the COVID-19 epidemic in China. Science 368, 638–642. 

Tian, J., Cai, T., Shang, J., Schauer, J.J., Yang, S., Zhang, L., Zhang, Y., 2019. Effects of 
the emergency control measures in Beijing on air quality improvement. Atmospheric 
Pollution Research 10, 580–586. https://doi.org/10.1016/j.apr.2018.10.005. 

Venter, Z.S., Aunan, K., Chowdhury, S., Lelieveld, J., 2020. COVID-19 lockdowns cause 
global air pollution declines. Proc. Natl. Acad. Sci. U. S. A. 117 (32), 18984–18990. 
https://doi.org/10.1073/pnas.2006853117. 

Wang, H., Li, Z., Lv, Y., Zhang, Y., Xu, H., Guo, J., Goloub, P., 2020a. Determination and 
climatology of the diurnal cycle of the atmospheric mixing layer height over Beijing 
2013–2018: lidar measurements and implications for air pollution. Atmos. Chem. 
Phys. 20, 8839–8854. https://doi.org/10.5194/acp-20-8839-2020. 

Wang, P., Chen, K., Zhu, S., Wang, P., Zhang, H., 2020b. Severe air pollution events not 
avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. 
Conserv. Recycl. 158, 104814. https://doi.org/10.1016/j.resconrec.2020.104814. 

Wang, Q., Su, M., 2020c. A preliminary assessment of the impact of COVID-19 on 
environment - a case study of China. Sci. Total Environ. 728, 138915. https://doi. 
org/10.1016/j.scitotenv.2020.138915. 

Wang, Y., de Foy, B., Schauer, J.J., Olson, M.R., Zhang, Y., Li, Z., Zhang, Y., 2017. 
Impacts of regional transport on black carbon in Huairou, Beijing, China. Environ. 
Pollut. 221, 75–84. https://doi.org/10.1016/j.envpol.2016.11.006. 

Wang, Y., Wen, Y., Wang, Y., Zhang, S., Zhang, K.M., Zheng, H., Xing, J., Wu, Y., Hao, J., 
2020d. Four-month changes in air quality during and after the COVID-19 lockdown 

in six megacities in China. Environ. Sci. Technol. Lett. 7 (11), 802–808. https://doi. 
org/10.1021/acs.estlett.0c00605. 

Wang, Y., Zhang, Y., Schauer, J.J., de Foy, B., Guo, B., Zhang, Y., 2016. Relative impact 
of emissions controls and meteorology on air pollution mitigation associated with 
the Asia-Pacific Economic Cooperation (APEC) conference in Beijing, China. Sci. 
Total Environ. 571, 1467–1476. https://doi.org/10.1016/j.scitotenv.2016.06.215. 

World Health Organization, 2020. Coronavirus (COVID-2019) Data Reports. 
https://www.who.int/data#reports. 

Yang, Z., Wang, H., Shao, Z., Muncrief, R., 2015. Review of Beijing’s comprehensive 
motor vehicle emission control programs, 102 Communications 49, 847129. 

Zhang, H., Wang, S., Hao, J., Wang, X., Wang, S., Chai, F., Li, M., 2016a. Air pollution 
and control action in Beijing. J. Clean. Prod. 112, 1519–1527. https://doi.org/ 
10.1016/j.jclepro.2015.04.092. 

Zhang, Y., Huang, W., Cai, T., Fang, D., Wang, Y., Song, J., Hu, M., Zhang, Y., 2016b. 
Concentrations and chemical compositions of fine particles (PM2.5) during haze and 
non-haze days in Beijing. Atmos. Res. 174–175, 62–69. https://doi.org/10.1016/j. 
atmosres.2016.02.003. 

Zhang, Y., Schauer, J.J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., Shao, M., 2008. 
Characteristics of particulate carbon emissions from real-world Chinese coal 
combustion. Environ. Sci. Technol. 42, 5068–5073. https://doi.org/10.1021/ 
es7022576. 

Zhao, P., Liu, D., Yu, Z., Hu, H., 2020. Long commutes and transport inequity in China’s 
growing megacity: new evidence from Beijing using mobile phone data. Travel 
Behaviour and Society 20, 248–263. https://doi.org/10.1016/j.tbs.2020.04.007. 

Zhi, G., Zhang, Y., Sun, J., Cheng, M., Dang, H., Liu, S., Yang, J., Zhang, Y., Xue, Z., Li, S., 
Meng, F., 2017. Village energy survey reveals missing rural raw coal in northern 
China: significance in science and policy. Environ. Pollut. 223, 705–712. https://doi. 
org/10.1016/j.envpol.2017.02.009. 

Zhou, Y., Brunner, D., Hueglin, C., Henne, S., Staehelin, J., 2012. Changes in OMI 
tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of 
meteorological variability. Atmos. Environ. 46, 482–495. https://doi.org/10.1016/j. 
atmosenv.2011.09.024. 

Zhou, Y., Dada, L., Liu, Y., Fu, Y., Kangasluoma, J., Chan, T., Yan, C., Chu, B., 
Daellenbach, K.R., Bianchi, F., Kokkonen, T.V., Liu, Y., Kujansuu, J., Kerminen, V.- 
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