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In aspiring to be discerning epidemiologists, we must learn to think critically about the fundamental concepts
in our field and be able to understand and apply many of the novel methods being developed today. We must also
find effective ways to teach both basic and advanced topics in epidemiology to graduate students, in a manner
that goes beyond simple provision of knowledge. Here, we argue that simulation is one critical tool that can be
used to help meet these goals, by providing examples of how simulation can be used to address 2 common
misconceptions in epidemiology. First, we show how simulation can be used to explore nondifferential exposure
misclassification. Second, we show how an instructor could use simulation to provide greater clarity on the correct
definition of the P value. Through these 2 examples, we highlight how simulation can be used to both clearly
and concretely demonstrate theoretical concepts, as well as to test and experiment with ideas, theories, and
methods in a controlled environment. Simulation is therefore useful not only in the classroom but also as a skill
for independent self-learning.

dependent misclassification; education; nondifferential misclassification; P value; simulation

Epidemiology has been rapidly advancing methodologi-
cally over the past 2 decades. As a result, faculty are increas-
ingly being called upon to teach graduate students more
complex statistical, methodological, and theoretical topics in
a short time span. The volume and complexity of these newer
topics makes it difficult to enable a deeper understanding of
basic concepts. Even in cases where deep dives are possible,
it has been our experience that students can easily absorb
a concept using traditional teaching methods but struggle
when pressed to explain them in their own words or ques-
tioned on the details. Therefore, tools that facilitate teaching
of epidemiologic methods within classroom settings, as well
as lifelong, independent self-learning, would be of great
benefit to the epidemiologic community.

Simulation is one such tool (1–3). In epidemiology, simu-
lation is most commonly applied when assessing or compar-
ing the performance of methods (e.g., estimators) in terms of
bias or precision under known conditions. However, it can
also be used to demonstrate many fundamental principles of
data analysis, including study design, bias, and error, in a clear
and systematic way. Additionally, simulation can be used
to develop a deeper understanding of the scientific method,
since theories, methods, or hypotheses can be subjected to
experiments in a well-controlled, simulated environment.

Indeed, we see many potential applications for simulation
in epidemiologic education, yet in our experience we find
that few students are formally taught simulation methods
(although we recognize that this is not universally true).
For some, this leads to the idea that simulation is difficult,
when in fact simple, illuminating simulations of epidemi-
ologic concepts often require only a few lines of software
code. Here, we provide several short examples of how one
might use simulation as an educational tool in epidemiology,
with the ultimate goal of demonstrating the importance
of teaching simulation as an essential applied skill for an
epidemiologist and how simple very insightful simulations
can be to program.

THE MONTE CARLO METHOD

In most epidemiologic settings, simulations rely on the
Monte Carlo method. In its modern form, this method was
developed to solve intractable calculations in large, complex
physics systems (4). The method allows us to study systems
empirically by sampling from a model that defines the
system. In epidemiology, an example system might be the
members of a target population with a particular exposure
and outcome that were “assigned” by some unknown
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data-generating mechanism. Sampling occurs by drawing
from a set of predefined probability distributions that de-
scribe the important features of the system. For example,
we simulate individuals, meant to represent members of our
target population, and attempt to recreate a possible data-
generating mechanism for those individuals. We might draw
a binary exposure and a binary confounder from a Bernoulli
distribution and combine information on the relationship
between the exposure/confounders and outcome to build a
normally distributed continuous outcome. Within the sampled
units or individuals, the calculations become manageable,
enabling us to approximate the targeted solution.

As a general rule, the Monte Carlo sample size, or the
number of times the simulation is run (as opposed to the size
of each independent sample within a simulation), should be
as large as is required to see no change in results upon an
increase in sample size. The versatility of the Monte Carlo
method is demonstrated in its many uses. Below, we show
how simulation can be used to gain some insight on 2 issues
encountered when learning epidemiologic methods that can
be challenging for students to understand in a nuanced way,
as a means of demonstrating how simulations could be
developed for many concepts students are learning.

The first involves a simulation of nondifferential misclas-
sification. It is often taught that nondifferential misclassifi-
cation results in bias toward the null. This is often the case;
however, there are settings where this rule may not hold—
for example, when dependence between the nondifferential
misclassification of 2 variables results in the net bias being
away from the null. We further use this example to illustrate
the difference between bias and error (5).

The second simulation example aims to provide some
intuitive insight on interpreting a P value. P values continue
to be a source of confusion and consternation in the empiri-
cal sciences and can be intimidating for students entering the
field (6). This is particularly true when students are taught
P values technically, using abstract mathematical represen-
tations or mechanical demonstrations based on probability
tables. In our view, the issue is exacerbated when students
are given canned phrases to use to explain P values—
especially when these phrases are technically wrong (7).
Using simulation, we show how distributions that generate
P values are constructed. Importantly, in following the steps
required to simulate this distribution, one can more easily
see the logic behind a P value and thus interpret it with less
difficulty.

All simulations presented in this paper were carried out
using R, version 3.6.1 (R Foundation for Statistical Com-
puting, Vienna, Austria). Software code for all examples
can be found in the Web Appendix (available at https://doi.
org/10.1093/aje/kwaa232) or on GitHub (8).

EXAMPLE 1: NONDIFFERENTIAL MISCLASSIFICATION

A fundamental topic in epidemiology that students must
grapple with is the sources of systematic bias commonly
found in our studies. One bias that is relevant regardless of
study design is information bias—that is, the bias that arises
from errors in the measurement of variables included in our

analysis. Information bias can be caused by measurement
error in continuous variables or misclassification of categor-
ical variables. For simplicity’s sake, we will hereafter use
the term misclassification to mean either misclassification
or measurement error. When misclassification occurs, an
important consideration is whether that misclassification is
differential (whether the error is dependent on another key
analytical variable) or nondifferential (not dependent on
another key analytical variable).

A distinction routinely taught in introductory epidemi-
ology courses is that nondifferential misclassification will
bias a point estimate toward the null, whereas bias due to
differential misclassification is less predictable. Students are
often shown a pair of 2 × 2 tables which demonstrate the
2 scenarios. Suppose an instructor wants to provide her
students with a more nuanced understanding. Specifically,
she wants to provide simulated examples showing what the
direction and magnitude of the bias can be under a variety of
scenarios: 1) when there is nondifferential misclassification
in only a binary exposure; 2) when there is nondifferential
misclassification in only a continuous confounder; 3) when
there is nondifferential misclassification in both the expo-
sure and the confounder and the errors are independent; and
4) when there is nondifferential misclassification in both the
exposure and the confounder and the errors are dependent.
Dependent misclassification arises when there is correlation
between the errors in 2 variables, perhaps because there
is another variable which is related to the errors in both
variables (as can commonly happen when the 2 variables are
measured by the same questionnaire) (9, 10). One expects
bias toward the null under scenario 1, but the nonbinary
nature of the confounder and the dependent misclassification
in scenario 4 make the direction of the bias less certain in
scenarios 2–4 (9, p. 139; 11). The instructor additionally
wants to communicate that the statements regarding bias
are in expectation (i.e., bias is the difference between the
truth and the average point estimate over a large number of
studies) and may not be the case in any given single study
(9, p. 14; 25). The error in a given study (i.e., the difference
between the truth and the point estimate for that study) could
be in the opposite direction of the bias.

To help her students parse this new layer of knowledge,
the instructor sets up a simple causal diagram with an
exposure affecting an outcome and 2 confounders affecting
both (Figure 1A), which is then extended for misclassifica-
tion (Figures 1B and 1C) (11). The instructor then has the
students generate a simulation based on that diagram, by
carrying out the following steps.

Step 1: Simulate the truth under no misclassification
(Figure 1A).

Generate a sample of 1,000 individuals. Assign each indi-
vidual 2 continuous confounders (M1 and M2, log-normally
distributed with log(M1) and log(M2) ∼ N(0, 1)) and a
binary exposure (A, with P(A = 1) = 0.5), which is affected
by the confounders (both with an odds ratio of 2). Then
assign a continuous outcome (Y ∼ N(μ, 6)), with mean μ
dependent on exposure and confounders, as such:

μ = 10 + 2A + 2M1 + 2M2.
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Figure 1. Causal diagrams guiding a student’s simulation of non-
differential misclassification. A) No misclassification; B) nondiffer-
ential misclassification of exposure A (with no misclassification of
confounder M1); C) nondifferential misclassification of M1 that is
independent of the nondifferential misclassification of A; D) nondiffer-
ential misclassification of M1 that is dependent on the nondifferential
misclassification of A.

Step 2: Introduce nondifferential exposure misclassifica-
tion (Figure 1B).

Randomly draw a continuous variable L from a standard
normal distribution. Among those truly exposed, select indi-
viduals to have a misclassified exposure (Ã) if their realiza-
tion of L is above the 85th percentile (this sets the sensitivity
to be 85%). Among those truly unexposed, select individuals
to have a misclassified exposure (Ã) if their realization of L
is above the 95th percentile (this sets the specificity to be
95%).

Step 3: Introduce confounder misclassification.
To induce measurement error in M1 with errors indepen-

dent of the errors in A (Figure 1C), generate a random vari-
able U which is uniformly distributed in the range [−1, 1].
Then, transform M1 such that M̃1 = M1 + 0.9 × U. To
induce measurement error in M1 with errors dependent with
the errors in A (Figure 1D), transform M1 such that M̃1 =
M1 + 0.9 × L, where L is the same random normal variable
that was used to create the exposure misclassification.

Step 4: Repeat steps 1–3 many times. In each simula-
tion, estimate the mean difference (using a linear model
adjusting for M1 and M2) when there is no misclassification,
when just the exposure is misclassified, when just M1 is
misclassified, and when both A and M1 are misclassified.
Examine the distributions of the point estimates. To estimate
bias, compare the mean difference from the scenarios with
misclassification against the true mean difference of 2 and
then average across the simulations.

Note that the chosen parameters above are arbitrary, and
we invite readers to explore how changing those parameters
might affect what is observed, in a manner similar to what
is shown in Table 1. See also Table 2, which summarizes
various checks on the simulation and validates that the
expected relationships are present (e.g., that the errors in M1
are dependent with the errors in A). Additionally, there are

other ways to simulate misclassification; what we present
above is only a single example of how one could generate
these scenarios.

The average mean difference across 10,000 simulations
was unbiased at 2.000 for the correctly measured A. When
just A was misclassified (Figure 2A), the average mean
difference of 1.058 was biased toward the null as expected,
and 1.4% of the simulation estimates had a mean difference
with exposure misclassification that was further from the
null than the true mean difference. While 1.4% is low, these
results are a demonstration of the fact that, even when the
bias is toward the null as expected for this classic nondiffer-
ential misclassification scenario (i.e., binary exposure and
no other misclassified variables), a given single study might
not follow this rule. This is exactly the distinction between
bias (which pertains to the distribution of point estimates)
and error (which pertains to a single study) (5).

When we included the nondifferentially misclassified
confounder and the correctly classified exposure in the
model, the average mean difference of 2.312 was biased
away from the null, with 72.3% of the simulations having
a point estimate further from the null than the truth. This
demonstrates the property that the bias is not guaranteed
to be toward the null for a nonbinary variable that is
nondifferentially misclassified (9, p. 139).

When the confounder and exposure were both nondif-
ferentially misclassified and their misclassification errors
were independent, the average mean difference was 1.120,
with 2.2% of the simulations having a bias greater than the
true mean difference. In this case, the net bias was toward
the null. Finally, when the confounder and exposure were
both nondifferentially misclassified and their misclassifica-
tion errors were dependent (Figure 2B), the average mean
difference was 2.603, and 92.1% of the 10,000 simulations
had a mean difference with misclassification that was further
from the null than the truth. In this case, the dependence
between the misclassification errors resulted in the net bias
being away from the null.

The key here is that the instructor showed students how
to generate different possible nondifferential misclassifica-
tion scenarios. She showed the classic scenario in which
nondifferential misclassification of a single, binary variable
resulted in bias toward the null. She also showed 2 cases
where the net bias was away from the null: first because
the single misclassified variable was nonbinary and second
because there was dependence between the errors in 2 mis-
classified variables. This reinforces that, in real data analy-
ses, students should pay attention not just to whether or not
misclassification in a given variable is dependent on another
variable (i.e., whether the misclassification is differential or
nondifferential) but also to whether that variable has more
than 2 levels or whether there is a chance for dependent
misclassification with a second misclassified variable. The
direction of the net bias becomes less certain in the latter
2 cases.

Furthermore, the simulation makes clear that “bias” does
not necessarily have the same meaning for a single applied
study, since it is a property of the full distribution (12).
This is critical. Students may hear that one “expects” some-
thing to be the case. Not only does the above simulation
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Table 1. How Bias Varies if Select Simulation Parameters Are Varied While Holding the Other Parameters
Constant at Their Main Analysis Value, for the Scenario Where Exposure and Confounder Are Nondifferentially
Misclassified and the Errors Are Dependenta

Parameter
Main Analysis

Value
Value

Examined
Direction of

Bias
Magnitude of

Bias

E[log(M1)], E[log(M2)] 0 −2 Toward the null −0.257

−1 Away from the null 0.094

0 Away from the null 0.603

1 Away from the null 1.036

2 Away from the null 1.259

P(A = 1) 0.50 0.25 Away from the null 0.438

0.50 Away from the null 0.603

0.75 Away from the null 0.768

Se = P(Ã = 1|A = 1) 0.85 0.50 Away from the null 0.700

0.75 Away from the null 0.648

0.85 Away from the null 0.603

0.95 Away from the null 0.436

Sp = P(Ã = 0|A = 0) 0.95 0.50 Toward the null −0.122

0.75 Away from the null 0.176

0.85 Away from the null 0.362

0.95 Away from the null 0.603

δ, where M̃1 = M1 + δ × L 0.90 −0.90 Toward (past) the null −2.184

−0.50 Toward the null −1.748

0.50 Toward the null −0.036

0.90 Away from the null 0.603

1.50 Away from the null 1.282

Abbreviations: SD, standard deviation; Se, sensitivity; Sp, specificity.
a Notation: A, correctly measured exposure; Ã, misclassified exposure; δ, coefficient determining amount of

misclassification in M1; E(X), expected value of variable X; L, variable used to induce misclassification; M1, correctly
measured confounder 1; M̃1, misclassified confounder 1; M2, confounder 2; P(X), probability of X; SD(X), standard
deviation of X.

demonstrate the more technical meaning of what is meant
by “expects” (i.e., certain realized values may be away
from the null, but on average bias is toward the null) but
it also provides the opportunity to think of conditions and
assumptions that must hold for a statement about bias to be
true. For example, if, in addition to nondifferential exposure
misclassification, there is nondifferential confounder mis-
classification that is crucially dependent with the exposure
misclassification, bias can be away from the null.

The simple simulation here could easily be expanded. For
example, students could use this as a basis for a simulation
that mimics the data structure of a study they are using in
a project, and they could examine how different sources of
misclassification might affect their results in that data set.
This simulation could also be used to demonstrate other
properties of bias and error when there is misclassification,
such as how the distribution of point estimates for a given
scenario might differ as the sample size was increased or
decreased. With smaller sample sizes, greater variation is

expected, so even when bias is toward the null, more indi-
vidual studies might have a point estimate further from the
null than the truth (12). Students could also replicate what
has been shown regarding how sensitivity and specificity,
the magnitude of the true association, and exposure preva-
lence affect the distinction between bias and error under
nondifferential misclassification of a single variable (5).
Moreover, such a simulation could easily serve as the basis
for diving into a more nuanced approach to bias analysis or
measurement error correction methods (13).

Finally, we should reiterate that the above simulation is
only 1 example of how one could induce nondifferential
misclassification and dependent nondifferential misclassifi-
cation. For the latter, when the exposure and confounder are
binary, one could instead use the sensitivity and specificity
to induce dependent misclassification. We further invite
readers to explore scenarios where the exposure and the
outcome are nondifferentially misclassified and scenarios
where there is dependence between those misclassifications.
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Table 2. Results From Tests of the Expected Relationships Between Variables in the Simulation Where There Was Dependence Between the
Errors in the Nondifferentially Misclassified Binary Exposure and the Continuous Confounder a

Test Expected Answer Reasoning Parameters Estimated Value

Does the sensitivity of A vary across
the distribution of M1?b

No A is nondifferentially
misclassified.

P(Ã = 1|A = 1, M1 ∈ p25(M1) ± 0.05) 0.850

P(Ã = 1|A = 1, M1 ∈ p50(M1) ± 0.05) 0.849

P(Ã = 1|A = 1, M1 ∈ p75(M1) ± 0.05) 0.851

Does the specificity of A vary across
the distribution of M1?b

No A is nondifferentially
misclassified.

P(Ã = 0|A = 0, M1 ∈ p25(M1) ± 0.05) 0.950

P(Ã = 0|A = 0, M1 ∈ p50(M1) ± 0.05) 0.950

P(Ã = 0|A = 0, M1 ∈ p75(M1) ± 0.05) 0.949

Does the sensitivity of A vary across
error in M1, i.e., M̃1 − M1?

Yes Error in A is dependent
on error in M1.

P(Ã = 1|A = 1, M̃1 − M1 < 0.90) 1.000

P(Ã = 1|A = 1, M̃1 − M1 > 0.90) 0.054

Does the specificity of A vary across
error in M1, i.e., M̃1 − M1?

Yes Error in A is dependent
on error in M1.

P(Ã = 0|A = 0, M̃1 − M1 < 0.90) 1.000

P(Ã = 0|A = 0, M̃1 − M1 > 0.90) 0.683

Does bias in M1, E(M̃1 − M1), vary
across levels of A?

No M1 is nondifferentially
misclassified.

E(M̃1 − M1|A = 1) −0.000

E(M̃1 − M1|A = 0) 0.001

Does bias in M1, E(M̃1 − M1), vary
across levels of Ã in participants
with A = 1?

Yes Error in M1 is dependent
on error in A.

E(M̃1 − M1|Ã = 1, A = 1)

E(M̃1 − M1|Ã = 0, A = 1)

−0.248
1.399

Does bias in M1, E(M̃1 − M1), vary
across levels of Ã in participants
with A = 0?

Yes Error in M1 is dependent
on error in A.

E(M̃1 − M1|Ã = 1, A = 0)

E(M̃1 − M1|Ã = 0, A = 0)

1.856
−0.098

a Notation: A, correctly measured exposure; Ã, misclassified exposure; E(X), expected value of variable X; M1, correctly measured confounder
1; M̃1, misclassified confounder 1; P(X), probability of X; p25(X), 25th percentile of X; p50(X), 50th percentile of X; p75(X), 75th percentile of X.

b Recall that the specified sensitivity of A was 0.85 and the specificity was 0.95.

EXAMPLE 2: WHAT IS A P VALUE?

After obtaining a point estimate, standard practice is to
quantify some measure of uncertainty in that point estimate.
Typically, this is done with either P values or confidence
intervals. For a number of justifiable reasons, use of the P
value in the context of effect estimation has fallen out of
favor (6, 7). This is partly due to the fact that P values are
often misinterpreted, with common incorrect interpretations,
including the belief that the P value is the probability that the
null hypothesis is true or that the observed association was
produced by chance alone (6, 7).

The P value definition given by the American Statistical
Association is “the probability under a specified statisti-
cal model that a statistical summary of the data (e.g., the
sample mean difference between 2 compare groups) would
be equal to or more extreme than its observed value” (6,
p. 131). Often, in epidemiologic settings where we esti-
mate exposure-outcome associations, the “specified statis-
tical model” is one that states there is no actual association
between the exposure and the outcome of interest (the null
hypothesis). It also includes an assumption—often ignored
in explanations of P values—that the model fit to the data
reflects the true data-generating mechanism. Furthermore,
while this is not explicitly mentioned above, P values usu-
ally require an assumption that there is no selection bias,
uncontrolled confounding, or information bias (7) (although
this requirement can be relaxed if the tested hypothesis is

reframed as the expected value of the parameter estimate,
rather than the true value of the parameter).

When lecturing on P values and confidence intervals,
our instructor may provide a definition like the one above
and then might ask her students to calculate the P value
for some simple examples. However, given that the above
definition is well-acknowledged to be nonintuitive and given
the abundance of misconceptions surrounding P values, the
instructor turns to simulation to concretize the concept of a
P value. This also allows her to provide students with data
examples and visualizations that can aid in understanding the
P value. As with the misclassification demonstration, there
are many ways the instructor could do this, but here we show
1 example.

She starts by setting up a simple simulation experiment.
She randomizes 1,000 individuals to one of 2 levels of a
binary exposure (X, with P(X = 1) = 0.5) with a prespeci-
fied effect on a binary outcome (D, with P(D = 1) = 0.5).
She sets 0.05 to be the true risk difference, comparing the
risks of D across levels of X. The data are arranged such
that each row corresponds to an individual, with a column
for the outcome and a column for the exposure. In this
initial experiment, the estimated risk difference is 4.9 per
100 observations, with a computed P value of 0.12. The
logic of a P value can then be explained with a relatively
simple procedure, each step of which can be translated into
computer code in any given statistical software program, as
follows.
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Figure 2. Distribution of mean difference estimates, comparing the mean difference under no misclassification with the mean difference under
nondifferential misclassification of only the binary exposure A and nondifferential misclassification of A and of the confounder M1, with the
misclassification errors being dependent.

Step 1: Rerandomize exposure.
Create a new exposure, X′, randomly drawn from the

same distribution as the original exposure (i.e., a Bernoulli
distribution with P(X′ = 1) = 0.5). Because this new
exposure was not used to generate D, we expect there to
be no association between X′ and D. This step reflects that
we are interested in a P value which assumes that the null
hypothesis of no effect is true.

Step 2: Repeat.
Repeat step 1 many times (e.g., 10,000 times), and in each

repetition estimate the risk difference comparing the risks of
D across levels of X′. In step 1, we said we expected that
in any given repetition the association between X′ and D
would be null. When we repeat the process, we generate
the distribution of point estimates that would exist if the
null hypothesis of no effect were true, given the other spec-
ifications of our experiment (e.g., prevalence of exposure,
marginal risk of the outcome, and sample size).

Step 3: Quantify the P value.
The (1- or 2-sided) P value can then be approximated

by comparing the risk difference estimated in the original
sample (comparing risks of D across levels of X) with this
distribution of risk differences under the null hypothesis.
For the 1-sided P value, quantify the proportion of the
10,000 risk differences which was greater than or equal to
the original risk difference. For the 2-sided P value, take
the absolute value of the 10,000 risk differences and then
quantify the proportion of the distribution that was greater
than or equal to the original risk difference.

Figure 3A shows a histogram of the 10,000 risk differ-
ences, as well as the estimate from the initial trial (the
vertical dashed line). The distribution of risk differences
is centered around the null value of 0, as expected. The
histogram also provides some intuition on the question that
the P value actually attempts to answer: Given the variability

inherent in our data, if there were no actual effect of the expo-
sure on the outcome, how likely is the result we observed?
Figure 3B shows the distribution of the absolute values of the
point estimates. Together, Figures 3A and 3B can be used to
demonstrate the distinction between a 1-sided P value and
a 2-sided P value. In our simple example, the proportion of
risk differences that lie on and to the right of the dashed line
in Figure 3B is 0.12, which is similar to the model-estimated
2-sided P value.

By walking through this simulation step by step (or having
the students do so), we are able to achieve greater clarity on
what the P value obtained from a model’s output actually
means. There is much nuance to the definition of a P value
and the assumptions that are required, which can easily lead
to misinterpretations (7). However, misunderstandings of
the definition of a P value will not be resolved by simply
having instructors reiterate, “The P value is the probability
of observing a result as extreme as or more extreme than
the current result if the null hypothesis were true.” By
generating the distribution of point estimates that are used to
define this probability and carefully scrutinizing the process,
we believe insight can be gained. One could additionally
demonstrate factors affecting the size of the P value. For
example, increasing the sample size would result in a distri-
bution that is more tightly centered around the null, yielding
a smaller proportion of permuted risk differences as large
as or greater than the original result (and thus a smaller P
value). Similar examples can be constructed to demonstrate
the impact of changing the effect size or introducing some
form of bias (information, selection, or confounding).

DISCUSSION

We have provided here 2 simple examples of how sim-
ulation might be used to teach and learn epidemiologic
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Figure 3. Demonstration of the definition of the P value. The dashed line represents the risk difference (RD) from the original simulated trial. The
histogram in panel A illustrates the distribution of RDs under a null hypothesis of no association, generated by estimating in 10,000 simulations
the association between a repeatedly rerandomized exposure and the original trial’s outcome. The proportion of RDs to the right of the dashed
line can be used to estimate the 1-sided P value. Panel B illustrates the distribution of the absolute values of those RDs; now, the proportion of
RDs to the right of the dashed line can be used to estimate the 2-sided P value.

concepts and methods. First, we showed that a student
could use simulation to examine the direction of the bias
under different nondifferential misclassification scenarios—
for example, the classical scenario in which there is a sin-
gle variable and bias toward the null versus a scenario
where dependence between the errors in 2 nondifferentially
misclassified variables results in net bias away from the
null. Second, we demonstrated how an instructor could use
simulation to parse the nonintuitive definition of the P value.
It is important to highlight, though, that the simulations
described above are just examples of how one could use
simulation to explain misclassification and P value concepts.
Other approaches could be used instead, and as stated above,
we encourage readers to tweak our simulation examples to
explore these concepts further.

Furthermore, these are not the only situations in which
simulation can be useful for an epidemiologist. We can
also use simulation to carry out sensitivity analyses, explore
different data-generating mechanisms, examine the perfor-
mance of an estimator for a specific data structure of interest,
or conduct power calculations. Simulations are also helpful
in understanding mediation structures, the scale dependence
of effect-measure modification, and complex biases like
collider stratification bias.

Simulation is an empowering and easily accessible tool
for anyone with coding knowledge and access to statistical
software. While simulation methods might seem intimidating
prior to formally engaging in them, it has been our experi-
ence that we can teach the basics of this powerful problem-
solving tool to students within a matter of hours and that
students enjoy the experience. Furthermore, given that most
graduate-level courses in epidemiologic methods already
require proficiency in coding, it would be relatively simple to
add lessons on basic simulation methods to existing courses
with a laboratory component.

We see simulation as a particularly useful tool in our
field, in part because most epidemiologists do not come
from a theoretical mathematical background. Thus, seeing
how software code behaves in simulated data or being able
to ourselves use code to directly manipulate simulated data
can greatly simplify and clarify the increasingly complex
statistical methods we are using. Moreover, if our goal is
to teach students how to learn rather than simply providing
information, simulation puts the ability to experiment and
test methods in the students’ hands. It further encourages a
scientific, critical-thinking mentality that hopefully will be
carried beyond the classroom into future independent self-
learning and applied work.
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