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A B S T R A C T   

Therapeutic approaches to COVID-19 treatment require appropriate inhibitors to target crucial proteins of SARS- 
CoV-2 replication machinery. It’s been approximately 12 months since the pandemic started, yet no known 
specific drugs are available. However, research progresses with time in terms of high throughput virtual 
screening (HTVS) and rational design of repurposed, novel synthetic and natural products discovery by under-
standing the viral life cycle, immuno-pathological and clinical outcomes in patients based on host’s nutritional, 
metabolic, and lifestyle status. Further, complementary and alternative medicine (CAM) approaches have also 
improved resiliency and immune responses. In this article, we summarize all the therapeutic antiviral strategies 
for COVID-19 drug discovery including computer aided virtual screening, repurposed drugs, immunomodulators, 
vaccines, plasma therapy, various adjunct therapies, and phage technology to unravel insightful mechanistic 
pathways of targeting SARS-CoV-2 and host’s intrinsic, innate immunity at multiple checkpoints that aid in the 
containment of the disease.   

1. Introduction 

Recent outbreak of SARS-CoV-2 has infected vast population across 
the globe by now. With millions of deaths and yet the COVID-19 
pandemic is growing exponentially without any specific prophylaxis 
or treatment modalities. Parallelly, the worldwide scientific community 
has been trying to explore and target the key proteins of SARS-CoV-2 
mutant’s to identify key therapeutic molecules. Subsequently, a lot of 
data has been reported in terms of review articles that describe hosts 
responses, clinical features, proposed treatment interventions and their 
mechanism of action (MOA) associated with SARS-CoV-2 infection or 
COVID-19 [1–7]. Nevertheless, research on SARS-CoV-2 and COVID-19 
is progressing with time in terms of designing novel drugs, natural 
product based drug discovery, immuno-pathological and clinical out-
comes based on host nutritional, metabolic and lifestyle status, role of 
herbo-mineral formulations in innate/adaptive immunity modulation to 
contain the disease. Hence, it is necessary to review the current data for 
critical therapeutic options and therefore, is the highlights of this article. 

SARS-CoV-2 is a single stranded positive-sense RNA virus of ~ 30 kb 
in size [8] with a diameter of approximately 125 nm [9] which ma-
nipulates the host cell environment [10] depending on host’s 

nutritional, metabolic and lifestyle status [11–13] to alter the host gene 
expression and immune responses [14] leading to long incubation 
period [15] and a large number of asymptomatic [16] but transmissible 
infection preventing effective containment and mitigation of the disease 
[17]. SARS-CoV-2 has four structural proteins namely; the homo-trimer 
spike (S) protein, the membrane (M) protein, the envelope (E) protein, 
and the nucleocapsid (N) protein [Fig. 1]. The S protein mediates host 
cell attachment whereas M protein aids in envelope formation and viral 
entry [8,18,19]. The other lifecycle processes such as viral assembly, 
budding; envelope formation and release are facilitated through E pro-
tein. The N protein plays a pivotal role in viral transcription and as-
sembly. The neutralizing antibodies/plasma therapy provides protective 
active immunity through competitively binding with viral S protein 
whereas N, M and E proteins do not respond significantly to neutralizing 
antibodies. Further, there are non-structural proteins (nsps) namely; 
main protease or serine-type protease (Mpro or CLpro), RNA dependent 
RNA polymerase (RdRp), Papain-like proteases (PLpro) encoded by 
ORF1a and ORF1b [Fig. 1] and forms replicase–transcriptase complex 
(RTC) to initiate RNA synthesis for replication and transcription of the 
sub-genomic RNAs [20–23]. Hence, our focus to use structure based- 
drug designing to identify potential antivirals or natural drugs should 
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leverage on these crucial target proteins of the SARS-CoV-2 replication 
machinery. Nevertheless, coronaviruses (CoVs) have exceptional muta-
tion [9] and spillover [24] efficiency which makes the drug discovery 
process difficult, tedious and time consuming. 

After suspected SARS-CoV-2 infection, the prediction of prognosis, 
infectiousness and viral load estimation through cycle threshold (Ct) 
values via real-time polymerase chain reaction (RT-PCR) help in patient 
management decisions [25]. However, the viral loads of asymptomatic 
or mildly symptomatic patients with COVID-19 individuals are compa-
rable to those in symptomatic patients with severe and persistent posi-
tive upper respiratory RT-PCR results [26]. Being asymptomatic, mildly 
symptomatic and severely symptomatic depends on various factors 
including host’s nutritional, metabolic (microbiota), age, comorbidities 
and lifestyle status which either modulates the immune system to 
generate antibodies against the virus or being disproportionate gener-
ates cytokine storm [Fig. 2]. The longer the immune system takes to 
generate antibodies, the more is the production of proinflammatory 
cytokines [12,13]. Patients with obesity [27], metabolic diseases (such 
as diabetes) [28], autoimmune diseases (rheumatoid arthritis [29]), 
dermatological diseases [30], neuronal diseases (such as Parkinson’s 
[31] and Alzheimer’s disease [32]) or cardiac [33] and pulmonary [34] 
diseases have low immune strength and are more susceptible to severe 
COVID-19 leading to dual immuno-pathophysiological inflammation 
through viremia and metabolic toxins. In comparison, the subjects with 
high nutritional, metabolic and good lifestyle status remain not only 
asymptomatic [Fig. 2] but recover even without the need of any medical 
assistance and supplementary medications [35]. Hence, the lifestyle 
improvement should be immensely promoted as part of healthcare 
system to improve the resiliency and immunity of population for coming 
future. Therefore, the present article covers host’s clinical responses and 
immuno-pathophysiology among asymptomatic, symptomatic and co-
morbid symptomatic subjects including all the therapeutic approaches 
for prophylaxis, treatment, and cure of COVID-19 including antivirals, 
repurposed drugs, CAM approaches, vaccines, and adjuvant therapies 
with their brief mechanistic pathways to exclusively target SARS-CoV-2 
at various checkpoints that aid in the containment of the disease. 

2. Immuno-pathophysiology of SARS-CoV-2 infection 

Acute hyperinflammatory “cytokine storm” after SARS-CoV-2 
infection may lead to several severe clinical manifestations in COVID- 
19 patients including acute respiratory distress syndrome (ARDS), 
thromboembolic diseases, cardiac and gastrointestinal issues, acute 
kidney injury, encephalitis, vasculitis (Kawasaki-like syndrome in chil-
dren), sepsis, multi-organ dysfunction and death [Fig. 3]. Hence, to 
design and develop the therapeutics for multiple complexities of COVID- 
19, it is utmost necessary to study the immuno-pathogenesis of cytokine 
storm and its clinical manifestations. 

2.1. Cytokine storm and its clinical manifestation 

Destruction of lung cells due to SARS-CoV-2 infection triggers mac-
rophages, neutrophils, monocytes, adaptive T and B cell immune re-
sponses. Among healthy subjects with robust immune system, this 
process itself overcomes the infection. However, among subjects with 
dysfunctional immune system or comorbidity, viral infection and its 
repetitive replication in pulmonary alveolar epithelial cells [36] causes 
programmed cell death (pyroptosis) [37] with associated vascular 
permeability releasing cytokine IL-1β. Further, these epithelial cells and 
macrophages use variety of pattern-recognition receptors (PRRs) to 
detect released pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs). This recognition 
further enhances the secretion of pro-inflammatory cytokines and che-
mokines such as Interleukins (IL-2, IL-6, IL-8, IL-17), IFNγ, monocyte 
chemotactic protein 1 (MCP1) and Interferon inducible protein-10 (IP- 
10) [38,39]. Simultaneously, these cytokines and chemokines further 
attract immune cells notably monocytes and T lymphocytes at the 
infected site causing pulmonary infiltration of lymphocytes into the 
airways leading to lymphopenia [40–42]. Severe COVID-19 patients 
generally exhibit lymphopenia and a marked reduction in CD4+ T, CD8+

T, NK, and B cell number on admission. Further, as compared to mild 
cases, the severe COVID-19 cases showed a significant decrease in CD8+

T cells. In addition, the memory helper T cells such as CD3+, CD4+, 
CD45RO+ are also decreased in severe cases compared with mild cases. 
However, lymphopenia was observed in a few mild and pregnant cases 
[39–41,43–51]. Subsequent production of other inflammatory cytokines 
including IL-7, IL-10, granulocyte-colony stimulating factor (G-CSF), 
granulocyte macrophage-colony stimulating factor (GM-CSF), macro-
phage inflammation protein-1α (MIP-1α), and tumor necrosis factor-α 
(TNF-α) leads to “cytokine storm” along with series of adverse reactions 
and toxins production [46] in human body [Fig. 3]. In comparison, non- 
severe patients have significantly lower cytokine and toxins production 
[39,40,52,53]. Severe patients with lymphopenia and cytokine storm 
are also prone to microbial infection which further promotes the disease 
progression and severity leading to viral sepsis and inflammation- 
induced lung injury. Further, the disease progresses to acute respira-
tory distress syndrome (ARDS), respiratory failure, shock, gastrointes-
tinal (GIT) issues, multiple organ failure [Fig. 3], and potentially death 
[54]. Hence, a safe “multicomponent- multitarget -multichannel thera-
peutic approach” along with respiratory and physical exercises has to be 
considered primarily to avoid the disease progression towards severity. 

Fig. 1. SARS-CoV-2 target proteins important for viral replication and conventional therapeutic approaches: PLpro, Mpro, S-protein and RdRp.  
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3. Potential therapeutic approaches 

3.1. Antiviral approaches 

3.1.1. Entry/Fusion inhibitors and peptides 
Initially, SARS-CoV-2 Spike (S) glycoprotein utilizes its receptor 

binding domain (RDB) to recognise, interact and attach itself with host 
cell receptor angiotensin converting enzyme 2 (ACE2). S-protein has two 
extracellular subunits S1 and S2 [55]. The RBD of S1 subunit after 
binding to ACE2 gets cleaved at the interface of S1 and S2 by host cell 
derived transmembrane proteases serine 2 (TMPRSS2) enzyme, 
cathepsin L, and furin. Further, the fusion protein (FP) of S2 subunit 
triggers viral fusion process [56]. Therefore, S-protein becomes the 
principle target for vaccines and therapeutic drugs to inhibit viral entry 
[21] (Fig. 4.). 

Structural understanding of the RBD-ACE2 interface [57] is a crucial 
step for inhibitor design. Besides peptides, monoclonal antibodies (mAb) 
and small molecule inhibitors are still the preferred intervention mo-
dality in terms of cost, dosage, stability, pharmacokinetics and logistics. 
To identify small molecule inhibitors against RBD, virtual insilico 
screening of 1582 FDA-approved drugs was carried out which showed 
that Simeprevir and Lumacaftor bind RDB with high affinity and prevent 
ACE2 interaction. Further, virtual screening and in vitro studies of the 
same drugs suggested that Lumacaftor and Simeprevir are also SARS- 
CoV-2 Mpro inhibitors showcasing the concept of multi-target drugs 
that inhibit several proteins simultaneously [58]. Similarly, few natural 
products are screened against RBD of SARS-CoV-2 were found effective 
in inhibiting the interaction of spike glycoprotein with its receptor 
ACE2. Further, few molecules such as Nimbin, Curcumin, Withaferin A, 
Mangiferin, Piperine, Thebaine, Andrographolide, and Berberine were 
found effective in inhibiting the interaction of spike glycoprotein with 
its receptor ACE2 [59]. Nevertheless, few other molecules such as 
Eufoliatorin, Amarogentin, Caesalpinins, α-Amyrin, Kutkin, β-Sitosterol, 
and Belladonnine [60] showed the high affinity towards both the S- 
protein RBD and ACE2. ACE2 is a functional receptor required for SARS- 
CoV-2 attachment and internalization. In this context, Chloroquine, an 
antimalarial repurposed drug, was reported to block SARS-CoV-2 virus 
infection, with an IC50 value of 1.13 μM and a CC50 > 100 μM in Vero E6 
cells. Chloroquine is believed to inhibit terminal glycosylation of ACE2 

along with increased endosomal pH required for fusion leading to 
reduced affinity of SARS-CoV-2 to ACE2. Apart from its antiviral activ-
ity, chloroquine is also shown to synergistically enhance its antiviral 
effect through immunomodulation [61]. Another analogue of chloro-
quine, namely, Hydroxychloroquine exhibited much safer and better in 
vitro results than chloroquine [62]. Nevertheless, these repurposed 
drugs are also reported to cause ventricular arrhythmias, QT prolonga-
tion, and other cardiac-related toxicities in severely ill patients [63]. 
Regardless of the availability of ACE2 inhibitors, its inhibition is not a 
viable therapeutic approach as it plays important physiological roles 
including lung injury protective role in ARDS [64] and its attenuation 
may aggravate oxidative inflammatory responses [65]. 

Clinically approved TMPRSS2 inhibitors are safe and effective drugs 
considered to contribute in the containment of the disease by inhibiting 
host cell entry. Few TMPRSS2 inhibitors such as Camostat, Nafamostat 
and Aprotinin have shown to effectively decrease the rate of infection 
and replication of the virus in Calu-3 lung cell lines. Camostat is an FDA 
approved drug for the treatment of pancreatitis and was found effective 
in reducing airway virus replication by inhibiting S-protein initiated 
fusion. Similarly, Nafamostat, an FDA approved anticoagulant drug in 
Japan for continuous renal replacement, was recently reported to show 
15 folds higher inhibitory potency than Camostat with 50% effective 
concentration [EC50] in the low-nanomolar range against SARS-CoV-2 
fusion [66–68]. In comparison, Gabexate mesylate is least active in 
inhibiting SARS-CoV-2 S-driven host cell entry [69]. The suitability of 
these TMPRSS2 inhibitors including Bicalutamide to block TMPRSS2 for 
treatment of COVID-19 is currently being evaluated under clinical trial 
[70–72]. Further, in silico approaches using homology modelling, 
docking and ADME/T (absorption, distribution, metabolism, excretion, 
toxicity) studies for the identification of high affinity interaction and 
potent antagonists of TMPRSS2 have been reported. The study revealed 
that, six amino acid residues are essential which act as an active site of 
TMPRSS2 where three residues His296, Asp345, Ser441 present at the 
catalytic site and three residues Asp435, Ser460, Gly462 present at the 
substrate binding site. The results unravelled various natural and syn-
thetic molecules including columbin, meloxicam, proanthocyanidin A2, 
ganodermanontriol, myricetin, jatrorrhizine and baicalein and should 
be proceeded for wet-lab evaluations [73,74]. 

Further, various studies have also demonstrated that low endosomal 

Fig. 2. Consequences of SARS-CoV-2 infection and COVID-19 in high nutritional, metabolic, lifestyle, dysregulated immune system and comorbidity status.  
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pH environment activates pH sensitive proteases such as cathepsins L. 
Hence, few potent cathepsin L inhibitors, namely, MDL28170, EST, dec- 
RVKR-CMK, 5705213, K11777, oxocarbazate, and SSAA09E1 has been 
reported. However, due to concern over their unwanted side effects, 
FDA approved drugs that exhibit cathepsin L inhibitory activity 
including antimicrobials, immunomodulators, antimalarials, anti- 
tuberculous, anti-HIV, antioxidant, etc were considered to be repur-
posed. Nevertheless, these drugs have their own unwanted side effects in 
patients [75]. 

Additionally, an abelson non-receptor tyrosine kinase (Abl) pro-
motes cathepsin L secretion which indicate that drugs inhibiting Abl 
tyrosine kinases might indirectly serve as cathepsin secretion inhibitors 
and inhibit entry/fusion of SARS-CoV-2 [76]. Subsequently, imatinib, 
has been shown to inhibit SARS-CoV-2 in an in vitro study [77]. Simi-
larly, several kinase inhibitors as anti-inflammatory immunomodulators 
for cytokine suppression are proposed as potential therapeutic approach 
to contain COVID-19 [78]. 

Apart from these host-based, cell surface and endosomal proteases 
inhibitors, fusion inhibition is an attractive strategy to block viral entry 
through inhibition of a heptad repeat region HR1 of S-protein [79]. EK1 
(optimized analogue of OC43-HR2 peptide) was found to be highly 
potent (IC50 = 0.19 μM) in shutting down S-protein mediated cell–cell 
fusion through hydrophobic interactions for SARS-CoV-2. EK1 was 
further optimized to EK1C4 which showed higher effectiveness than EK1 
against SARS-CoV-2 S protein-mediated membrane fusion [80,81]. 

3.1.2. Papain-like protease (PLpro) inhibitors 
Inflammatory signalling pathways directed by distinct ubiquitin 

signals which are regulated by complex mechanisms in human cells. 
Viral proteases generally regulate innate immune pathways through 
antagonising ubiquitin and interferon-stimulated gene 15 (ISG15) from 
proteins involved in human’s antiviral immune response [82]. However, 

SARS-CoV-2 PLpro, despite having high amino acid sequence in ubiq-
uitin domain, has lost both interferon-antagonising and deubiquitinase 
activities [83]. Nevertheless, SARS-CoV-2 encoded PLpro harbors two 
other active domains; a labile Zn-binding domain 
(Cys189–X–X–Cys192–Xn–Cys224–X–Cys226) and a classic catalytic 
cysteine cleavage domain (Cys111–His272–Asp286) which play vital role 
in viral replication. Hence, PLpro represent a promising target for design 
of PLpro inhibitors to retard viral replication either by selective ejection 
of Zn(II) ion from the labile Zn domain and/or by blocking the cysteine 
residue at the catalytic domain. However, no approved therapies tar-
geting SARS-CoV-2 PLpro are available in the market yet [84]. Several 
compounds such as ribavirin, valganciclovir, ritonavir, fostamatinib, 
chloramphenicol, chlorphenesin, levodropropizine, phenformin, 
including natural products such as platycodin D, baicalin, rosemarinic 
acid, cryptotanshinone, tanshinone IIa, quercetin, etc have been re-
ported to have high binding affinity with PLpro suggesting for their 
repurposed clinical evaluation and potential usefulness of these com-
pounds in the treatment of SARS-CoV-2 infection [85–87]. Similarly, 
cyanobacterial metabolites namely; cryptophycin 1, cryptophycin 52, 
and deoxycylindrospermopsin [88] and fungi metabolites namely; nor-
quinadoline A and scedapin C [89] have also been identified as potential 
inhibitors of PLpro. However, few of these drugs are not suitable for oral 
administration due to pharmacokinetic restrictions and few have their 
respective pharmacological actions on physiological functions [87]. 
Nevertheless, pharmacokinetic restrictions may be resolved using nano- 
encapsulation approach. 

3.1.3. The 3C-like proteinase (Mpro) inhibitors 
SARS-CoV-2 RNA encodes for two large polyproteins, pp1a and 

pp1ab, which are inactive until the viral chymotrypsin-like cysteine 
protease enzyme (3CL Mpro or Nsp5) cleaves them into 12 non-structural 
proteins (Nsp4-Nsp16) including RdRp (Nsp12) and helicase (Nsp13). 

Fig. 3. Representation of Immuno-pathophysiology and associated problems of severe SARS-CoV-2 infection in multiple organs leading to inflammatory cascade, 
“Cytokine Storm”, multi-organ failure and death. 
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Inhibition of Mpro would prevent the virus from replication. Hence, 
making it an attractive drug target for SARS-CoV-2 [90,91]. In the 
absence of targeted therapeutic drugs, the only option for identification 
and discovery of lead compounds is through the application of computer 
aided structure-based high-throughput virtual screening (HTVS) of 
approved or clinical candidates. Therefore, utilising the same HTVS 
route, a mechanism-based inhibitor (N3) was identified and crystal 
structure of Mpro complexed with N3 was determined. Further, HTVS 
was carried out using 10,000 known compounds including approved 
drugs, natural products and drug candidates in clinical trials. The pri-
mary hits were seven compounds namely; Ebselen, Disulfiram, Tide-
glusib, Carmofur, Shikonin, PX-12 and TDZD-8 having IC50 ranging from 
0.67 to 21.4 μM. Ebselen demonstrated the strongest inhibition of Mpro 

activity with an IC50 of 0.67 μM [92]. Ebselen is an organoselenium 
compound with anti-oxidant, anti-inflammatory, and cytoprotective 
properties. It was first introduced as an enzyme mimetic catalysing the 
glutathione peroxidase reaction [93]. Ebselen interacts with thiol 
groups forming selenosulfide with cysteine as its basic pleiotropic effect 
on numerous proteins [94] including Mpro [92]. Further, Ebselen at-
tenuates overproduction of ROS, cytokines and neutrophil infiltration to 
counteract pulmonary and vascular inflammation [95]. Moreover, 
Ebselen has also been reported for its activity to inhibit release of IL-6 
under prolonged hypoxia [96]. Further, its protective efficacy in mi-
crobial or chemical stimuli induced liver dysfunction (as seen in severe 
cases of COVID-19) has also been reported [97–99]. Hence, Ebselen 
looks logical and beneficial therapeutic candidate to be used in COVID- 
19 patients after clinical evaluation. 

A natural product, Baiclein, is a non-covalent, non-peptidomimetic 
inhibitor of SARS-CoV-2 Mpro with inhibition potential of IC50 = 0.94 
μM. Further, it showed potent dose-dependent inhibition (EC50 = 1.69 
μM) of viral replication in SARS-CoV-2 infected Vero E6 cell assay. 
Unlike Ebselen, Baicalein and its derivatives disrupts both substrate 
recognition and stabilization of proteolytic reaction by blocking the 
substrates from approaching the catalytic site instead of covalently 
binding with cysteine [100,101]. To date, several potential SARS-CoV-2 

Mpro inhibitors have been reported from compound library screening, 
rational design, and natural products including ketoamide analogues, 
peptidomimetics, N-substituted isatin compounds, organo-mercuric 
compounds and several repurposed approved drugs and drug candi-
dates with diverse chemical structure [91,92,102–107]. 

Maraviroc is a U.S. FDA approved drug for the treatment of HIV-1. 
Chemically, it is azabicyclic and inhibits cell entry by blocking the 
interaction of HIV-1 glycoprotein 120 and chemokine receptor 5, on 
human CD4-presenting cells. [108]. Recent, in silico screening suggested 
that Maraviroc is a potential inhibitor of Mpro [109] and currently the 
drug is being evaluated in clinical trials (NCT04441385, NCT04435522, 
and NCT04475991) for COVID-19 treatment. Similarly, Glecaprevir is a 
Hepatitis C virus (HCV) NS3/4A protease inhibitor that targets the viral 
RNA replication [110]. Glecaprevir has also been evaluated in silico for 
its Mpro inhibition [109] which suggested that Glecaprevir is a highly 
potential inhibitor of SARS-CoV-2 Mpro. Likewise, Lopinavir, a small 
peptidomimetic antiretroviral aspartate protease inhibitor, was assumed 
to inhibit the Mpro of the SARS-CoV-2 as well, based on invitro (EC50 =

26.63 µM) [111] and in silico results [112,113]. However, a recent 
research on Lopinavir and Ritonavir using purified Mpro revealed that 
these repurposed drugs have no activity against SARS-CoV-2 Mpro. This 
explains why these drugs consistently failed in COVID-19 clinical trials 
[114,115]. 

Analogously, Darunavir/Cobicistat is a fixed-dose combination of 
800 mg of the HIV protease inhibitor Darunavir and 150 mg Cobicistat, a 
CYP3A4 inhibitor, which is indicated in combination with other anti-
retroviral agents for the treatment of HIV infection. Darunavir showed 
no antiviral activity against SARS-CoV-2 at clinically relevant concen-
trations (EC50 > 100 μM). Whereas, remdesivir, used as a positive con-
trol, demonstrated potent antiviral activity (EC50 = 0.38 μM) [116]. 
GC376, a dipeptidyl bisulfite broad-spectrum inhibitor of picornavirus- 
like supercluster, is a potent inhibitor for the SARS-CoV-2 Mpro with IC50 
of 26.4 ± 1.1 nM and inhibits viral replication with EC50 of 0.91 ± 0.03 
μM. However, expedite clinical research on GC376 or its designed an-
alogues for treatment of COVID-19 is required [117]. 

Fig. 4. SARS-CoV-2 Life Cycle and Therapeutic Approaches: Antiviral approaches (Entry/Fusion Inhibitors, Mpro inhibitors, PLpro inhibitors, and RdRp inhibitors); 
Immunomodulation approaches (Micronutrients and Nutritional Intervention, Immunomodulatory Steroids, Cytokine Based Interventions, Convalescent Plasma 
Therapy, Vaccines). 
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In comparison, repurposed drugs, Atazanavir and Danoprevir have 
shown promising results against COVID-19. Atazanavir is an FDA 
approved antiretroviral drug that competitively inhibits the HIV-1 
aspartate protease. However, recently, Atazanavir has been reported 
to inhibit SARS-CoV-2 replication through Mpro inhibition with EC50 = 2 
± 0.12 µM in Vero and human pulmonary epithelial cell lines. In com-
bination with ritonavir the activity was found to be much potent with 
EC50 = 0.5 ± 0.08 µM. The drugs in combination also impaired the virus- 
induced enhancement of proinflammatory cytokine production such as 
IL-6 and TNF-α [118]. As per recent clinical study results under review, 
Danoprevir (a macrocyclic peptidomimetic drug) in combination with 
Ritonavir alleviated the symptoms in COVID-19 patients and accelerated 
their recovery in 4–12 days [119]. Hence, these combinations may be 
considered based on clinical conditions of COVID-19 patients under 
treatment. 

3.1.4. RNA dependent RNA polymerase (RdRp) inhibitors 
Coronavirus replication and transcription is mediated through a 

multisubunit complex of viral nonstructural proteins (nsps) including 
the core component, nsp12 (RdRp), and accessory cofactors, nsp7 and 
nsp8, that increase RdRp template binding and processivity [120]. 
Hence, RdRp is a crucial target for inhibition of viral replication and is 
also known to be inhibited by a class of antivirals called as “nucleotide 
analogs” such as remdesivir [120]. 

Remdesivir (GS-5734) is an adenosine monophosphate antiviral 
prodrug which gets metabolized to its pharmacologically active nucle-
oside triphosphate metabolite. The triphosphate metabolite acts as a 
competitive inhibitor of RdRp [Fig. 5] which leads to termination of 
chain elongation and ceases the viral RNA replication process [121]. 
Remdesivir was observed to be active in vitro against Vero E6 cells 
infected with SARS-CoV-2 with an EC50 0.77 µM [61]. Currently, 
remdesivir alone or in combination with other drugs such as tocilizumab 
(NCT04409262), merimepodib (NCT04410354), or baricitinib 
(NCT04401579) is being evaluated as a treatment for COVID-19 patients 
[122]. Food and Drug Administration (FDA) has approved remdesivir 
for the treatment of COVID-19 in hospitalized adult and pediatric pa-
tients (aged ≥ 12 years and weighing ≥ 40 kg) with severe disease. 
However, the clinical data for the use of remdesivir in mild to moderate 
COVID-19 patients is insufficient. Nevertheless, FDA has also warned 
against the concomitant use of remdesivir and chloroquine or HCQ as 
these drugs may decrease the antiviral activity of remdesivir [123]. 

In contrast, a pyrazine-carboxamide derivative, favipiravir is 
currently in use against mild to moderate COVID-19 infections in 
various countries including China, Italy, Japan, Russia, Ukraine, Uzbe-
kistan, Moldova, Kazakhstan, Saudi Arabia, UAE, Turkey, Bangladesh, 
Egypt and India. Favipiravir is a broad-spectrum antiviral drug which 
gets converted to its potentially active form favipiravir-ribose-5′- 
triphosphate, in host-infected cells and selectively inhibits RdRp of RNA 

Fig. 5. Chemical structure and schematic representation of remdesivir, metabolic bioactivation and its bioactive triphosphate form inhibiting the viral RdRp. The 
close pymol view of the RdRp active site (pdb 7bv2), showing the covalently bound RMP, pyrophosphate, and magnesium ions. 
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viruses [124]. A nonrandomized, open-label study with non-severe 
COVID-19 patients (n = 80) showed that favipiravir (1600 mg orally 
on the first day, then 600 mg orally twice daily for 13 days) in combi-
nation with IFN-α was significantly better as compared to lopinavir/ri-
tonavir and IFN-α in terms of disease progression and viral clearance 
[125]. Further, in an open-label, prospective, randomized, multicenter 
clinical trial with moderate COVID-19 patients (n = 236), favipiravir 
had a higher 7 day’s clinical recovery rate with reduced incidence of 
fever and cough. Favipiravir (1600 mg orally twice daily on the first day, 
then 600 mg orally twice daily for 7–10 days) had a recovery rate of 
71.43% as compared to control group (umifenovir 200 mg three times 
daily for 7–10 days) with recovery rate of 55.86% [126]. However, it is 
contraindicated in women with known or suspected pregnancy. 

Further, an FDA approved guanosine nucleoside analogue, Ribavirin, 
is a broad-spectrum systemic antiviral prodrug for chronic hepatitis C 
virus [127] and viral hemorrhagic fever [128]. It blocks the replication 
of virus after getting metabolized to its triphosphate nucleotide active 
form (Fig. 5). Ribavirin has also been accounted for its property to 
inhibit host’s inosine monophosphate dehydrogenase by ribavirin 
monophosphate which leads to decreased intracellular Guanosine 
triphosphate (GTP) and inhibition of viral protein synthesis [129]. 
Although various clinical trials for ribavirin alone or in combination are 
in progress, however, one open-label randomized control study 
(NCT04276688) revealed that early triple antiviral (ribavirin, lopinavir/ 
ritonavir and IFN-β-1b) therapy is safe and effective then lopinavir/ri-
tonavir alone in treating mild to moderate COVID-19 patients [130]. 
Likewise, clevudine (NCT04347915) is a thymidine nucleoside prodrug 
that requires phosphorylation to form the corresponding active nucle-
otide triphosphate [131]. Furthermore, a prophylactic combination of 
emtricitabine (cytosine nucleoside analogue) and tenofovir alafenamide 
(adenine based acyclic nucleotide analogue) against SARS-CoV-2 
infection is being evaluated in a large randomized, double-blind, 
controlled clinical trial (NCT04405271) for health care workers 
exposed to COVID-19 patients [132]. One of the important treatment 
measures is the FDA approved drug ivermectin which has been proposed 
to inhibit the importin (IMP) α/β receptor, responsible for transmitting 
viral proteins into the host cell nucleus. The drug has been found to be 
effective as a preventive and therapeutics in various clinical settings. 
Regular use of ivermectin has been shown to reduce the risk of con-
tracting COVID-19. 

Nevertheless, HTVS and in silico (docking) studies have also been 
performed in search of novel RdRp inhibitors of SARS-CoV-2. One such 
study recently revealed that biologically active alkaloids of Argemone 
mexicana viz protopine, allocryptopine and (±) 6-acetonyldihydroche-
lerythrine could be the potential RdRp inhibitors of SARS-CoV-2 
[133]. Protopine was observed to be the most potential inhibitor ligand. 

3.2. Immunomodulation approaches 

3.2.1. Micronutrients and nutritional intervention 
To combat SARS-CoV-2 infection, apart from physical barriers, host’s 

immune defence system comprises of innate immune responses (cellular 
and biochemical responses), inflammatory responses and adaptive im-
mune responses (antigen presentation and cell-mediated immunity) 
which functions in a step wise process and has been explained in detail 
elsewhere [134]. In the course of battle between host immune system 
and SARS-CoV-2, nutritional micronutrients such as vitamins (Vitamin 
A, D, E, B12, B6, Folic acid and vitamin C), minerals (Zinc, Iron, Copper, 
Selenium and Magnesium) and microbiota (probiotic bacteria) have 
synergistic and homeostasis roles to play based on their complementary 
mode of action [135,136]. 

Vitamin A has immunoregulatory effects and aids in differentiation, 
proliferation and functional integrity of innate immune cells such as 
natural killer (NK) cells regulate the activity of phagocytes such as 
macrophages, neutrophils for microbial, phagocytic and oxidative burst 
activity during inflammatory responses [135,137,138]. Further, it helps 

in the development and differentiation of CD4+ T helper cells and bring 
about anti-inflammatory responses by downregulating the production of 
IL-12, TNF- α and interferon-γ. Vitamin A is also required for normal 
functioning of B cells and antibody responses [137–141]. Nevertheless, 
in silico pharmacology analysis and assays also indicated that vitamin A 
works against SARS-CoV-2 via enrichment of immunoreaction, inhibi-
tion of inflammatory reaction, and biological processes related to ROS. 
Further, it is also indicated that vitamin A has seven core targets 
including MAPK1, IL10, EGFR, ICAM1, MAPK14, CAT, and PRKCB 
against COVID-19 suggesting that vitamin A may act as a potent treat-
ment option for COVID-19 [142]. 

Similarly, vitamin D also plays a crucial role in immune-modulation 
during viral infections. Vitamin D production in human body takes place 
through subcutaneous sunlight exposure or is made available through 
external dietary sources such as dairy products, fish liver oil or chole-
calciferol pills. After absorption, vitamin D binds to intracellular nuclear 
vitamin D receptors (VDRs) and subsequently dimerise either with 
themselves or retinoid X receptors (RXRs). Further, the dimer trans-
locates to nucleus and engage vitamin D receptor element (VDRE) which 
regulate various host genes such as beta defensin and cathelicidin 
[143,144]. These genes cleave the viral membrane and are involved in 
the activation of phagocytes respectively [145]. Vitamin D also regu-
lates suppression of adaptive immune responses during viral infection 
via inhibiting T-cell proliferation (type I) resulting in reduced pro- 
inflammatory cytokines [145,146]. Further, it inhibits nuclear factor 
kappa-light-chain-enhancer of activated B cells (NFκβ) pathway [147] 
and also diverts the development of inflammatory T-helper (type 17) 
cells into anti-inflammatory regulatory T-cells (T-reg cell) which re-
duces the expression of pro-inflammatory cytokines such as IL-1, IL-6, 
IL-10, IL-12, IL-17, IL-23 and TNF-α [145,146,148]. Vitamin D has also 
been reported to downregulate the expression of ACE2 receptors [149]. 
In addition to immunomodulation, vitamin D has also been predicted in 
silico to inhibit SARS-CoV-2 endoribonuclease Nsp15. The results sug-
gested that vitamin D have the highest potency with strongest interac-
tion in terms of lowest binding energy, lowest RMSD, and lowest 
inhibition intensity Ki than the standard (remdesivir, chloroquin, and 
HCQ) compounds selected for the study [150]. 

During COVID-19 pandemic, 20% population in Northern Europe, 
30–60% in Western, Southern and Eastern Europe and up to 80% in 
Middle East countries are vitamin D deficient either due to poor diet or 
limited sunlight exposure [151]. Recently, an observational study 
revealed that an inverse correlation exists between the mean level of 
vitamin D and SARS-CoV-2 infection (r = − 0.43, p = 0.02) and mor-
tality (r = − 0.42, p = 0.02) rate, concluding, the association of vitamin 
D with SARS-CoV-2 infection and COVID-19 related mortality [152]. 
Further, a retrospective, observational analysis of 191,779 patients 
showed that the SARS-CoV-2 positivity rate was higher in the 39,190 
patients with deficient vitamin D values of < 20 ng/mL than in the 
27,870 patients with values 30–34 ng/mL and 12,321 patients with 
values ≥ 55 ng/mL. This study suggested to explore the role of vitamin D 
supplementation in reducing the risk of COVID-19 disease [153]. 
Further, a systemic meta-analysis report suggested that vitamin D sup-
plementation may prevent acute respiratory tract infections [154], and, 
therefore, adequate levels of vitamin D in host is utmost important 
during SARS-CoV-2 infection and COVID-19. 

Parallelly, Vitamin C maintains the intracellular redox homeostasis 
to protect the integrity of epithelial barriers. It also aids in the prolif-
eration, functions, and migration of phagocytes (neutrophils, macro-
phages), and lymphocytes to promote phagocytosis and antibodies 
generation respectively. Further, it modulates cytokines production and 
bring about anti-inflammatory responses [155,156]. Vitamin C has a 
good safety profile as a therapeutic agent among wide range of clinical 
cases and therefore, vitamin C supplementation may favourably impact 
patients with severe COVID-19 disease by; reducing inflammation and 
pathogen virulence, optimising immune defence and reducing tissue 
injury [157]. 
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It is well documented that the deficiency of zinc is associated with 
immune dysfunction [158], growth retardation, hypogonadism [159], 
cognitive impairment [160] and various other nonviral/viral human 
diseases [161,162]. Further, various specialized reviews about the use of 
zinc as intervention, supplementation and its role in elderly immunity 
during COVID-19 crisis have been published [163–165]. Zn being well 
tolerated with its antioxidant, anti-inflammatory, immunomodulatory, 
and antiviral activities, Zn supplementation can be safely recommended 
in COVID-19 [163]. Likewise, other nutritional micronutrients including 
vitamins, minerals and microbiota are crucial for proper structure and 
functioning of numerous proteins, physiological processes, signalling 
pathways associated with normal functioning and modulation of im-
mune system. Sever deficiency of these micronutrients, especially dur-
ing SARS-CoV-2 infection, may contribute to cytokine storm, 
comorbidity and mortality [166]. Hence, nutritional interventions and 
supplementation of these micronutrients is highly recommended. 

3.2.2. Immunomodulatory Steroids 
A preliminary report by researchers announcing that synthetic 

glucocorticoid dexamethasone (6 mg once daily) is a potential treatment 
option, to reduce mortality in severely ill patients, filled the scientific 
community with excitement. The study trial reported that, after initia-
tion of immunosuppressive dexamethasone therapy, the mortality rate 
of patients who were on ventilator support was dropped by one-third, 
whereas, the mortality rate was reduced by one-fifth among patients 
who were on oxygen support without ventilation. However, patients 
who were not receiving any respiratory support did not see any positive 
outcome [167,168]. In most infected people, mild or moderate symp-
tomatic disease is successfully resolved through a coordinated antiviral 
immune response. Whereas, an unregulated cell death and tissue dam-
age in severely ill comorbid COVID-19 patients reaches a threshold at 
which alarmins (such as heat shock proteins, ATP, uric acid, HMGB1, IL- 
1α and IL-33) or damage-associated molecular patterns (DAMPs) are 
released which results in added systemic production of hyper-
inflammatory cytokines and chemokines (‘cytokine storm’) leading to 
vascular leakage and uncontrolled feedforward inflammatory loop 
which manifests ARDS, sepsis, organ failure and, eventually, death. It is 
in this phase of disease where the immunomodulatory effects of gluco-
corticoids are beneficial by breaking the inflammatory feedforward loop 
[168,169]. 

3.2.3. Cytokine based interventions 

3.2.3.1. Interferons. Having few encouraging results of interferons 
(IFNs) treatment over SARS and MERS, it was worthwhile to validate the 
impact of interferons (Type I-III) treatment on SARS-CoV-2. In early 
2020, a report claimed that type I IFN-α or IFN-β at a concentration of 
50 international units (IU) per mL reduced viral titers by 3.4 log or over 
4 log, respectively, in Vero cells. Further they reported that the EC50 of 
type I IFN-α and IFN-β treatment was 1.35 IU/ml and 0.76 IU/ml, 
respectively, in Vero cells. These results suggest that SARS-CoV-2 is 
more sensitive to IFNs treatment as compared to SARS or MERS-CoV 
[170]. Nevertheless, a study indicated that IFNs upregulate the expres-
sion of host ACE2 (entry receptor for SARS-CoV-2) [171] raising a 
question on IFNs possibility to exacerbate COVID-19. However, a recent 
comparison between the antiviral- and ACE2-inducing properties of 
IFNs (type I, II and III) in human lung cell line and primary human 
bronchial epithelial cells suggested that IFNs antiviral actions counter-
balance the increased expression of ACE2 and restrict SARS-CoV-2 
[172]. Further, two other separate studies also reported that in-
terferons type I (IFN-α) and type III (IFN-λ) inhibit SARS-CoV-2 repli-
cation in dose dependent manner. However, type III (IFN-λ) generated a 
weaker but long-lasting antiviral response [173,174]. Several clinical 
trials of type-I IFN or pegylated interferon alfa-2b are being conducted, 
either alone (NCT04293887, NCT04320238, ChiCTR2000029989) or in 

combination (NCT04254874, NCT04276688, NCT04273763, 
NCT04315948, NCT04350684, NCT04350281, NCT04343768, 
NCT04350671, NCT04379518) [122]. 

3.2.3.2. Interleukin inhibitors. Interleukin-6 (IL-6) is a major factor 
responsible for cytokine storm and ARDS in COVID-19. Hence, several 
anti-IL-6 receptor monoclonal antibodies (tocilizumab, sarilumab) or 
anti-IL-6 monoclonal antibodies (siltuximab, clazakizumab, sirukumab) 
[175] are currently under clinical trials (NCT04306705, NCT04322773, 
NCT04320615, NCT04324073, NCT04315298, NCT04315480, 
NCT04321993, NCT04335071, NCT04317092, NCT04348500, 
NCT04329650) are under way to evaluate the safety and efficacy of IL-6 
inhibitors [122]. Sarilumab is a recombinant humanized anti-IL-6 re-
ceptor monoclonal antibody approved by FDA for patients with rheu-
matoid arthritis. The efficacy and safety of sarilumab 400 mg IV and 
sarilumab 200 mg IV versus placebo was evaluated in hospitalized pa-
tients with COVID-19 in an adaptive Phase 2 and 3, randomized (2:2:1), 
double-blind, placebo-controlled trial (NCT04315298). However, the 
trial findings do not support a clinical benefit of sarilumab for severe 
COVID-19 [176]. In contrast, a clinical trial using tocilizumab on 30 
selected adult patients hospitalized with COVID-19 suggested that 
tocilizumab significantly reduced mechanical ventilation requirement 
(OR: 0.42; p = 0.025) and risk of subsequent ICU admission (OR = 0.17; 
p = 0.001). Further, no moderate or severe adverse events attributable 
to tocilizumab were reported. The overall mortality rate was 11% [176]. 
Thus, inhibition of cytokine IL-6 axis using tocilizumab in severe COVID- 
19 patients appears promising therapy. However, the clinical data of 
using anti-IL-6 monoclonal antibody (siltuximab) in patients with 
COVID-19 is limited and unpublished [176]. 

Interleukin-1β (IL-1β), a proinflammatory cytokine, along with its 
natural interleukin-1 receptor antagonist (IL-1Ra) has been observed in 
patients with COVID-19 induced ARDS and pneumonia [177]. Further, 
elevated IL-1β is also central to macrophage activation syndrome (MAS) 
and hemophagocytic lymphohistiocytosis (HLH) [178,179]. Anakinra 
(recombinant IL-1Ra) and canakinumab (monoclonal antibody targeting 
IL-1 β) has proved their effectiveness in treating MAS and HLH through 
continuous intravenous infusion (IVF) [179,180]. However, one patient 
had progressive multisystem organ failure despite anakinra at 2400 mg 
daily [180,181]. Therefore, being potential drugs to treat cytokine storm 
syndrome, the two drugs are presently under clinical trials 
(NCT04341584, NCT04339712, NCT04330638, NCT04348448, 
NCT04324021) for severe COVID19 [122]. 

3.2.4. Convalescent plasma therapy (CPT) 
The ongoing viral pandemic has resulted in scaling up of pooled 

plasma from recovered patients to unprecedented levels. Compared to 
the historical usage of CPT, modern blood screening, banking and 
pathogen inactivation technologies have now added an extra layer of 
safety to its usage. Nevertheless, CPT is also associated with certain 
known and theoretical risk factors including transfusion-related acute 
lung injury (TRALI), antibody-dependent enhancement (ADE) and 
anaphylactic immunological responses. Our group recently published a 
detailed review on various aspects of CPT including current technologies 
and the shortcomings related to the collection, manufacture, pathogen 
inactivation, and banking of convalescent plasma, with a specific focus 
on their plausible applications, benefits, and risks in the COVID-19 
pandemic [182]. 

3.2.5. Vaccines 
The nature of protective immune responses against COVID-19 has 

not been completely understood. Further, it is also not clear that which 
strategy of vaccine development will get through the expectation of 
maximum protection. Hence, it is imperative to develop vaccines 
through diverse platforms and variant formulation technologies such as 
nucleic acid (DNA/RNA) vaccines, live attenuated virus vaccines, 
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recombinant viral vector vaccines, inactivated virus vaccines, protein 
subunit vaccines, conjugated vaccines, toxoid vaccines [183]. Various 
review articles regarding COVID-19 vaccine development have already 
been published [183–190] pertaining to immunological principles 
[183], experimental and clinical data obtained from recent SARS-CoV-2 
vaccines trials [184], advanced manufacturing [185], vaccine- 
associated immune enhanced disease [186], non-viral vaccine devel-
opment technologies [187], clinical efficacy [188], advantages and 
disadvantages of various vaccine technologies [189], vaccinomics 
(effectiveness) and adversomics (adverse effects) of vaccine candidates 
[190]. Nevertheless, there are concerns regarding virus evolution and 
resistance [191]. Although, vaccine resistance rarely emerges since 
vaccines tend to work prophylactically to induce immune responses 
against multiple targets of pathogen, consequently, to generate less 
variation for vaccine resistance [192]. However, RBD surface often have 
distinct antibodies escape mutations [193] overtime. Hence, a detailed 
review covering all the aspects of vaccine design and development using 
recombinant technology has recently been published by our group 
[194]. 

3.3. Miscellaneous adjuvant therapy approaches 

Human tissues being sensitive to oxygen may undergo irreversible 
damage due to ischemia and tissue hypoxia, which is quite evident in 
COVID-19, leading to systemic, multi-organ failure among patients 
[195]. Thus, apart from the main stream antiviral and immunomodu-
latory interventions, various adjuvant therapy approaches, based on 
patient’s clinical and/or comorbid condition, are required during and 
after COVID-19. These adjuvant therapies may include; statins [196], 
antihypertensives [197], anti-diabetics [198], anti-thrombotics and 
platelets in thromboembolism and coagulopathy [199,200], iron 
depletion therapy [201], hyperbaric oxygen/ozone therapy [202], 
mesenchymal stem cell therapy [203], etc for the management of clin-
ical and/or comorbid conditions. 

3.4. Complementary and integrative health approaches 

National Center for Complementary and Integrative Health (NCCIH), 
formerly known as the National Center for Complementary and Alter-
native Medicine, in NIH, USA is the lead agency for scientific research on 
the diverse medical and health care systems, practices, and products that 
are not generally considered part of conventional medicine (CM) [204]. 
Complementary and integrative health approaches comprise of natural 
products practices such as dietary supplements, herbs, botanicals and 
probiotics [204]. In India, these practices are classified under AYUSH 
(Ayurveda, Yoga, Unani, Siddha, and Homeopathy) [4,205] whereas in 
China its Traditional Chinese Medicine (TCM) [206]. Since ancient 
times, Indian medicinal herbs and TCM have been in use as a treatment 
and preventive strategy for several diseases including respiratory viral 
infections [4,205,206]. These antioxidant medicinal herbs not only have 
the capability to modulate immune system with downregulation of 
proinflammatory cytokines but also have antiviral properties to directly 
inhibit viral proteins and viral replication machinery [4,207,208]. 
Further, these herbs are generally administered in the form of poly-
herbal formulations [209] (Ayurveda/TCM) or herbo-mineral formula-
tions [210] (Siddha) or homeopathic dilutions [211]. The polyherbal 
formulations have multiple components in micromolar concentration 
which work together in a synergistic manner [212] to suppress the 
production of nitric oxide, prostaglandin E2, IL-6, IL1β, phosphoryla-
tions of mitogen-activated protein (MAP) kinases, including extracel-
lular signal-regulated kinase (ERK) [213]. Further, polyherbal 
formulations inhibit the production of inflammatory cytokines and 
macrophage activation to treat upper respiratory tract infections via 
down-regulating the activation of NF-κB signaling pathway, demon-
strating their multicomponent- multitarget -multichannel molecular 
mechanisms [213]. Hence, these therapies should be considered as an 

adjuvant therapy while treating COVID-19. 

4. Emerging future strategies for SARS-CoV-2 

The debris of dying and virally infected cells in COVID-19 acts as a 
substrate for secondary bacterial infections which leads to additional 
inflammatory responses, vascular leakage, sepsis and death [214]. 
Bacteriophages are viruses which selectively attach specific bacterial 
species but are otherwise harmless to human cells. They hijack the 
bacteria’s biological machinery to replicate and attack other neigh-
boring bacterial colonies. Further, the modified bacteriophages could 
quickly manufacture specific antibodies against SARS-CoV-2 using 
“phage display technique”. Hence, bacteriophages could be the potential 
game changer in the trajectory of COVID-19 [215] by not only reducing 
the probability of secondary bacterial infection and sepsis but also by 
giving an extra time to the patient’s adaptive immune responses to 
produce their own specific antibodies against SARS-CoV-2 [215]. 

Further, immune function is a highly energetically-expensive process 
and requires energy-dependent processes for activation, migration of 
cells, antigen processing, and phagocytosis [216]. In the process of 
activation of innate immunity, the body temperature rises (induction of 
fever) at a cost of > 10% increase in metabolic rate per 1 ◦C [217]. 
Finally, the adaptive immunity intensifies energy metabolism for the 
production of virus specific T- and B- lymphocytes [218]. Hence, pro-
gressive energy depletion leads to dysfunctional immune system and, 
ultimately, to cell death. Therefore, understanding the bioenergetics 
view of COVID-19 immunopathology, photomagnetic catalysis of ATP 
synthesis, regenerative photobiomodulation and the ultrasonic acceler-
ation of cell restructuring has been proposed [219,220]. Furthermore, a 
coherent application of multiple biophysical radiances (coMra) in 
enhancing the energy-matter-information kinetics synergistically which 
may improve immune functions to accelerate recovery has also been 
proposed [220]. 

Finally, viral surveillance through stand-off biosensors to detect and 
classify viruses would be required for future pandemics. Laser-induced 
fluorescence-light detection and ranging (LIF-LiDAR) is a versatile tool 
that has been explored for detection of bacteriophage on artificially 
contaminated biological surfaces and aerosol particles. Considering the 
increasing applications of LIF-LiDAR to potentially detect and classify 
pathogens, the research over prospects and challenges of LIF-LiDAR 
technology has already been initiated [221]. 

5. Conclusions and future perspectives 

The SARS-CoV-2 outbreak as a pandemic has lasted for almost a year 
now and it is likely that the infection will remain in humans until clin-
ically approved vaccines are made available through out the world. 
Nevertheless, mutation and cross species jump among coronaviruses 
remain the matter of concern and needs to be kept under scientific 
surveillance for future pandemics. Currently, the best way to prevent 
SARS-CoV-2 infection, indeed, are personal preventive measures such as 
social distancing, washing hands regularly, and wearing face mask. 
However, high nutritional, metabolic and lifestyle status has a major 
role to play in activating host’s innate and adaptive immune system and 
keeping the disease asymptomatically mild while fighting infection. 
Whereas, low values with comorbidities may lead to severely symp-
tomatic ARDS, sepsis, multi-organ failure and death even after treatment 
with FDA approved antivirals, immunomodulators and adjuvant thera-
pies. Although a number of repurposed drugs are currently in use, 
however, specific antivirals against SARS-CoV-2 replication machinery 
are desperately needed. Parallelly, complementary and integrative 
health approaches including physical exercises, botanicals and poly- 
herbo-mineral formulations such as Ayurveda, Siddha and TCM have 
evolved as a prophylactic, adjuvant and treatment options demon-
strating their multicomponent- multitarget -multichannel molecular 
mechanisms and network pharmacology. Pharma giants with modern 
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scientific and pharmaceutical technology should take up these evidence 
based complementary and alternative indigenous medicines to discover, 
develop and bring deserving candidates into mainstream CM. 
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