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Abstract

Electrocardiogram (ECG) acquisition is increasingly widespread in medical and commercial 

devices, necessitating the development of automated interpretation strategies. Recently, deep 

neural networks have been used to automatically analyze ECG tracings, and outperform physicians 

in detecting certain rhythm irregularities1. However, deep learning classifiers are susceptible to 

adversarial examples, which are created from raw data to fool the classifier such that it assigns the 

example to the wrong class, but which are undetectable to the human eye2,3. Adversarial examples 

have also been created for medical-related tasks4,5. However, traditional attack methods to create 

adversarial examples do not extend directly to ECG signals, as such methods introduce square 

wave artifacts that are not physiologically plausible. Here we develop a method to construct 

smoothed adversarial examples for ECG tracings that are invisible to human expert evaluation and 

show that a deep learning model for arrhythmia detection from single-lead ECG6 is vulnerable to 

this type of attack. Moreover, we provide a general technique for collating and perturbing known 

adversarial examples to create multiple new ones. The susceptibility of deep learning ECG 

algorithms to adversarial misclassification implies that care should be taken when evaluating these 

models on ECGs that may have been altered, particularly when incentives for causing 

misclassification exist.

Cardiovascular diseases represent a major health burden, accounting for 30% of deaths 

worldwide7. The electrocardiogram (ECG) is a simple and non-invasive test used for 

screening and diagnosis of cardiovascular disease. It is widely available in multiple medical 

device applications, including standard 12-lead ECGs, Holter recorders, and monitoring 

devices8. In recent years, there has been further growth in ECG utilization in the form of 
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single-lead ECGs, which are used in miniature implantable medical devices and wearable 

medical consumer products such as smart watches. These single-lead ECGs, such as the one 

incorporated in the Apple Watch Series 4, were predicted to be worn by tens of millions of 

Americans by the end of 2019 (https://www.idc.com/getdoc.jsp?

containerId=prUS44901819). Moreover, consumer wearable devices are utilized to collect 

data in clinical studies, such as the Health eHeart study (https://www.ucsf.edu/news/

2018/02/409806/wearables-could-catch-heart-problems-elude-your-doctor) and the Apple 

Heart Study (https://www.acc.org/latest-in-cardiology/articles/2019/03/08/15/32/sat-9am-

apple-heart-study-acc-201). Large studies that make use of patient-generated health data 

(PGHD) are expected to become more frequent after the recent release by the Food and 

Drug Administration (FDA) of a set of guidelines and tools to collect real-world data (RWD) 

from research participants via apps and other mobile health sources (https://www.fda.gov/

media/120060/download). Having clinicians analyze such a large number of ECGs is 

impractical.

Recently, driven by the introduction of deep learning methodologies, automated systems 

have been developed, allowing rapid and accurate ECGs classification1. In the 2017 

PhysioNet Challenge for atrial fibrillation classification using single-lead ECGs, multiple 

efficient solutions utilized deep neural networks9. Deep learning has been shown to be 

susceptible to adversarial examples in general2,3 and very recently in medical applications4. 

Adversarial examples in ECGs have been independently discovered by Chen et al.10. In 

contrast to Chen et al.10, this Letter develops a model-based smoothed attack and explores 

the existence of adversarial examples by constructing a sampling process for them. Part of 

this paper’s contribution is to establish a mathematical construction of adversarial examples 

for ECGs that align with human expert evaluation.

We obtained ECGs from the publicly available 2017 PhysioNet/CinC Challenge6. The goal 

of the challenge was to classify single lead ECG recordings to four types: normal sinus 

rhythm (Normal), atrial fibrillation (AF), an alternative rhythm (Other), or noise (Noise). 

The challenge dataset contained 8,528 single-lead ECG recordings lasting from 9s to ~60s, 

including 5,076 Normal, 758 AF, 2,415 Other, and 279 Noise examples. We used 90% of the 

dataset for training and 10% for testing.

We used a 13-layer convolutional network11 that won the 2017 PhysioNet/CinC Challenge. 

We evaluated both accuracy and F1 score. F1 score ranges from 0 to 1, and a high F1 score 

indicates good network performance, with high true positive and true negative rates. The 

model achieved an average accuracy rate of 0.88 and F1 score of 0.87 for the ECG classes 

(Normal, AF, and Other) on the test set, which is comparable to state-of-the-art ECG 

classification systems11.

Adversarial examples are designed to cause a machine learning algorithm to make a mistake. 

An adversarial example is made by adding a small perturbation to the input of the machine 

learning algorithm that changes the prediction on the input, while also ensuring it still looks 

like a real input3. These kinds of adversarial examples have been successfully created in the 

field of medical imaging classification4.
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Traditional adversarial attack algorithms add a small imperceptible perturbation to lower the 

prediction accuracy of a machine learning model. However, attacking ECG deep learning 

classifiers with traditional methods creates examples that display square wave artifacts that 

are not physiologically plausible (Extended Data Fig. 1). By taking a weighted average of 

nearby time steps, we crafted smooth adversarial examples that cannot be distinguished from 

original ECG signals but will still fool the deep network to make a wrong prediction (See 

Methods).

We generated adversarial examples on the test set. We transformed the test examples to 

make the network change the label of Normal, Other, and Noise to any other label. For AF, 

we altered the AF test examples so that the deep neural network classifies them as Normal. 

We can also alter Normal, AF, Other, and Noise to any given label. We show the results in 

Table 1. Misdiagnosis of AF as Normal may increase the risk of AF-related complications 

such as stroke and heart failure. We showcase the generation of adversarial examples in Fig. 

1.

After adversarial attacks, 74% of the test ECGs originally classified correctly by the network 

are now assigned a different diagnosis, ultimately showing that deep ECG classifiers are 

vulnerable to adversarial examples. To assess how the generated signals would be classified 

by human experts, we invited one board certified medicine specialist and one cardiac 

electrophysiology specialist to diagnose whether signals generated by our methods and 

original ECGs come from the same class. Figure 2a shows that almost all of the modified 

signals were judged as belonging to the same class as the original signal. This shows that the 

deep network failed to correctly classify most of the newly generated examples, when a 

human would have assigned only 1.4% of them to a different class.

We also invited the clinical specialists to distinguish ECG signals from the adversarial 

examples generated by our smooth method and the traditional attack method based on 

projected gradient descent (PGD)12,13. The question we asked is “Which one in the pair is 

the real ECG?” The calculated probability of correctly identifying ECGs is the number of 

correct answers they obtained for each pair over the number of pairs we showed them. The 

doctors were not shown adversarial examples beforehand.

Figure 2b shows that the adversarial examples generated by our method are significantly 

harder for clinicians to distinguish from the original ECG than the traditional attack method. 

On average, the clinicians were able to correctly identify the smoothed adversarial examples 

from their original counterpart 62% of the time. (The electrophysiology specialist was 

slightly more accurate at 65% versus 59%.) PGD examples are easier for clinicians to detect 

because of square wave discontinuity artifacts that are not physiologically plausible. These 

discontinuities also appear in PGD examples for images, but in images they get hidden by 

the resolution and color channels.

Here we provide a construction that shows that adversarial examples are not rare. In 

particular, we show that it is possible to create more examples that remain adversarial by 

adding a small amount of Gaussian noise to an original adversarial example and then 

smoothing the result. We repeat this process 1,000 times and find that the deep neural 
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network still incorrectly classifies all 1,000 new, adversarial examples. Adding Gaussian 

noise could still produce adversarial examples on 87.6% of the test examples from which 

adversarial examples were generated. We plotted all of the newly crafted adversarial 

examples, which form a band around the original ECG signal, as shown in Fig. 3. The 

signals in the band may intersect. We chose pairs of intersecting signals and concatenated 

the left half of one signal with the right half of the other to create a new example. We found 

that signals created by concatenation are also adversarial examples. We also sampled 

random values in the band for each time step and then smoothed them to create new 

adversarial examples. These different perturbations on adversarial examples all led to new 

examples that remain mislabeled. This means that the adversarial examples should not be 

considered rare isolated cases, in that from a single adversarial example, many more can be 

created.

The use of machine learning algorithms as a healthcare tool for clinical interpretation and 

prediction is seeing an unprecedented surge. A search in Pubmed for the phrases 

“electrocardiogram” AND (“machine learning” OR “artificial intelligence”) yields over 

1200 publications. Specifically, deep learning has been utilized recently to create algorithms 

that predict the ejection fraction14, predict the susceptibility to QT prolongation in patients 

with normal QT intervals (https://www.alivecor.com/research/investigational-qt/artificial-

intelligence-and-deep-neural-networks/) and identify patients with hyperkalemia15 -- all 

based on the ECG and demographics, without any additional clinical information. This 

promising ability of deep learning algorithms to reduce the cost or improve the performance 

of complex and laborious daily clinical challenges is creating significant incentive for rapid 

implementation and approval as practical clinical tools. Correspondingly, 23 machine 

learning algorithms, many that use deep learning, have been approved by the FDA for 

medical use in 2018 alone, a 283% increase from 2017 (https://medicalfuturist.com/fda-

approvals-for-algorithms-in-medicine/). Products for arrhythmia classification with single-

lead ECGs such as the Apple Watch, which sold over 20 million units in 2018 alone (https://

ww.9to5mac.com/2019/02/27/apple-watch-sales-2018/) and the Alivecor Kardia, which uses 

deep learning and has recorded over 25 million ECGs (https://www.alivecor.com/press/

press_release/alivecor-data-yield-reaches-25mm-ecgs/), are increasingly being adopted. 

Hence, it is imperative to understand the limitations and vulnerabilities of deep learning 

algorithms used to detect arrhythmia from ECGs.

In this work, we demonstrate the ability to add imperceptible perturbations to ECG tracings 

in order to create adversarial examples that fool a deep neural network classifier into 

assigning the examples to an incorrect rhythm class. Moreover, we showed that such 

examples are not rare.

These findings question the safety of using deep learning in analyzing ECGs at scale where 

millions of tests may be run every week by widespread consumer devices. To increase 

robustness to adversarial examples, it is crucial that classification methods for ECGs, 

especially those intended to operate without human supervision, generalize well to new 

examples. However generalization may be a significant challenge, because different 

environments and different devices can introduce unknown perturbations to the signal. Thus, 
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ensuring safe generalization would require obtaining labeled data from each new 

environment and new device.

One way to protect against adversarial examples is adversarial training. Adversarial training 

works by generating adversarial examples repeatedly during model training based on the 

current model and adding them to the training batch used to improve the model12. However, 

such approaches can only protect against known adversarial examples, created with a given 

specific attack method, and are not guaranteed to protect against future attack methods. (See 

Methods for detailed discussions.) A more direct approach would be to certify deep neural 

networks for robustness with mathematical proofs16,17 as suggested for other safety-critical 

domains, such as the aviation industry18.

The possibility to construct even a single adversarial example may still enable malicious 

actors to inject small perturbations into RWD that are indistinguishable to the human eye. 

Indistinguishability matters to malicious actors to ensure they cannot be discovered by 

human auditors. The ability to create adversarial examples is an important issue, with future 

implications including the robustness to the environmental noise of medical devices that rely 

on ECG interpretation (for example, pacemakers, defibrillators)19, the skewing of data to 

alter insurance claims4 and the introduction of intentional bias into clinical trials. For 

example, imagine a large clinical trial intended to assess the effect of a treatment on 

reducing arrhythmias. Such a trial could use a pretrained neural network to identify how 

many arrhythmias occurred. Attacking this pretrained network could inject bias into the 

clinical trial by changing ECGs to reduce the number of documented arrhythmias. To 

prevent such possibilities, it is paramount that platforms for collection and analysis of RWD 

implement principles from ‘trusted computing’ to provide trusted data provenance 

guarantees that can certify that data has not been tampered with from device acquisition to 

any downstream analysis20. In this vein, closed systems without access to the raw ECG 

reduce malicious actor’s practical ability to attack systems. For devices where only the test 

signal can be modified, it is still possible to train a different network and generate 

adversarial examples using the blackbox attack from ref.12. For commercial devices such as 

the Apple Watch, malicious actors can potentially get access to many forward passes and 

construct examples using only the forward passes to solve the optimization problem used to 

construct smoothed adversarial examples21. If access to the full model is available, gradient-

based attacks can be directly implemented.

One thing to note is that the lack of robustness observed is not inherent to the use of 

statistical methods to classify ECGs. Humans tend to be more robust to small perturbations 

because they use coarser visual features to classify ECGs, such as the R-R interval and the 

P-wave morphology. These features change less under small perturbations and generalize 

better to new domains. To automate the classification of more complex ECG tracings, it may 

be useful to incorporate hierarchical coarse pattern-dependent classification models along 

with deep learning to not only increase robustness to adversarial attacks but also to improve 

network accuracy. Additionally, regularizing deep networks to prefer coarser features can 

improve robustness. Tree-based learning algorithms using coarser features will also be more 

robust to attacks.
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In conclusion, with this work, we do not intend to cast a shadow on the utility of deep 

learning for ECG analysis, which undoubtedly will be useful to handle the volumes of 

physiological signals available in the near future. This work should, instead, serve as an 

additional reminder that machine learning systems deployed in the wild should be designed 

with safety and reliability in mind22, with a particular focus on training data curation and 

provable guarantees on performance.

Methods

Description of the Traditional Attack Methods

Two traditional attack methods are the fast gradient sign method (FGSM)23 and PGD12,13. 

They are white-box attack methods based on the gradients of the loss used to train the model 

with respect to the input. Both FGSM and PGD can be used for targeted attacks and 

untargeted attacks. Targeted attacks force the network to output a specific incorrect label, 

while untargeted attacks force the network to make any wrong classification. Untargeted 

attacks usually minimize the probability of the true class; targeted attacks maximize the 

probability of the target class.

Denote our input entry x, true label y, classifier (network) f, and loss function L(f(x),y). We 

describe FGSM and PGD below:

• Untargeted Attack

- FGSM: FGSM is a fast algorithm. For

an attack level ε, FGSM sets

xadv = x + ϵsign ∇xL f x , y .

The attack level is chosen to be sufficiently small so as to be undetectable.

- PGD: PGD is an improved version that uses multiple iterations of FGSM. 

Define Clipx,ε(x′) to project each x′ back to the infinity norm ball by 

clamping the maximum absolute difference value between x and x′ to ε. 

Beginning by setting x0′ = x, we have

xi′ = Clipx, ε xi − 1′ + αsign ∇xL f xi − 1′ , y . (1)

After T steps, we get our adversarial example xadv = xT′ .

• Targeted Attack (target class t)

- FGSM: For an attack level ε, FGSM sets

xadv = x − ϵsign ∇xL f x , t .

- PGD: Beginning by setting x0′ = x, we have
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xi′ = Clipx, ε xi − 1′ − αsign ∇xL f xi − 1′ , t .

Unlike untargeted attacks, the gradient is subtracted. After T steps, we get 

our adversarial example xadv = xT′ .

In this Letter, we use targeted attacks to change AF to Normal and untargeted attacks on 

classes besides AF.

Our Smooth Attack Method

To smooth the signal, we use convolution. Convolution takes the weighted average of one 

position of the signal and its neighbors:

a ⊛ v [n] = ∑
m = 1

2K + 1
a[n − m + K + 1] ∙ v[m],

where a is the objective function and v is the weight or kernel function. In our experiment, 

the weights are determined by a Gaussian kernel. Mathematically, if we have a Gaussian 

kernel of size 2K + 1 and standard deviation σ, we have

v[m] =
exp( − m − K − 1 2

2*σ2 )

∑i = 1
2K + 1exp( − i − K − 1 2

2*σ2 )

We can easily see that when σ goes to infinity, the convolution with the Gaussian kernel 

becomes a simple average; when σ goes to zero, the convolution becomes the identity 

function. Instead of getting an adversarial perturbation and then convolving it with the 

Gaussian kernels, we could create adversarial examples by optimizing a smooth perturbation 

that fools the neural network. We introduce our method of training ‘smooth Adversarial 

Perturbations ‘(SAP). In our SAP method, we take the adversarial perturbation as the 

parameter θ and add it to the clean examples after convolving with a number of Gaussian 

kernels. We denote K(s,σ) to be a Gaussian kernel with size s and standard deviation σ. The 

resulting adversarial example can be written as a function of θ:

xadv θ = x + 1
m ∑

i

m
θ ⊛ K s[i], σ[i]

In our experiment, we let s be {5,7,11,15,19} and σ be {1.0, 3.0, 5.0, 7.0, 10.0}. Then we try 

to maximize the loss function with respect to θ to get the adversarial example in an 

untargeted attack. We still use PGD but this time on θ:

θi′ = Clip0, ϵ θi − 1′ + αsign ∇θL f xadv θi − 1′ , y . (2)
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There are two major differences between updates Equation (2) and Equation (1). In Equation 

(2), we update θ not xadv and clip around zero not the input x. In practice, we initialize the 

adversarial perturbation θ to be the one obtained from PGD (ϵ = 10,α = 1,T = 20) on x and 

run another PGD (ϵ = 10,α = 1,T = 40) on θ.

For targeted attacks (target class t), the update is:

θi′ = Clip0, ϵ θi − 1′ − αsign ∇θL f xadv θi − 1′ , t .

If we take the same combination of convolution on the adversarial examples generated in 

PGD to create smooth adversarial examples, 71% of the originally classified correctly test 

ECGs are assigned different labels, which is worse than our smooth attack method (74%). 

The idea of optimizing parameters of a smooth model could be expanded to other models, 

such as differential equation models of ECGs24 to find adversarial examples that more 

closely match human physiology.

Existence of Adversarial Examples

Our experiments are designed to show that adversarial examples are not rare. We only 

discuss untargeted attacks, but it is easy to extend our analysis to targeted attacks. Denote 

the original signal by x and adversarial example we generate by xadv.

First, we generate Gaussian noise δ[i] ∼ N 0,25  and then add it to the adversarial examples. 

To make sure the new examples are still smooth, we smooth the perturbation by convolving 

with the same Gaussian kernels in our smooth attack method. We then clip the perturbation 

to make sure that it is still in the infinity norm ball. The newly generated example is

xadv′ = x + Clip0, ϵ( 1
m ∑

i = 1

m
xadv + δ − x ⊛ K s[i], σ[i]

We repeat the process of generating new examples 1000 times. These newly generated 

examples are still adversarial examples. Some of them may intersect. For each intersected 

pair, we concatenate the left part of one example and the right part of the other to create new 

adversarial examples. Denote x1 and x2 to be a pair of adversarial examples that intersect. 

Suppose they intersect at time step t and the total length of the example is T. The new hybrid 

example x′ satisfies:

x′[1: t] = x1[1: t]; x′[t + 1:T ] = x2[t + 1:T ]

where [1:t] means from time step 1 to time step t. All the newly concatenated examples are 

still misclassified by the network.

The 1000 adversarial examples form a band. To emphasize that all the smooth signals in the 

band are still adversarial examples, we sample uniformly from the band to create new 

examples. Denote max[t] and min[t] to be the maximum value and minimum value of 1000 

samples at time step t. To sample a smooth signal from the band, we first sample a uniform 
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random variable a[t] ∼ U min[t], max[t]  for each time step t and then we smooth the 

perturbation. The example generated by uniform sampling and smoothing is

xadv′ = x + Clip0, ϵ( 1
m ∑

i = 1

m
(a − x) ⊛ K(s[i], σ[i]))

We repeat this procedure 1000 times. All of the newly generated examples still cause the 

network to make the wrong diagnosis. We visualize the three procedures to show the 

existence of adversarial examples in Extended Data Fig. 2.

Limitations of Adversarial Training

Adversarial training12 is a more effective method to build robust models than including 

adversarial examples in the training data. However, adversarial training does well only on 

small image datasets like MNIST25, not larger ones like CIFAR1026. For CIFAR10, even 

dynamically including adversarial examples while training the model will not lead to a 

robust model27. In addition, there is no formal guarantee that adversarial training 

implemented with PGD can converge to the saddle point of the infinity norm minimax 

formulation of adversarial training. For example, switching to a higher order optimizer may 

produce different adversarial examples not captured by PGD-based adversarial training.

Statistics and reproducibility

Figure 1a,b was generated for 50 AF signals and 124 normal sinus rhythms. Figure 3 was 

generated twice. Extended Data Fig. 1 was generated for 40 examples. We obtained similar 

results for the examples we generated.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The dataset can be accessed from https://physionet.org/challenge/2017/}{https://

physionet.org/challenge/2017/

Code Availability

The code is available from https://github.com/XintianHan/ADV_ECG}{https://github.com/

XintianHan/ADV\_ECG
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Extended Data

Extended Data Fig. 1. 
An adversarial example created by Projected Gradient Descent (PGD) method. This 

adversarial example contains square waves that are physiologically implausible.

Extended Data Fig. 2. 
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Demonstration of three procedures to show the existence of the adversarial examples. a, We 

add a small amount of Gaussian noise to the adversarial example and smooth it to create a 

new signal. b, For intersected signals, we concatenate the left half of one signal with the 

right half of the other to create a new one. c, We sample uniformly from the band and 

smooth to create a new signal.
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Fig. 1|. Demonstration of disruptive adversarial examples.
a, Example of an original ECG tracing that was correctly diagnosed by the network as atrial 

fibrillation (AF) with 100% confidence, but, after the addition of smooth perturbations, was 

diagnosed wrongly as normal sinus rhythm (Normal) with 100% confidence. b, Example of 

an original ECG tracing that was correctly diagnosed by the network as normal sinus rhythm 

with 100% confidence, but after the addition of smooth perturbations was diagnosed 

wrongly as AF. Perturbation and tracing voltages are plotted on the same scale.
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Fig. 2|. Accuracy of the network in classifying adversarial examples and clinician success rate in 
distinguishing authentic ECGs from adversarial examples.
a, Top, schematic showing that a smooth adversarial attack generated adversarial examples 

of ECG tracings that were misclassified in 74% of cases. Bottom, schematic showing that 

surveyed clinicians concluded that 246.5/250 pairs of adversarial examples and the original 

ECGs belonged to the same class. b, Schematic showing the success rate of ECG 

interpretation experts in distinguishing between 100 pairs of original ECGs and adversarial 

examples generated by the traditional attack method (PGD), the smooth attack method and 

Han et al. Page 14

Nat Med. Author manuscript; available in PMC 2021 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the ideal attack method. The ideal attack method creates signals that clinicians cannot 

distinguish completely from the original signals.
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Fig. 3|. Perturbing a known adversarial example to generate multiple new ones.
Schematic showing that 1,000 different adversarial examples can be generated from the 

original ECG signal by adding small Gaussian noise and smoothing. The newly generated 

adversarial examples as well as the original ECG signal are plotted at the top. A portion of 

the original ECG signal and adversarial examples is enlarged in the circle below; the newly 

generated examples form a wide band around the original example.
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Table 1|
Success rate of targeted smooth attack method.

The original class is the class into which the network classifies the signal before the adversarial attack. The 

target class is the class into which the adversarial attack aimed to make the network classify the signal after 

adding. The success rate is calculated as the percentage of examples from the original class that were 

misclassified by the network to the target class after the adversarial attack.

Target Class

Normal AF Other Noise

Original class

Normal / 57% 55% 13%

AF 74% / 87% 22%

Other 72% 76% / 20%

Noise 79% 64% 57% /
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