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Acquiring electrocardiographic (ECG) signals and performing arrhythmia classification in mobile device scenarios have the advantages
of short response time, almost no network bandwidth consumption, and human resource savings. In recent years, deep neural networks
have become a popular method to efficiently and accurately simulate nonlinear patterns of ECG data in a data-driven manner but
require more resources. ,erefore, it is crucial to design deep learning (DL) algorithms that are more suitable for resource-constrained
mobile devices. In this paper, KecNet, a lightweight neural network construction scheme based on domain knowledge, is proposed to
model ECG data by effectively leveraging signal analysis and medical knowledge. To evaluate the performance of KecNet, we use the
Association for the Advancement of Medical Instrumentation (AAMI) protocol and the MIT-BIH arrhythmia database to classify five
arrhythmia categories. ,e result shows that the ACC, SEN, and PRE achieve 99.31%, 99.45%, and 98.78%, respectively. In addition, it
also possesses high robustness to noisy environments, lowmemory usage, and physical interpretability advantages. Benefiting from these
advantages, KecNet can be applied in practice, especially wearable and lightweight mobile devices for arrhythmia classification.

1. Introduction

Arrhythmias are the most common cardiovascular disease
and the leading cause of stroke and sudden cardiac death.
Electrocardiogram (ECG) is a common tool for detecting
arrhythmias because of its noninvasive and easy-to-perform
nature. Because of the randomness of arrhythmia onset, it is
necessary for patients to be monitored for a long period,
causing the difficulty of processing the resulting large
number of ECG data. A computer-aided arrhythmia diag-
nosis system running on mobile devices can reduce labor
and responding time, thereby improving the efficiency of
daily arrhythmia classification [1, 2].

Most of the existing algorithms for automatic ECG
recognition of arrhythmia are based on the assessment of

morphological features of single or fewer heartbeats. Due to
individual differences, the methods based on short-term
features are prone to errors. In addition, numerous clinical
studies have demonstrated the importance of long-term
rhythm features for detecting arrhythmia associated with
many diseases such as tachycardia, atrial fibrillation, and
premature beats. ,is motivated us to study a new solution
to arrhythmia classification based on a long period of
continuous ECG signals.

In recent years, ECG classification algorithms based on
deep neural networks (DNNs) have demonstrated excellent
performance. DNNs use raw ECG data as input to build an
end-to-end model for feature learning and classification to
achieve comparable accuracy for both noise-free data and
noisy data. Among them, convolutional neural networks
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(CNNs) [3–5] and recurrent neural networks (RNNs) [6–8]
are the two most frequently used classes of neural nets.

One of the major problems with DNNs is that the
performance of the algorithm is highly dependent on the
network’s scale. Most of the current mobile devices are still
limited in both computation power and memory capacity
and thus unfit for existing DNN approaches. ,erefore, it is
crucial to building lightweight networks that can operate in
resource-constrained environments. Currently, there exist
two main approaches to build lightweight networks. (1) ,e
first approach uses network pruning techniques [9] or
knowledge distillation [10] to achieve model compression
and inference acceleration by removing redundant struc-
tures and parameters. Because the accuracy-focused models
contain strategies that help overcome various problems
encountered during training, such as overfitting, it is difficult
to scale such a model down sufficiently without sacrificing
accuracy. (2) ,e second approach designs models specifi-
cally for resource-constrained environments. Such effi-
ciency-focused models include MobileNet [11], ShuffleNet
[12], and LiteNet [13]. ,is approach sacrifices model
performance to achieve a more efficient network structure
[14].

On the other hand, DNNs fail to take advantage of useful
features established by cardiologists in the past decades;
therefore, we need an immense amount of high-quality
labeled data to learn the potential causal relations between
ECG data and diseases. Such data are often difficult to obtain
and expensive. ,erefore, only limited data sets can be used
for model training. Because of the inevitable contamination
by various noises in practical application, models built on
limited data sets may be at risk of low robustness. ,erefore,
it is still a challenge to design a lightweight and robust DL
algorithm for resource-constrained mobile devices.

Recent studies have shown that neural networks ap-
proximate the mapping between input and output data. It is
believed that the mapping can be simplified by using domain
knowledge or explicit features of the raw data, and the
network presentation capability and scale can be optimized
accordingly [15]. In ECG signals, the information reflecting
diseases corresponds to a certain frequency range. Based on
these findings, a lightweight DL architecture named KecNet
is implemented to recognize 10-second ECG signal frag-
ments in this study. 10 seconds is the typical duration of the
central rhythm strip acquisition on a routine 12-lead ECG
[16]. ,e developed scheme includes the following features.
Firstly, a CNN network containing a customized filter bank
is designed based on digital signal processing to precisely fit
each application. By imposing constraints on filter shapes, it
effectively extracts components in a specific frequency range
from complex signals. Because the filter design is incor-
porated with the knowledge of digital signal processing, the
proposed approach performs more physical interpretability
than the conventional CNN [17]. It is also muchmore robust
against noisy environments and less consuming in terms of
implementation cost. Secondly, the long-duration correla-
tion features of the ECG fragments are represented sym-
bolically based on the clinical knowledge, which is used as an
additional parameter to further constrain the decision-

making process and improve the performance of the model.
We evaluate the performance of the proposed KecNet on the
MIT-BIH arrhythmia database. According to the Associa-
tion for the Advancement of Medical Instrumentation
(AAMI) protocol [18], heartbeat types in the MIT-BIH
database [19] can be sorted into 5 main classes: normal beat
(N), supraventricular ectopic beat (S), ventricular ectopic
beat (V), fusion beat (F), and unknown (Q). Experimental
results show that the proposed method has better perfor-
mance and robustness for the arrhythmia classification task.

2. Problem Definition

Most deep learning-based approaches to arrhythmias adopt
the form of supervised learning to learn mapping functions.
Mathematically, we denote an ECG data set containing N
samples as X � (x(i), y(i))|i ∈ N􏼈 􏼉, where x(i) is the ith
sample and y(i) is the label. ,e procedure for the neural
network learning about data can be viewed as a parameter
optimization problem, as formulated in

θ∗f � argmin
θf

􏽘
i∈N

L f x
(i)
∗ , θf􏼐 􏼑, y

(i)
􏼐 􏼑, (1)

where f(∗ , θf) is the function that we will design to
simulate the mapping between data and labels and θf is the
parameters associated with the mapping f(∗). L(∗) is a loss
function describing the loss of assigning a prediction cat-
egory for a sample x(i) with label y(i).

Due to the complexity of arrhythmia pathology, the
conventional approach for improving the performance of
classification models is to increase the number of layers of
the network and enhance the representation capability of the
model by adding nonlinear operations. However, this poses
three problems. Firstly, the increase in the number of layers
causes the increase of parameters in the network, which
intensifies the storage difficulty and computational com-
plexity of the model. Secondly, the increase in model depth
may cause the risk of vanishing gradient [20], resulting in the
inability to effectively update the parameters of the shallow
convolution kernel. ,irdly, more training data is needed to
prevent overfitting of the model [21].

Based on the above analysis, our goal is to achieve better
classification performance using shallow networks without
increasing the model complexity and training data. To
achieve this goal, we try to incorporate relevant domain
knowledge into the design process of convolutional neural
networks, mainly including using the amplitude-frequency
characteristics of bandpass filters to filter the noise in ECG
signals to improve the model’s ability to grasp valid infor-
mation, and extracting dominant features of ECG data as
additional parameters to prevent the loss of temporal in-
formation due to the pooling mechanism of CNN.

3. Methods

,e workflow of the proposed method is shown in Figure 1.
First, the data is segmented and normalized. ,e segmented
data are fed into the KecNet model, which contains a CNN
structure with a customized convolutional layer and a
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symbolic parameter extraction structure in the feature ex-
traction part of the model. Finally, the fused feature vectors
are fed into the softmax classifier for classification.

3.1. Sinc-Convolution Layer. ,e ECG signal is a mixture of
electrical activity from various parts of the myocardium.
Depending on the quality of the data, it may also include
multiple types of noise, such as baseline drift, motion ar-
tifacts, and electromyographic interference [22]. ,e filter
information learned by traditional CNNs usually contains a
mixture of noise and multiband modes, which reduces the
representation capability and readability of the ECG signal
[17].

In order to overcome this defect, it is very important to
optimize the first convolution layer of CNN because this
layer directly processes the original ECG samples containing
rich underlying information and helps the subsequent
convolution layer to perform complex nonlinear represen-
tation of data. ,is study introduces the Sinc-convolution
layer, a structure based on the interpretable CNN developed
by Ravanelli and Bengio for speech recognition [17]. ,e
core idea of this structure is based on parameterized car-
dinal-sine (Sinc) functions for bandpass filter design. While
the conventional CNN learns all the parameters of the filters,
the Sinc-convolution defines a tunable filter bank g with
clear physical explanation in advance to replace the filter in
traditional CNN, as formulated in

s[n] � x[n]∗g n, θg􏽨 􏽩, (2)

where θg is the parameter to be learned. For ECG signal
analysis, the bandpass filter is an effective choice for de-
signing tunable filter banks [23], because the time domain
signal is divided into different subspaces by frequency band
transformation so that the filter can be activated by the
information of specific frequency band to achieve more
effective and reliable filtering.

In the frequency domain, the amplitude of a universal
bandpass filter can be written as the difference between two
rectangular filters. After returning to the time domain using
the Fourier transform [23], the function g becomes as

g n, fL, fH( 􏼁 � 2fH sin c 2πfHn( 􏼁 − 2fL sin c 2πfLn( 􏼁,

(3)

where fL and fH are the learned low and high cut-off
frequencies, and sin c(x) � sin(x)/x.

To mitigate the spectral leakage, a popular solution is
windowing by multiplying the truncated function g with a
window function:

gϖ n, fH, fL( 􏼁 � g n, fH, fL( 􏼁∗ϖ(n). (4)

In this work, we use the Hamming [15] window as
follows:

ϖ(n) � 0.54 − 0.46 cos
2πn

L
􏼒 􏼓. (5)

In fact, as shown in Figure 2, similar results are obtained
when training arrhythmia classification models, regardless
of whether the window function type is Hamming, Hanning
[16], or Kaiser [22]. In addition, since filter g is symmetric,
the computational efficiency can be improved with one side
of the filter inheriting the results from the other side.

,e experimental results in Section 5.3 show that the
Sinc-convolution layer is more selective in frequency re-
sponse compared to the CNN. Because the filter effectively
extracts components from complex signals over a specific
frequency range, it improves the model’s robustness and
readability [24]. After the Sinc filter self-adaptively classifies
the frequency band of the raw ECG data, the standard CNN
structure is used to extract the time domain features.

3.2. Symbolic Representation of Rhythmic Features. When
analyzing the discrete-time series of the data, converting
sequences into symbols with practical meaning is a common
method to simplify the analysis process [25]. In fact, some
quantitative features based on clinical knowledge (e.g., heart
rate variability [26], RR interval [27], etc.) are considered to
be more relevant to the underlying pathological mecha-
nisms. Among them, the coefficient of variation (CV) de-
scribes the degree of dispersion of the RR interval and is
commonly used to measure the regularity of the RR interval
[26]. Since the R-peak is the most obvious waveform in the
ECG, features based on the RR interval have stronger noise
immunity and are one of the most important features for
analyzing the rhythm variation [28].
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Figure 1: Workflow of the proposed method.
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,e model is optimized based on the above findings. In
addition to the CNN structure designed to extract spatial
morphological features, the CVs were added to the network
as symbolic representations of rhythm features. ECG frag-
ments with anomalous rhythms are identified more easily.
,e computational procedure is as follows/

Step 1. Detect the R-peak of ECG fragment x(i) based on the
Pan-Tompkins algorithm [29] to obtain the sequence of
R-peak positions R(i) � r

(i)
1 , r

(i)
2 , . . . , r

(i)
j􏽮 􏽯.

Step 2. Calculate the RR interval series T(i) � t
(i)
1 , t

(i)
2 , . . . ,􏽮

t(i)
n 􏼉.

Step 3. Calculate the mean value t � 􏽐
n
i�1 ti/n and standard

deviation σ �
�����������

􏽐
n
i�1(ti − t)/n

􏽱
of the sequence T(i).

Step 4. Calculate the coefficient of variation CV(i) � (σ/t).

3.3.2eArchitecture of theNetwork. ,e proposed KecNet is
based on a 1D convolutional neural network, including one
Sinc-convolution layer, two standard convolution layers,
three pooling layers, two batch standardization layers, three
dropout layers, one global average pooling layer, and three
dense layers. Table 1 summarizes the basic structure of
KecNet. ,e key characteristics of different layers in basic
KecNet are detailed as follows:

(i) Sinc-convolution layer: ,e length of the filter
significantly affects the classification accuracy.With
the increase of filter length, the accuracy is im-
proved. ,rough experiments, the length of con-
volution kernel L� 251 is selected. It should be
noted that since a Sinc filter has only two param-
eters, no matter how long the filter length is se-
lected, the parameters will not increase

(ii) Standard convolution layer: Two 1D convolution
layers are added after the Sinc-convolution layer

and convolve with a filter size of 5. All convolution
layers (including Sinc-convolution layer) adopt
ReLU activation function [30]

(iii) Max-pooling layer: KecNet performs a max-
pooling operation after the Sinc-convolution
layer and two standard convolution layers. ,e
max-pooling operation reduces the computation
cost between the convolution layers while
achieving translation invariance of the neural
network

(iv) Dropout [31] layer: ,e dropout layer reduces the
complex coadaptation relationships between
neurons by randomly dropping a fraction of the
network nodes and overcomes the overfitting
problem at the same time. We build the dropout
layer after each of the two groups of pooling layers,
with a ratio of 0.2. We also add a dropout layer
after the first full connection layer, with a ratio of
0.3

(v) Batch Normalization (BN) [32] layer: ,e BN
technique ensures the validity of the gradient by
adjusting the distribution of the output data,
smoothing the loss plane, and speeding up the
convergence of the network. We apply the BN layer
after the two dropout layers

(vi) Global Average Pooling (GAP) [33] layer: GAP
averages the values of all elements of the feature
map to reduce the number of parameters. We use
the GAP layer before the dense layer. Also, the
rhythm feature notation described in Section 3.2 is
added to the GAP layer to maximize the impact of
this factor on the network

(vii) Dense layer: Two fully connected layers are used in
the basic KecNet. ,e first layer consists of 16 units.
,e second layer consists of 8 units. After dense
layers, the softmax function is used as a classifier to
predict five classes

4. Experimental Setup

4.1. Materials and Preprocessing. We used the MIT-BIH ar-
rhythmia database to evaluate the performance of the proposed
method. ,e database contains 48 dynamic ECG recordings,
each with 30-minute long, 360Hz sampling rate, 11-bit res-
olution, and ±10mv dynamic range. Each recording contains
two lead configurations (usually MLII and V1). Lead II is
commonly used for wearable single-lead ECG sensors.
According to the AAMI protocol, we merged the original 18
categories of heartbeat types in the MIT-BIH database into 5
major categories. ,e heartbeat classes’ mapping between the
AAMI protocol and theMIT-BIH database is shown in Table 2.

After data merging, a sliding window with lengthM� 3600
is set to segment the data. Because the data sampling rate is
360Hz, it is equivalent to using about 10 s of data as input. To
overcome the data imbalance problem, the data were syn-
thesized by translating the start point for small-size data. After
the enhancement, each category has 55000 samples. Because
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Figure 2: Comparison of different window functions.
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each signal in the MIT-BIH dataset is labeled with a disease
class accurate to the second, the class with the largest per-
centage is used as the label for that ECG segment. Finally, the
ECG segments are normalized byZ-score to solve the problems
of amplitude scaling and eliminate the offset effect.

,e data set is divided into two mutually exclusive sets:
training set (80%) and testing set (20%), and 12.5% of the
data in the training set is used as the validation set. To ensure
the consistency of the data distribution, each class is ran-
domly sampled separately according to the proportion of the
data set. ,e data set division is shown in Figure 3.

4.2. EvaluationCriteria. ,e following indicators are used to
evaluate the proposed method:

(i) Accuracy (ACC): ACC is an overall measure of the
correctness of arrhythmia classification results rel-
ative to the entire sample.

ACC �
TP + TN

TP + TN + FP + FN
. (6)

(ii) Sensitivity (SEN): SEN indicates the proportion of
samples that were correctly predicted in all the
samples that were truly positive. For disease clas-
sification, sensitivity is a very important criterion,
with the higher sensitivity indicating the lower miss
rate of the model.

SEN �
TP

TP + FN
. (7)

(iii) Precision (PRE): PRE indicates the proportion of
samples that were true positive in all the predicted
positive samples.

PRE �
TP

TP + FP
. (8)

(iv) Parameter Count (PC): In DL, PC represents the
model size and the number of unit connections
between layers (computational cost). It is an im-
portant factor that affects the computation com-
plexity of DL algorithms. ,e lower the PC is, the

lower the computation cost is and the less memory
the model needs.

4.3. Hyperparameters Setting. Figure 4 shows the accuracy
and loss of the training and validation set of KecNet at each
training phase. ,ese curves indicate that the accuracy and
loss of the model are stable, and the network basically
converges after 60 epochs of training. Considering the
model’s validity and training efficiency, the epoch for the
training model was set to 60. ,e hyperparameters are set by
optimizing the model through trial and error, as shown in
Table 3.

5. Results and Discussion

5.1. Analysis of Experimental Results of Model Performance.
Table 4 shows the performance of the proposed method on
the data set. A standard CNN architecture is used as the
baseline model, and the length of the first layer convolution
kernel is set to 32. It can be seen that the performance of Sinc
convolution is better than that of standard convolution.
Moreover, the parameters are reduced by about 80%
compared with the same structure of CNN.

Table 5 shows the effect of the coefficients of rhythm
variation on the model performance.,e performance of the
model is improved by 1–1.5%. However, the increase in time
is negligible.

5.2. Implementation PC Reduction. For wearables and mo-
bile devices, improving the accuracy of deep learning al-
gorithms is not the only problem. Most devices have
difficulties in deploying complex, high-performance models
due to limited computing and storage capacity. ,erefore, it
is equally crucial to reduce the memory footprint of the
model. PC represents the spatial complexity of the model,
which is an important indicator of the model size and
memory usage.

Having a low PC with guaranteed classification accuracy
is an advantage of KecNet, because the Sinc-convolution
structure greatly reduces the number of parameters in the first
convolution layer. Since the low and high cut-off frequencies

Table 1: Model parameters.

Layer Feature map element no. Kernel size Stride

Sinc module

Sinc-Conv1D 32 251 1
Max-pooling — 2 2
Dropout — — —

BN — — —

Conv module

Conv1D 16 5 1
16 5 1

Max-pooling — 2 2
Dropout — — —

BN — — —
GAP 16+ 1 — — —
Dense 16 — — —
Dropout — — — —
Dense 8 — —
Softmax 5 — — —

Journal of Healthcare Engineering 5



are the only parameters of the filter learned from ECG data,
the number of parameters is only dependent on the number of
filters. For example, for a layer with F filters of length L, a
standard CNN contains F× L parameters, while a Sinc-
convolution layer only requires F× 2. ,e parameter gain of
the Sinc-convolution layer compared to CNN is shown in

Gain(%) �
PCCNN − PCKecNet

PCCNN
× 100 � 1 −

2
L

􏼒 􏼓 × 100,

(9)
where PC is the number of parameters. PC of the CNN
increases with the increase of L, but the Sinc-convolution
layer always remains the same. Accordingly, the longer the L
is, the more gain the KecNet has in reducing PC in com-
parison with the standard CNN. For instance, the PC of
KecNet is reduced by 80% compared to the standard CNN in
Table 4.

In addition, we compare the classification performance
of KecNet with the classical CNNs: GoogleNet [34],
MobileNet, and SqueezeNet. ,e hyperparameters are set as
in Table 3. Notably, MobileNet and SqueezeNet are also
lightweight models and have been successfully deployed on
resource-constrained mobile devices, such as cell phones,
robots, and self-driving cars [35]. ,e experimental results
are shown in Table 6. In terms of classification effect, KecNet
outperforms SqueezeNet and MobileNets and is slightly
lower than GoogleNet. However, in terms of PC, KecNet
reduces the amount of PC by about 50% compared to
SqueezeNet and MobileNet and by about 80% compared to
GoogleNet.

5.3. Filter Analysis. For the feature mapping obtained from
the first convolutional layer, KecNet has some advantages
over the standard CNN in terms of interpretability and
readability. ,is is mainly because the Sinc-convolutional
structure used in the model is functionally equivalent to a
bandpass filter, which learns parameters with a clear physical
meaning, i.e., the high and low cut-off frequencies of the
ECG signal [24]. Figure 5 shows examples of filters learned
by KecNet (Figure 5(a)) and standard CNN (Figure 5(b))

using the MIT-BIH arrhythmia dataset. From the figure, it
can be seen that the filtering result of standard CNN is noisy
and not very readable. In contrast, the processing result of
KecNet for ECG signal is significantly better than CNN and
more regular.

In addition to comparing the effects, it is necessary to
analyze which bands are covered by the filters. Figure 6
shows the cumulative frequency response of the filters
learned by KecNet and CNN on the arrhythmia classification
task. ,e cumulative frequency response is obtained by
normalizing the accumulation of all the filters in the con-
volution layer. By analyzing the cumulative frequency re-
sponse, the importance of frequency-specific information
for the arrhythmia classification task can be found, since the
frequency bands with small normalized cumulative values
are less important. It can be seen that the KecNet plot has
two distinct peaks. ,e first one mainly concentrated in the
0Hz–15Hz range, which corresponds to the frequency
domain range of the P and Twaves in the ECG fragment.,e
second peak corresponds to the QRS wave in the ECG
segment, with a frequency range of 20Hz to 50Hz. ,is
result shows that KecNet has successfully adapted its
characteristics to classify ECG signals. In contrast, the
standard CNN does not exhibit a similarly meaningful
pattern: its frequency response curve does not clearly rep-
resent the frequency band peaks of the corresponding bands.
,at is, the filters learned by KecNet are, on average, more
selective than CNNs and thus can better capture the valid
information in ECG signals. Table 7 shows several examples
of frequency bandwidths extracted with KecNet. It is worth
mentioning that the ability to acquire the principal fre-
quency component of the ECG signal enhances the ro-
bustness of the network.

5.4. Generalization and Robustness in Noisy Environment.
Generally speaking, the data sets used to prove the effec-
tiveness of the proposed method are usually collected under
the same conditions. However, there are usually various
interferences in real applications. In this case, the effec-
tiveness of the automatic classification method will be

Table 2: Heartbeat classes’ mapping between the AAMI protocol and the MIT-BIH database.

AAMI classes MIT-BIH classes
Normal beat (N) NOR, NE, AE, LBBB, RBBB
Supraventricular ectopic beat (S) AP, APB, APC, NP, SP
Ventricular ectopic beat (V) VF, VE, PVC
Fusion beat (F) F
Unknown (Q) UN, FPN, P

All ECG segments

Training
(80%)

Training
(87.5%)

Testing
(20%)

Validation
(12.5%)

Figure 3: ,e percentage of ECG segments used for training and test.
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greatly reduced since it is difficult to collect labeled data for
the training purpose in all environments. In order to
overcome this shortcoming, a robust method is needed. We
discuss the robustness of KecNet in various environments by
adding white noise to the data. All the models are trained
with the original data sets. ,en, they are tested with noisy
signals. Table 8 shows the variation in the accuracy of the
models with the signal-to-noise ratio (SNR) from 0 to 60 dB.

It can be seen that the accuracy of all models is higher at
higher SNR. However, as the SNR decreases, the accuracy

(%) of the standard CNN model decreases significantly. ,e
accuracy is below 80%when SNR is 20 dB or less. In contrast,
the accuracy of KecNet is still higher than 98% and is stable.
It is demonstrated that the proposed method is more robust
than traditional CNN. ,e main reason for this result is due
to the fact that the proposed method has a clear filter with a
well-defined spectral shape at the first convolution layer,
whereas the filter learned by the traditional CNN model is
highly correlated with the training data and susceptible to
noise interference.
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Figure 4: Changes in loss value and accuracy as epoch increases.

Table 3: Hyperparameters of KecNet.

Batch size Epochs Optimizer Beta_1 Beta_2 Lr
128 60 Adam 0.9 0.999 0.0003

Table 4: Performance comparison between standard convolution and Sinc-convolution.

Convolution type ACC (%) SEN (%) PRE (%) PC Test (ms)
Standard 96.34 95.78 96.53 1226 73.2
Sinc 98.64 98.23 97.98 266 49.4

Table 5: Comparison of models performance with the coefficient of variation.
CV ACC (%) SEN (%) PRE (%) PC Test (ms)
Without 98.64 98.23 97.98 266 49.4
With 99.31 99.45 98.78 267 50.1

Table 6: Comparison of model performance.

Model ACC (%) SEN (%) PRE (%) PC
GoogleNet 99.42 99.51 99.07 1326
MobileNet 97.57 97.29 97.00 580
SqueezeNet 97.69 97.23 97.13 562
KecNet 99.31 99.45 98.78 267
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6. Conclusion

In this work, we propose a lightweight end-to-end solution
for resource-constrained mobile devices that leverages do-
main knowledge to optimize neural networks for arrhythmia
classification. Firstly, we introduce a physically interpretable
Sinc-convolutional layer to learn customized filters with
clear bandwidths as features to improve the feature ex-
traction ability of CNNs and reduce the number of pa-
rameters. Secondly, the rhythm variation coefficient is added
to the network as a symbolic representation of time series to

compensate for the difficulty of grasping long-duration
correlation features in shallow CNNs and to improve net-
work performance and clinical usability. We trained and
tested on the MIT-BIH arrhythmia data set using raw ECG
data. ,e ACC, SEN, and PRE reached as high as 99.31%,
99.45%, and 98.78%, respectively. In addition, neural net-
work size is reduced, and robustness to noise was increased.

In the future, we will collect and annotate ECG re-
cordings from real patients and study the classification of
more different types of diseases. In addition, multilead ECG
recordings will be used for training models. On the clinical

(a) (b)

Figure 5: Examples of KecNet and CNN filters. (a) Temporal of KecNet filters. (b) Temporal of CNN filters.
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Figure 6: Cumulative frequency response comparison between KecNet and standard CNN.

Table 7: Examples of the frequency bandwidths extracted by KecNet.

fL 0.7 1.2 4.4 10.7 10.1 23.5
fH 8.5 7.4 11.7 51.4 43 52.1

Table 8: Comparison of model performance under different SNRs.

(dB) CNN KecNet KecNet +CV
10 78.56 97.33 98.39
20 79.88 97.72 98.26
30 85.78 98.12 98.64
40 89.21 98.98 98.77
60 96.22 98.53 99.26

8 Journal of Healthcare Engineering



side, we will develop an ECG system that can be deployed on
wearable medical devices and low-cost ECG devices, test,
and improve its performance.

Data Availability
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