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Abstract

Introduction—Cholangiocarcinomas (CCAs) are biliary epithelial tumors with rising incidence 

over the past 3 decades. Early diagnosis of CCAs remains a significant challenge and the majority 

of patients present at an advanced stage. CCAs are heterogeneous tumors and currently available 

standard systemic therapy options are of limited effectiveness. Immune checkpoint inhibition (ICI) 

has transformed cancer therapy across a spectrum of malignancies. However, the response rate to 

ICI has been relatively disappointing in CCAs owing to its desmoplastic tumor microenvironment 

(TME).

Areas covered—Tumor microenvironment of CCAs comprises of innate and adaptive cells, 

stromal cells, and extracellular components (cytokines, chemokines, exosomes, etc.). This intricate 

microenvironment has multiple immunosuppressive elements that promoting tumor cell survival 

and therapeutic resistance. Accordingly, there is a need for the development of effective 

therapeutic strategies that target the TME. Herein, we review the components of the CCA TME, 

and potential therapies targeting the CCA TME.

Expert opinion—CCAs are desmoplastic tumors with a dense tumor microenvironment. An 

enhanced understanding of the various components of the CCA TME is essential in the effort to 

develop novel biomarkers for patient stratification as well as combination therapeutic strategies 

that target the tumor plus the TME.
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1. INTRODUCTION

Cholangiocarcinomas (CCAs) are the second most common liver malignancy, originating 

from the epithelial cells of the biliary tract. CCAs are classified as intrahepatic (iCCA), 

perihilar (pCCA), or distal (dCCA) based on their anatomic location within the biliary tree 

[1, 2]. CCA is a dismal, difficult-to-diagnose disease with patients often presenting at a late 

stage. Patients with CCA are generally asymptomatic, and diagnosing CCA at an early stage 
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remains a significant challenge. Consequently, presentation at an advanced stage precludes 

potentially curative surgical options. For patients who are not eligible for surgical resection 

or liver transplantation following neoadjuvant chemoradiation, systemic chemotherapy with 

gemcitabine and cisplatin is the standard of care. However, this combination has limited 

effectiveness with a median overall survival of approximately 12 months [3]. Tumor 

progression is largely dependent on the interactions between cancer cells and non-cancerous 

components in the tumor microenvironment (TME). The TME not only influences tumor 

development, but also impacts the sensitivity or resistance to therapeutic interventions [4]. 

CCAs are characterized by a prominent desmoplastic TME composed of various cell types 

(e.g. infiltrating immune cells and cancer-associated fibroblasts [CAFs]). This desmoplastic 

environment fosters tumor growth and therapeutic resistance [5]. Hence, targeting specific 

components of the TME is a promising therapeutic strategy. In this review, we provide an 

overview of the stromal and immune components of the CCA TME, and discuss potential 

therapeutic targets.

2. THE TUMOR IMMUNE MICROENVIRONMENT OF 

CHOLANGIOCARCINOMA

2.1. Tumor-associated macrophages (TAMs)

Macrophages are phagocytic innate immune cells that are extremely heterogeneous, and 

have different origins. Hepatic macrophages include Kupffer cells (KCs) which are tissue-

resident macrophages, and recruited macrophages supplemented by blood-derived 

monocytes [6]. In tumor biology, tumor-associated macrophages (TAMs) are an integral 

component of the tumor immune contexture, and play an essential role in cancer progression 

and remodeling of the microenvironment [7]. In iCCA, KCs release tumor necrosis factor 

(TNFα) and promote cholangiocyte proliferation as well as carcinogenesis via activation of 

JNK signaling [8]. Increased infiltration of TAMs in human CCA tumor specimens has been 

associated with poor outcomes [9, 10]. In the TME, TAMs are recruited from circulating 

monocytes by chemokine C-C motif ligand 2 (CCL-2) and colony stimulating factor 1 

(CSF-1) [11]. TAMs modulate the TME by releasing TNFα and interleukin (IL)-6 to support 

CCA cell growth [12]. TAMs also attract immunosuppressive cells such as regulatory T cells 

to the CCA TME [13].

In light of their pro-tumor role across a variety of malignancies, therapeutic targeting of 

TAMs has become an attractive anti-cancer approach. TAM depletion results in inhibition of 

WNT signaling with a resultant reduction in tumor burden in preclinical models of CCA 

[14]. There are several different approaches to inhibit or deplete TAMs in cancer, and 

various TAM targeting strategies are currently under investigation [15]. However, a recent 

study demonstrated that TAM blockade alone does not lead to tumor suppression in CCA 

due to a compensatory emergence of granulocytic-myeloid-derived suppressor cells (G-

MDSCs) [16]. Cluster of differentiation 47 (CD47) is overexpressed in a number of different 

tumor types, and plays a role in tumor progression and metastasis via interaction with signal 

regulatory protein alpha (SIRPα), mainly expressed on macrophages. The CD47/ SIRPα 
axis functions as a protective signal employed by cancer cells to avoid phagocytic 

elimination [17]. CD47 has emerged as a myeloid checkpoint, and targeting the CD47/
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SIRPα axis has garnered attention of late [18–20]. Administration of anti-CD47 (B6H12.2) 

antibody decreased CCA colonization and infiltration of TAM in a mouse model of CCA 

[21]. By demonstrating that disruption of the CD47-SIRPα interaction promotes 

phagocytosis of tumor cells in CCA, this study indicated that CD47 may be a potential 

therapeutic target in CCA.

Macrophage c-mer tyrosine kinase (MerTK), upon activation in KC, activates hepatic 

stellate cells (HSCs) via a tumor growth factor-β (TGF-β) pathway with consequent liver 

fibrogenesis [22]. In a syngeneic murine colon adenocarcinoma tumor model, blockade of 

MerTK-mediated efferocytosis resulted in the accumulation of apoptotic cells within tumors 

and triggered a type I interferon response with activation of cGAMP synthase (cGAS)-

stimulator of interferon genes (STING) signaling. Inhibiting MerTK-dependent uptake of 

dying cells by TAMs may yield a higher number of tumor antigens, thereby potentially 

supporting durable immune activation. Accordingly, blockade of MerTK in mice bearing 

tumor stimulated T cell cytotoxicity and achieved a synergistic effect when combined with 

anti-programmed cell death protein 1(PD-1) or anti-programmed cell death ligand-1(PD-L1) 

therapy [23]. These encouraging results indicate that CD47 and MerTK may be potential 

targets in CCA; nonetheless, additional studies are needed to evaluate the effectiveness of 

these emerging anti-cancer strategies in CCA.

2.2. Myeloid-derived suppressor cells (MDSCs)

MDSCs are immature myeloid cells with potent immunosuppressive properties, and 

expansion of MDSCs populations occurs in cancer [24]. MDSCs originate from the bone 

marrow, and accumulate in peripheral blood, lymphoid tissues, as well as the TME [25]. 

MDSCs inhibit cytotoxic T lymphocyte (CTL) and natural killer (NK) cell activation by 

expression of arginase (Arg1) and nitric oxide synthase 2 [26]. MDSCs also engage in 

crosstalk with regulatory T cells (Tregs) [27] and macrophages via immunosuppressive 

cytokines (e.g. IL-6 and IL-10 ), thereby promoting tumor immune evasion and 

immunotherapy resistance [28]. MDSCs comprise two large subsets: granulocytic or 

polymorphonuclear MDSCs and monocytic MDSCs (M-MDSCs). M-MDSC (defined as 

CD11b+CD14+/HLA-DR−) are significantly increased in peripheral blood of patients with 

CCA compared to healthy controls [29]. Data providing mechanistic insight vis-à-vis an 

immunosuppressive role of MDSCs in CCA progression or therapeutic targeting of MDSCs 

in CCA are limited. The majority of data elucidating MDSCs function in 

hepatopancreaticobiliary malignancies come from hepatocellular carcinoma (HCC) or 

pancreatic ductal adenocarcinoma (PDAC). In preclinical HCC models, MDSCs aggregate 

in the liver, and transform KCs to an immunosuppressive phenotype [30, 31]. Depletion of 

G-MDSCs using Ly6G monoclonal antibody in PDAC had a tumor suppressive effect via 

enhanced intratumoral accumulation of activated CD8+ T cells [32].

The liver-X receptor (LXR)/apolipoprotein E (ApoE) axis has recently been implicated in 

MDSC survival [33]. LXR activation reduces tumor growth and restrains tumor metastasis 

[34, 35]. Administration of the LXR agonist (RGX-104/GW3965) to tumor bearing mice 

significantly attenuated growth of several cancers including melanoma, glioblastoma, and 

lung cancer via enhanced MDSCs apoptosis [33]. Therapeutic targeting of TAMs and G-
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MDSCs either by Ly6G monoclonal antibody or the LXR agonist GW3965 augments ICI 

with anti-PD-1 [16]. The LXR agonist RGX-104 is currently under investigation in a phase I 

clinical trial in patients with advanced solid tumors (NCT02922764). Further studies are 

required to elucidate the mechanistic basis of MDSCs mediated immunosuppression and to 

investigate the therapeutic potential of agents targeting MDSCs in CCA.

2.3. Dendritic cells (DCs)

DCs function as antigen-presenting cells (APCs) which play an integral role in activation of 

the adaptive immune response. DCs are broadly categorized into two subsets: classical or 

conventional DCs (cDCs) and plasmacytoid DCs (pDC). cDCs originate from bone marrow 

precursors and have potent phagocytic properties [36]. In the TME, DCs activate the T cell 

response by capturing, processing, and cross-presenting neoantigens. However, tumor cells 

can transform DCs to an immature, immunosuppressive phenotype [37]. In CCA, infiltration 

of mature CD83+ DCs correlated with aggregation of CD4+/CD8+ T cells in the peritumoral 

region [38]. The presence of CD83+ DCs was also associated with improved patient 

outcomes. In contrast, the presence of CD1a (immature) DCs in the central tumor region is 

associated with a paucity of CD4+/CD8+ T cells [38]. FcεRI, a high affinity 

immunoglobulin E receptor, is employed by DCs for cross presentation and priming of 

CTLs [39]. There is a significant decrease in FcεRI+ monocytes and DCs in the peripheral 

blood of patients with CCA [40]. These findings indicate that DCs are dysfunctional in CCA 

and unable to restrain tumor progression.

There is a paucity of cDCs in human and murine PDAC, and this is associated with poor 

response to checkpoint inhibition [41]. Fms-related tyrosine kinase 3 ligand (Flt3L) 

augments DCs infiltration in tumors by enhancing DC proliferation and differentiation [42]. 

However, Flt3L monotherapy has had limited benefit in early phase clinical trials, likely due 

to lack of appropriate DC activation and licensing [42, 43]. Activation of CD40, a member 

of the TNF receptor superfamily, facilitates DC-mediated CTL activation and re-education 

of macrophages to an anti-tumor phenotype [44]. The combination of Flt3L and CD40 

agonism stimulated a robust anti-tumor immune response and tumor regression in preclinical 

models of sarcoma, a poorly immunogenic tumor. The anti-tumor immune response was 

characterized by a dramatic increase in DCs as well as NK cells, NKT cells, and CD8+ T 

cells [45]. CDX-1140, a CD40 agonist, is currently under evaluation in a phase I clinical 

trial of advanced solid organ malignancies including CCA (NCT03329950). As the baseline 

CCA TME has a low density of DCs, the combination of CD40 and Flt3L agonism has the 

potential to boost the DC response, augment anti-tumor immunity, and sensitization to ICI in 

CCA.

2.4. Natural Killer cells (NK)

NK cells are innate lymphocytes that can track and destroy virally-infected and neoplastic 

cells without pre-stimulation. Upon recognizing neoplastic cells, NK cells release cytotoxic 

molecules (perforin, granzymes, and IFN-γ), and can induce target cell death by priming 

Fas ligand (FasL)/TNF-related apoptosis-inducing ligand [46, 47]. Preclinical studies have 

demonstrated that NK cell deficiency or impaired NK cell function is associated with tumor 

progression [48, 49]. In HCC, tumor infiltrating NK cells have fragmented mitochondria 
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which impair their cytotoxicity with consequent tumor evasion of NK cell mediated tumor 

surveillance. Moreover, mitochondrial fragmentation in NK cells correlated with poor 

patient survival [50]. Natural killer group 2D (NKG2D), an activating NK cell receptor, and 

kills tumor cells by binding its ligand NKG2DL. Impairment of the NKG2D/NKG2DL axis 

assists tumor escape from immune surveillance. NKG2D receptor variants found in patients 

with primary sclerosing cholangitis have been reported to increase their susceptibility for 

CCA development [51, 52]. Moreover, the high expression of NKG2D ligands in human 

CCA is associated with improved disease-free and overall patient survival [53].

NK cell responses are regulated by inhibitory killer cell immunoglobulin-like receptors 

(KIRs) that engage HLA class I ligands. In tumor biology, KIRs are considered inhibitory 

checkpoints. In a multidimensional characterization of genes that encode KIRs, multiple 

alterations of KIR and HLA gene loci were identified in patients with CCA compared to 

controls [54]. For instance, co-carriage of KIR2DS1-HLA-C2 and KIR3DL1-HLA-

Bw4Thr80 (low affinity) was identified as an independent predictor of poor outcomes [54]. 

These observations indicate that targeting KIR on NK cells is a potential immunotherapeutic 

option in CCA. The combination of lirilumab, an anti-KIR monoclonal antibody, and the 

anti-PD-1 monoclonal antibody nivolumab +/− the anti-cytotoxic T-lymphocyte associated 

protein 4 (CTLA-4) monoclonal antibody ipilimumab is currently under investigation in a 

phase I clinical trial of patients with advanced solid organ malignancies including CCA 

(NCT03203876).

2.5. Tumor-infiltrating lymphocytes (TILs)

Tumor-infiltrating lymphocytes (TILs) include B lymphocytes, cytotoxic T cells (CD8+), 

and T helper cells (CD4+ T). The cell composition and molecular pattern of TILs remodel 

the CCA microenvironment, and shape cancer immune surveillance or immune escape. TIL 

infusion is an emerging option for CCA treatment. Adoptive transfer of CD4+ T helper 1 

(Th-1) cell recognizing mutated neoantigen expressed by CCA cells achieved tumor 

regression [55]. An increase in CD8+ TILs is correlated with improved overall survival (OS) 

in CCA patients [56, 57]. In comparison, a high infiltration of CD4+ T was associated with 

favorable patient outcomes in CCA, whereas infiltration of Tregs is associated with poor OS 

in CCA [10, 56]. Down-regulation of FoxP3, a protein essential in the development and 

function of Tregs, in CCA cells resulted in a decrease in TGF-β1 and consequent 

improvement of effector T cell survival [58]. Similarly, overexpression of FoxP3 in PDAC 

cells upregulates PD-L1 transcription and recruits Tregs, thereby enhancing tumor immune 

invasion [59]. Expression of the immune checkpoint receptor PD-1 and its ligand PD-L1 is 

upregulated in surgically resected human CCA specimens. Tumor PD-L1 expression is 

correlated with poor tumor differentiation and advanced tumor stage [60–62]. However, the 

prevailing data indicate that the benefit of anti-PD-1 or anti-PD-L1 monotherapy may be 

limited to a small subset of CCA patients [63, 64].

There are several potential immune checkpoint targets that are currently under investigation 

in preclinical and clinical studies (Figure 1). CTLA-4 is an inhibitory receptor that binds to 

CD80 which is expressed by APCs, and inhibits CTL activation. Expression of CTLA-4 and 

CD80 is increased in CCA and correlates with tumor recurrence and poor overall survival 
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[65]. Multiple clinical trials assessing anti-PD-1 and anti-CTLA-4 in CCA are currently 

ongoing (NCT03473574, NCT03046862, and NCT03704480). Glucocorticoid-induced 

tumor necrosis factor receptor (GITR) is a co-stimulatory molecule that can enhance CTL 

effector function and attenuate Treg mediated immunosuppression [66]. GITR is over-

expressed in TILs in CCA tumor tissues, and agonistic targeting of this checkpoint has the 

potential to enhance CTL activation [67]. TRX518, a GITR agonist, is currently under 

investigation in combination with pembrolizumab or nivolumab in a phase I clinical trial in 

patients with advanced solid tumors (NCT02628574) [66].

3. NON-IMMUNE CELLULAR COMPONENTS OF THE CCA TME

3.1. Cancer‐associated fibroblasts (CAFs)

CCAs are desmoplastic tumors with a dense stroma. Cancer-associated fibroblasts (CAFs) 

comprise a major cellular component of the desmoplastic stroma of CCAs. CAFs are 

activated myofibroblasts that express α-smooth muscle actin (α-SMA) [68]. CAFs play a 

key role in mediating CCA growth and progression. Accordingly, α-SMA expression in the 

tumor stroma correlates with poor survival in patients with CCA [69, 70]. The expression of 

periostin, an extracellular matrix protein produced by α-SMA-positive CAFs in CCA, is 

higher in iCCA compared with control tissues [71]. Furthermore, enhanced periostin 

expression is a predictor of malignant progression in murine and human CCA, and correlates 

with poor patient outcomes [72, 73]. As CAFs play an essential role in CCA progression, 

targeting of CAFs has been proposed as a potential therapeutic strategy in CCA. Selective 

targeting of CAFs by navitoclax, a BH3 mimetic, induced CAF apoptosis with consequent 

reduction in tumor growth and metastasis and improved murine survival in a syngeneic rat 

model of CCA [74]. In a subsequent study, navitoclax inhibited tumor metastasis in vivo by 

blocking the secretion VEGF-A/C from activated CAFs in CCA [75]. Resveratrol [3,4’,5-

trihydroxy-trans-stilbene (RV)], a polyphenol present in a variety of food products such as 

grapes and red wine, has also been employed to target CAFs [76]. Conditioned medium 

from CAFs pretreated with resveratrol had a reduction in IL-6 secretion as well as decreased 

proliferation and migration of CCA cell lines compared with control. Nintedanib, a small 

molecule inhibitor of multiple tyrosine kinases, is FDA-approved for treatment of idiopathic 

pulmonary fibrosis [77]. Nintedanib attenuated carbon tetrachloride induced liver fibrosis 

via suppression of HSC activation [78, 79]. Moreover, nintedanib has been shown to play an 

essential role in suppressing the activation of α-SMA+ CAFs in lung adenocarcinoma [80]. 

Preclinical evidence also supports a CAF suppressing effect of nintedanib in CCA. 

Nintedanib inhibited CAFs activation and reduced the secretion of cancer-promoting 

cytokines by CAFs (mainly IL-6, IL-8) in vitro and reduced tumor growth in a xenograft 

murine iCCA model [81]. These observations indicate that therapeutic targeting of CAFs is a 

promising approach for the treatment of CCA.
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4. MEDIATORS: THE MESSENGERS IN THE CROSSTALK BETWEEN 

TUMOR CELLS AND TME

4.1. Small players with large roles: cytokines and chemokines

IL-6 plays a central role in the crosstalk between the tumor cells and TME cellular 

components. IL-6 is released by several cell populations including macrophages and CAFs 

[82, 83]. Intracellular IL-6 activation triggers canonical JAK/STAT3 signaling. As an 

upstream activator of STAT3, IL-6 has been reported to promote malignant transformation 

and metastasis of CCA [84]. Moreover, IL-6 alters the promoter methylation of epidermal 

growth factor receptor (EGFR), resulting in continuous EGFR activation, thereby driving 

CCA cell growth [85]. IL-6 also drives CCA proliferation via activation of ERK1/2-MAPK 

signaling [86]. Furthermore, systemic administration of IL-33 combined with biliary 

transduction of constitutively-activated AKT and yes-associated protein induced 

tumorigenesis in mice via an IL-6 dependent mechanism, indicating an essential role of IL-6 

in CCA carcinogenesis [87]. Consistent with these preclinical observations, serum IL-6 

levels correlate with poor patient outcomes [88]. A single cell-based study identified a 

subset of fibroblasts (CD146+ CAFs) that express high levels of IL-6 in iCCA. Moreover, 

the IL-6/IL-6R axis was enriched in CAFs and tumor cells [89]. As it plays an integral role 

in CCA proliferation and progression, targeting IL-6 signaling is an attractive putative 

therapeutic option in CCA. However, although preclinical data indicates an anti-tumor effect 

of IL-6 inhibition in pancreatic ductal adenocarcinoma, the limited data in CCA has been 

disappointing [90]. A single study demonstrated that pharmacologic blockade of IL-6R 

actually promoted, rather than hindered, CCA cell growth in vitro [91].

Several chemokines have been implicated in the tumor and immune microenvironment 

crosstalk. CCL-2, mainly secreted by CAFs, attracts MDSCs to the TME and fosters CCA 

growth [92]. Chemokine (C-C motif) ligand 28 (CCL-28), which is released by human 

cholangiocytes in response to inflammatory factors, recruits CCR10+ Tregs to limit hepatic 

inflammation [93]. Chemokine (C-X-C motif) ligand 9 (CXCL-9) regulates the recruitment 

of tumor-infiltrating NK cells in CCA. Patients with high CXCL-9 expression have a 

favorable overall survival following surgical resection compared to those with low CXCL-9 

expression [94]. These observations indicate that inhibition of chemokines implicated in 

recruitment of immunosuppressive elements to the CCA TME is a potential therapeutic 

strategy. Likewise, augmenting chemokine signaling that attracts anti-tumor immune cells to 

the CCA TME has the potential to restrain CCA growth (Figure 2).

4.2. Small players with large roles: growth factors

Several growth factors have emerged as reciprocal mediators that contribute to cross-talk 

between CAFs and tumor cells in CCA. Platelet‐derived growth factors (PDGFs) exert a pro-

tumor role in a paracrine signaling manner. PDGF‐BB released from myofibroblasts 

prevents TNF-α related apoptosis-inducing ligand (TRAIL)‐induced apoptosis of CCA cells 

by activating PDGF receptor β (PDGFRβ) on CCA cells [95]. PDGF-D, another member of 

the PDGF family produced by CCA cells, plays a crucial role in promoting CAF recruitment 

and activation by binding PDGFRβ expressed on CAFs [75, 96]. Accordingly, PDGFRβ 
blockade via imatinib, significantly impairs fibroblast recruitment in CCA. Heparin-binding 

Wang and Ilyas Page 7

Expert Opin Investig Drugs. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epidermal growth factor (HB-EGF) secreted by CAFs, a ligand of epidermal growth factor 

receptor (EGFR), activates EGFR in CCA cells and promotes CCA cells migration and 

invasion in vitro. HB-EGF inhibition with a neutralizing antibody inhibits CCA progression 

[97].

As specific growth factors of vascular epithelial cells, the fundamental function of vascular 

endothelial growth factors (VEGFs) is to induce angiogenesis. VEGFs are highly expressed 

in CCA and correlate with poor patient outcomes [98, 99]. VEGF-D regulates the activities 

of stromal cells and aids tumor cell metastasis via lymphatic spread [100]. The expression of 

VEGF-C correlates with lymphatic invasion in intrahepatic CCA. Similarly, VEGF-C 

secreted by CAFs enhances the permeability of lymphatic endothelial cells (LECs), thereby 

inducing CCA lymphatic invasion and metastasis [75] [101]. Single cell transcriptomic 

analysis of tumors from liver cancer patients including 9 with iCCA demonstrated that 

VEGF plays an integral role in intratumoral diversity [102]. In this study, VEGF induced by 

hypoxia-inducible factor 1α (HIF1α) manipulated tumor endothelial cells, CAFs, and TAMs 

to drive tumor progression. The study findings implicate the VEGF axis in reprogramming 

of the TME to aid tumor progression. These observations indicate that VEGF inhibition may 

play a role in prevention of CCA progression and metastasis. Regorafenib, an oral 

multikinase inhibitor that targets VEGFR2, significantly suppressed CCA growth in vitro 

and in vivo [103]. However, regorafenib only had modest efficacy in patients. In a phase II 

clinical trial of patients with refractory biliary tract cancer (progressed on at least one line of 

systemic therapy; n=33), the stable disease and the objective response rates were 63.6% and 

9.1%, respectively [104]. Pazopanib, a multikinase inhibitor that also inhibits VEGF, in 

combination with the MEK inhibitor Trametinib failed to achieve an improvement in 

progression free survival (PFS) in patients with advanced CCA [105]. A phase I/II clinical 

trial of regorafenib in combination with ICI (anti-PD-L1) is currently ongoing 

(NCT03475953). Future studies are needed to identify biomarkers that can potentially 

distinguish treatment responders form non-responders.

4.3. Small players with large roles: extracellular vesicles (EVs)

EVs are small membrane bound vesicles released by a variety of cell types into the 

extracellular milieu and facilitate intercellular communication by transporting intracellular 

components [106]. EVs contain complex cargo which consists of proteins, lipids, and 

nucleic acids (messenger RNA, microRNA, DNA) [107]. Once released from cells, EVs can 

regulate the function of recipient cells contributing to primary tumor formation and 

modulation of the TME [108]. EVs are also present in bile and have been implicated in 

regulation of cholangiocyte proliferation and in pathogenesis of cholangiopathies [109]. EVs 

also hold potential as a biomarker for CCA diagnosis. The median concentration of EVs is 

significantly higher in bile samples from patients with malignant biliary stenoses compared 

to patients with nonmalignant stenoses. Accordingly, the EV concentration of bile can 

distinguish between patients with malignant versus nonmalignant strictures with high 

diagnostic accuracy [110]. A biliary EV microRNA (miR)-based panel had a sensitivity of 

67% and specificity of 96% for detection of CCA [111]. Proteomic analysis of serum EVs 

from human CCA cells compared to normal human cholangiocytes has also demonstrated a 

higher proportion of oncogenic proteins such as aminopeptidase N, pantetheinase, and 
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polymeric immunoglobulin receptor; these oncogenic proteins had higher diagnostic 

capacity for detection of CCA [112]. Transcriptome analysis of EVs collected from serum 

and urine patients with CCA or healthy individuals has also demonstrated potential 

diagnostic capability as EVs derived from CCA patient specimens had differential RNA 

profiles compared to the disease control group [113].

An enhanced understanding of EVs and their cargo in CCA can facilitate design of novel 

therapeutics. Microrna (miR)-195 is downregulated in CCA cells and CAFs, and EVs 

transfer miR-195 from CAFs to CCA cells [114]. Furthermore, administration of CAF-

derived EVs loaded with miR-195 resulted in tumor regression and improved murine 

survival [114]. miR-30e is also down-regulated in human CCA cells [115]. Treatment of 

CCA cells with miR-30e-enriched EVs resulted in attenuation of cell invasion and 

migration. Moreover, EV-mediated miR-30e transfer suppressed epithelial-mesenchymal 

transition by targeting Snail [115]. These studies indicate that EVs carrying designed cargos 

are a promising therapeutic for treatment of CCA.

5. CONCLUSION

CCA is a devastating malignancy with limited treatment options. Despite an increase in 

incidence, the overall 5-year survival remains abysmal at less than 10%. Tumor 

heterogeneity and the complex CCA TME with its cellular and molecular components pose 

significant barriers to the success of currently available treatment options. Accordingly, an 

enhanced understanding of the CCA TME and its components including immune cells, 

stromal elements, and extracellular factors, is essential in the effort to develop effective 

therapeutic strategies. Emerging evidence indicates that therapeutic targeting of the immune 

and nonimmune TME components holds significant promise.

6. EXPERT OPINION

CCA is a rare, highly aggressive malignancy with limited treatment options. The 

preponderance of patients present at an advanced stage and are not eligible for potentially 

curative surgical treatment options. The current practice standard for advanced CCA is 

systemic chemotherapy with gemcitabine and cisplatin. However, this regimen has a modest 

survival benefit with a median OS of 11.7 months in patients receiving the combination 

compared to 8.1 months for gemcitabine alone [3].

An enhanced understanding of the immunobiology of the tumor microenvironment has 

inaugurated the era of immune-oncology for treatment of cancer. However, the early results 

of immune checkpoint blockade monotherapy in CCA have been disappointing, likely owing 

to its dense, desmoplastic microenvironment that contains an abundance of 

immunosuppressive elements such as TAMs and MDSCs [16]. We have recently 

demonstrated that multiple layers of resistance involving elements of the innate and adaptive 

immune system contribute to tumor immune evasion in CCA. Accordingly, elucidating the 

cross-talk between immunosuppressive elements of the CCA TME, tumor cells, and the anti-

tumor immune response is essential in the effort to develop effective therapies. Our current 

understanding of the CCA TME particularly the immune microenvironment is based largely 
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on immunohistochemical analyses of resected human CCA specimens. Although these 

studies have been useful in imparting a global view of the CCA TME, our knowledge vis-à-

vis the intricacies of microenvironment crosstalk is limited.

Advances in single cell biology including single cell transcriptomics and proteomics have 

illuminated variations at the cellular level that account for TME heterogeneity in a variety of 

malignancies. These variations, in turn, may underlie resistance to therapies. Therefore, 

technologies such as single cell RNA sequencing and mass cytometry can decode the 

heterogeneity of the CCA tumor ecosystem, and outline the functional characteristics of the 

innate and adaptive immune response in CCA. Although single cell based studies have 

begun to unravel the CCA TME, further work is necessary to examine the immune 

microenvironment in a comprehensive manner [89, 102]. Augmenting our understanding of 

the cellular and molecular components as well as the cell-cell communication in the CCA 

TME will aid design of novel therapeutic agents. Moreover, this will foster biomarker 

development which will guide selection of the appropriate therapy for a subset of patients.

The response rate to ICI monotherapy in CCA has been disappointing. Interim data analysis 

from KEYNOTE-158, an ongoing phase II clinical trial, demonstrated that patients treated 

with the anti-PD-1 therapy pembrolizumab had an objective response rate (ORR) of 5.8% 

(6/104 patients) [116]. PD-L1 expression did not correlate with response to therapy. 

Emerging results suggest that the response to ICI may vary according to the CCA subtype. 

In patients with biliary tract cancer (BTC) who had progressed on at least one line of 

systemic therapy, nivolumab had an ORR of 22%. The ORR in iCCA patients was 21% 

(6/28 patients). There were only 5 patients in the study with pCCA/dCCA, and two of these 

patients had a response to nivolumab [117]. The combination of nivolumab and ipilimumab 

was assessed in advanced BTC patients; the ORR in iCCA patients was 31% (5/16 patients). 

Notably, none of the pCCA/dCCA patients (n=10) in this study had a response to 

combinatorial ICI [118]. Accordingly, CCAs are poorly immunogenic or immune ‘cold’ 

tumors. Such a TME phenotype is typically characterized by immunosuppressive cells such 

as TAMs that prevent CTL infiltration to the tumor core [119]. Therefore, combinatorial 

immunotherapeutic strategies that target elements of the innate and adaptive immune system 

are likely to be more efficacious than single agent immunotherapies. A greater familiarity 

with the diverse immune and nonimmune components of the CCA TME will facilitate 

development of such strategies. The availability of immunocompetent preclinical mouse 

models that recapitulate the human disease is imperative to study potential therapeutics that 

target the CCA TME. We have generated a unique, syngeneic orthotopic mouse model of 

CCA to study the immunobiology of this desmoplastic malignancy and potential therapeutic 

targets in the CCA TME [120]. Humanized tumor models, such as patient-derived 

xenografts, can model the complexity of tumor development and progression as well as take 

into consideration TME factors. However, in these models primary human tumors are 

engrafted in immunodeficient mice, and investigation of immunotherapy agents requires an 

intact immune system. Patient-derived organoids can recapitulate tumor heterogeneity and 

molecular signatures, and therefore, represent an attractive alternative for preclinical 

assessment of novel therapeutics. Multicellular organoids comprise of tumor epithelium and 

endogenous immune stroma, and generation of such organoids would facilitate investigation 

of the CCA TME, specifically immuno-oncology studies [121]. In vitro, multicellular 
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organoids contain variable immune elements. Characterization of these elements will be 

essential in the effort to employ multicellular organoids to assess immunotherapeutic 

strategies.
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APCs antigen-presenting cells

ApoE apolipoprotein E

Arg1 arginase

CAFs cancer-associated fibroblasts

CCA cholangiocarcinoma

CCL-2 chemokine (C-C motif) ligand 2

CCL-28 chemokine (C-C motif) ligand 28

CD47 cluster of differentiation 47

cDCs classical or conventional DCs

cGAS cGAMP synthase

CSF-1 colony stimulating factor 1

CTLs cytotoxic T lymphocytes

CTLA-4 cytotoxic T-lymphocyte associated protein 4

CXCL-9 chemokine (C-X-C motif) ligand 9

DCs dendritic cells

EVs extracellular vesicles

FasL fas ligand

Flt3L fms-related tyrosine kinase 3 ligands

GITR glucocorticoid-induced tumor necrosis factor receptor
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G-MDSCs granulocytic MDSCs

HCC hepatocellular carcinoma

HIF1α hypoxia-inducible factor 1α

HSCs hepatic stellate cells

ICI immune checkpoint inhibition

IL interleukin

KCs Kupffer cells

KIRs killer cell immunoglobulin-like receptors

LXR liver-X receptor

MDSCs myeloid-derived suppressor cells

MerTK macrophage c-mer tyrosine kinase

M-MDSCs monocytic MDSCs

NK natural killer

NKG2D natural killer group 2D

OS overall survival

PD-1 programmed cell death protein 1

PDAC pancreatic ductal adenocarcinoma

pDC plasmacytoid DCs

PD-L1 programmed cell death ligand-1

PFS progression free survival

SIRPα signal regulatory protein alpha

STING stimulator of interferon genes

TAMs tumor-associated macrophages

TGF-β tumor growth factor-β

TILs tumor-infiltrating lymphocytes

TME tumor microenvironment

TNFα tumor necrosis factor alpha

Tregs regulatory T cells

VEGFs vascular endothelial growth factors
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Article highlights

• CCA is a highly lethal, difficult-to-diagnose malignancy with limited 

treatment options.

• Tumor-associated macrophages (TAMs) are an integral component of the 

CCA tumor immune contexture, and play an essential role in cancer 

progression and remodeling of the microenvironment.

• Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with 

potent immunosuppressive properties, and MDSC populations expand in a 

variety of malignancies including CCA.

• The early results of immune checkpoint inhibition (ICI) monotherapy in CCA 

have been disappointing, likely owing to its dense, desmoplastic 

microenvironment that contains an abundance of immunosuppressive 

elements such as TAMs and MDSCs.

• Cancer-associated fibroblasts (CAFs) play a crucial role in mediating CCA 

growth and progression, and therapeutic targeting of CAFs is a promising 

approach for the treatment of CCA.
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Figure 1: Schematic representation of immune cell targeting strategies in CCA.
Strategies overcoming the immunosuppressive tumor microenvironment are represented 

schematically. Inhibition or depletion tumor associated macrophage (TAM) and/or myeloid-

derived suppressor cell (MDSC) abrogates the cytotoxic T (CD8+ T) exhaustion. Activates 

antigen-presenting cell (APC) like dendritic cell (DC) or stimulate the T cell activity 

accelerate anti-tumor response in CCA. CD40: cluster of differentiation 40; CTLA-4: 

cytotoxic T-lymphocyte associated protein 4; DCs: dendritic cells; GITR: glucocorticoid-

induced tumor necrosis factor receptor; IDO: indoleamine 2,3-dioxygenase; LAG3: 

lymphocyte activation gene 3 protein; LXR: liver-X receptor; MDSCs: myeloid-derived 

suppressor cells; OX40: tumor necrosis factor receptor superfamily member 4; PD-1: 

programmed cell death protein 1; PD-L1: programmed death-ligand 1; TAM: tumor 

associated macrophage.
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Figure 2: Targeting chemokine signaling as therapy for CCA.
Inhibition or activation of chemokine pathways influences recruitment of various immune 

cells. CAF: cancer-associated fibroblast; CCL: chemokine C-C motif ligand; CCR/CXCR: 

chemokine C-C motif/C-X-C motif receptor; MDSC: myeloid-derived suppressor cell; 

TAM: tumor-associated macrophage; Treg: regulatory T cell.
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