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Abstract

There is a long history of fitting biometrical structural-equation models (SEMs) in the pregenomic 

behavioral-genetics literature of twin, family, and adoption studies. Recently, a method has 

emerged for estimating biometrical variance-covariance components based not upon the expected 

degree of genetic resemblance among relatives, but upon the observed degree of genetic 

resemblance among unrelated individuals for whom genome-wide genotypes are available—

genomic-relatedness-matrix restricted maximum-likelihood (GREML). However, most existing 

GREML software is concerned with quickly and efficiently estimating heritability coefficients, 

genetic correlations, and so on, rather than with allowing the user to fit SEMs to multitrait samples 

of genotyped participants. We therefore introduce a feature in the OpenMx package, 

“mxGREML”, designed to fit the biometrical SEMs from the pregenomic era in present-day 

genomic study designs. We explain the additional functionality this new feature has brought to 

OpenMx, and how the new functionality works. We provide an illustrative example of its use. We 

discuss the feature’s current limitations, and our plans for its further development.

The intellectual tradition of pre-genomic twin, family, and adoption studies has a history of 

applying structural models to longitudinal and/or multitrait datasets in order to answer 

research questions that require more than estimation of genetic correlations and heritabilities 

(e.g., Neale & Cardon, 1992; Kendler, et al., 1999; Purcell, 2002; Keller et al., 2009; 

Posthuma, 2009; van Dongen, et al., 2012; Gillespie, et al., 2015). Classically, these 

structural models have ranged from direct comparison of phenotypic correlations among 

monozygotic and dizygotic twins, to ordinary least squares regression (e.g., DeFries-Fulker 

regression; DeFries & Fulker, 1985), to multitrait structural equation models. More recently, 

measured-genome methods have seen marked developments. Core among the measured-

genome methods is a variation on mixed effects models wherein the entire sample forms a 

single genetically related cluster. This paper chiefly concerns the implementation of 
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genomic-relatedness-matrix restricted maximum likelihood (GREML; Benjamin et al., 

2012) in the broader context of multitrait models.

Genomic-relatedness-matrix restricted maximum likelihood refers to the statistical method 

that estimates the amount of variance in one or more phenotypes that is attributable to a 

collection of observed genetic polymorphisms. The method is so named because it models 

phenotypic similarity among individuals in terms of one or more genomic-relatedness 

matrices (GRMs, described below), and estimates such models via restricted maximum 

likelihood. GREML was first implemented in the software GCTA (Yang, Lee, et al., 2011; 

Yang, Lee, et al., 2013), and studies using it have shown that common single-nucleotide 

polymorphisms (SNPs) can account for a substantial proportion of variance in complex 

human traits such as height (e.g., Yang, Benyamin, et al., 2010; Wainschtein et al., 2019), 

general cognitive ability (e.g., Davies et al., 2011; Benyamin et al., 2013; Kirkpatrick et al., 

2014), schizophrenia liability (e.g., Lee et al., 2012; Ripke et al., 2013), and susceptibility to 

type 2 diabetes (e.g., Morris et al., 2012). GREML has also demonstrated that genetic 

correlations among traits can be inferred from analysis of genomic data (e.g., Lee et al., 

2013), and has helped elucidate the relative contributions of rare mutations vis-à-vis 

common markers (e.g., Gaugler et al., 2014; Wainschtein et al., 2019).

Typically, GREML is applied to a sample of classically unrelated participants who have 

been genotyped on a genome-wide array of SNPs. It uses at least one genomic-relatedness 

matrix (GRM) computed from participants’ SNP genotypes. Element i,j of such a GRM 

represents the pairwise degree of identity-by-state relatedness between participants i and j. 
In essence, the method calculates how much participants’ phenotypic resemblance 

corresponds to their genotypic resemblance. Thus, GREML is built upon the same 

biometrical-genetic foundation as twin and family studies, except that between-person 

genetic resemblance is derived from observed genotypes, rather than the pedigree-based 

expectation. The importance of GREML as a research methodology is that it allows 

estimation of biometrical parameters of interest—such as heritability coefficients, genetic 

correlations, and genetic and environmental variance components—based upon observed 

genetic resemblance among participants, and without relying on the assumptions of 

pregenomic study designs such as twin, family, and adoption studies. However, little effort 

has been made to enable investigators to use GREML estimation to conduct the structural-

equation modeling (SEM), prevalent in the pregenomic literature, in present-day genomic 

study designs. Aside from our efforts described herein, we are aware of only one other 

project seeking to combine GRMs and SEM (St Pourcain et al., 2018), which has been 

applied in studies of head circumference and intracranial volume (Haworth et al., 2019), 

development of language and literacy skills (Verhoef et al., in press), and cognitive abilities 

(Shapland et al., 2020).

The present work describes a new feature in OpenMx (Boker et al., 2011; Neale et al., 2016; 

most recent release as of this writing is v2.18.1), a package for the R statistical computing 

platform (R Core Team, 2018), that integrates GREML with SEM. Essentially, OpenMx 

combines matrix operations with numerical optimization, for the purpose of SEM. Here, 

“SEM” is to be construed broadly, as the capabilities of OpenMx v2.x encompass types of 

modeling not conventionally regarded as part of the domain of SEM (Neale et al., 2016). 
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OpenMx’s “frontend” is written in R, and consists of object classes and functions with 

which the user interacts. Typically, the user will construct an R object of class “MxModel,” 

which instantiates the structural model to be fitted to the data at hand. Then, at runtime, the 

user “runs” the MxModel, and the computational work of fitting the model takes place in 

OpenMx’s backend. For performance reasons, the backend is written in compiled C++, C, 

and Fortran code. The MxModel is then populated with the results from the backend, which 

are then accessible to the user in the frontend.

“mxGREML” Implementation

A model produced with OpenMx v2.x has four major components. First, there is the data 
component (for example, an observed covariance matrix, or a table of raw data). Second, 

there is the expectation, which consists of the minimal pieces of information that would be 

necessary to simulate data under the model; most currently implemented expectation types 

constitute a specification of the model-expected mean vector and covariance matrix of the 

endogenous variables. Third, there is the fitfunction, which is the objective function to be 

numerically minimized in order to estimate parameters. Fourth, there is the optimizer, which 

algorithmically minimizes the fitfunction when the model is run. OpenMx offers two open-

source gradient-based quasi-Newton optimizers and an open-source Newton-Raphson 

optimizer; some builds of the package also license a proprietary third gradient-based 

optimizer. The new GREML feature introduces a GREML expectation, a GREML 

fitfunction, and a helper function for data-handling. A repository of scripts that demonstrate 

the capabilities of the mxGREML feature is available at https://github.com/RMKirkpatrick/

mxGREMLdemos. Table I describes the scripts available in that repository as of this writing.

GREML Expectation

As with all expectations in OpenMx, the GREML expectation consists of the minimal set of 

information that would be needed to generate data from a model. The GREML model for n 
people measured on p phenotypes with k covariates (including constants) is effectively

y = Xb + r (1)

where y is the np vector of phenotypic observations, X is the np × k matrix of covariates 

(i.e., a design matrix for the fixed effects), b is the k vector of regression coefficients, r is the 

np vector of random effects (representing, at minimum, a residual term), and V is the np × 

np covariance matrix across observations, conditional on X. Specifically,

var(y ∣ X) = var(r) = V (2)

, and specification of V is left to the user. Therefore, the GREML expectation requires the 

user to provide information about y, X, and V. As suggested by Equation (1), the GREML 

expectation class is compatible only with raw phenotypic data1. Although OpenMx has 

1Here, “raw data” is meant in the OpenMx sense, i.e. “not covariance-matrix input” (which is commonly used in SEM). Although less 
than ideal, it is possible to run an mxGREML analysis without raw genotypic or phenotypic data. The data’s owner would need to 
provide the user with one or more GRMs calculated from raw genotypes, and residuals for one or more phenotypes corrected for 
covariates. In such a case, the residuals would be what populates y, and X would consist only of constants.
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support for binary and ordinal-probit (“threshold”) phenotypes, the GREML expectation 

necessarily treats the phenotypes as continuous2. There should be one row in the dataset per 

individual. In a typical OpenMx analysis of raw data, the rows of the dataset are assumed to 

be independent vectors of observations on one or more variables. The key distinguishing 

feature of an OpenMx analysis using a GREML expectation is that the observations are not 

assumed to be independent, and indeed, that they may all be mutually dependent of one 

another. The dependence across rows of data is given by the covariance matrix V. More 

precisely, after conditioning on X, y is assumed to be a single random draw from a 

multivariate-normal distribution with covariance matrix V, where V is assumed to contain 

few, if any, off-diagonal elements equal to zero. The user must provide the GREML 

expectation with an expression for the model-expected V, the names of the data columns 

containing the p phenotypes, and the names of the data columns containing the k covariates. 

S/he may also provide additional arguments related to data-handling (described further 

below, under “Customization: GREML Fitfunction.”). At runtime, the software will 

construct the y and X matrices from the specified columns of the raw dataset, subject to any 

optional data-handling arguments from the user.

Typically, V will be a function of one or more GRMs. OpenMx does not (and is not intended 

to) calculate GRMs from raw genotypic data. The GRMs must instead be calculated with an 

appropriate tool, such as GCTA, plink (Purcell et al., 2007), or LDAK (Speed et al., 2013). 

OpenMx has a function, omxReadGRMBin(), that loads binary-formatted GRMs, calculated 

with GCTA, into R’s workspace. However, because R’s memory management is far from 

optimal (Morandat et al., 2012), a newly implemented OpenMx feature can read a text-

formatted matrix directly into the OpenMx backend’s memory, bypassing the slower R 

frontend. In any event, specifying the structure of V is left entirely up to the user, who can 

define it arbitrarily (within the very wide latitudes afforded by the MxMatrix and 

MxAlgebra object classes).

Under a GREML expectation, the model for the phenotypic mean is a generalized least-

squares regression of y onto X, and thus is y conditioned on the covariates. OpenMx outputs 

the regression coefficients and their standard errors, and counts them when calculating the 

model’s degrees-of-freedom, but the coefficients are not considered explicit free parameters 

of the model object. This is because the optimizer does not directly adjust them in order to 

minimize a fit function. Instead, once V is obtained, the estimates are simply computed via 

generalized least squares as β = (XTV−1X)
−1

XTV−1y, which is the maximum-profile-

likelihood estimator of β, given V (Pawitan, 2013). From a design standpoint, we assumed 

that users of the new feature would chiefly be interested in the random effects (the 

parameters in V) rather than the fixed effects3. Furthermore, the optimizer will converge 

more quickly than it would if the regression coefficients were explicit free parameters.

2mxGREML analyses of ordinal-threshold traits is the topic of a forthcoming manuscript.
3As pointed out to us by an anonymous referee, one consequence of this design assumption is that it is not straightforward to 
incorporate regressions among endogenous variables in an mxGREML model, since doing so would require the corresponding 
regression coefficients to appear in both the model-expected mean vector and covariance matrix. That is a limitation inherent to 
REML, and is not specific to OpenMx. The referee suggested that there might be ways to circumvent this limitation, such as mean-
centering manifest endogenous variables prior to mxGREML analysis; another possibility might be to conduct the desired regressions 
outside of OpenMx, and analyze the resulting residuals in the mxGREML model. To date, we have not explored such workarounds. 
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GREML Fitfunction

The GREML expectation is compatible with the new GREML fitfunction type as well as the 

pre-existing maximum-likelihood (ML) fitfunction type, both of which are based on the 

multivariate-normal log-density. In the latter case, OpenMx provides maximum-likelihood 

estimates of the random-effects parameters, whereas in the former case it provides less-

biased restricted maximum-likelihood estimates. By default, OpenMx’s objective functions 

are minimized using gradient-based quasi-Newton optimizer SLSQP (Kraft, 1994; Johnson, 

2020), which numerically approximates their derivatives using finite-differences. However, 

the user interface to the GREML fitfunction type allows the user some optimization-

performance alternatives to this default, described further below, under “Customization: 

GREML Fitfunction.”

Data-handling

By default, the data-handling function, mxGREMLDataHandler(), is automatically called at 

runtime for any MxModel using GREML expectation. The data handler assumes that the 

dataset has one row per individual participant. It extracts the columns of the dataset 

containing scores on the phenotypes and covariates. It then vertically “stacks” the 

phenotypes into a single column vector y, and assembles the matrix of covariates, X. Then, it 

removes rows containing missing values in either y or X from both matrices. The indices of 

the removed rows are stored by the GREML expectation, so that the corresponding rows and 

columns of V (and any other matrix required to have the same dimensions as V) can be 

automatically removed in the backend. Additional details concerning the data-handler are 

described further below, under “Customization: Data-handling”.

Structural Equation Modeling with GREML

What follows in this section is an intuitive explanation of a particular structural equation 

model—a phenotypic common-factor model—as fit using GREML. A script that 

demonstrates fitting this model in OpenMx is available as demo #15 in Table I. Figure 1 

depicts the “within-person” portion of this model in path-diagram format. In this model, 

variance in the three phenotypes y1, y2, and y3 is decomposed into (1) variance common to 

all three phenotypes, represented by variance in common factor F, and (2) variance unique to 

each phenotype, denoted by VU1, VU2, and VU3. Parameters λ1, λ2, and λ3 are the loadings 

of the three phenotypes onto F. The variance in F is itself broken into heritable variance, 

GVA, and nonshared-environmental variance, 1 − VA, where VA is the additive-genetic 

variance parameter and G is the individual’s diagonal element of the GRM; in a 

homogeneous, randomly mating population, the expectation of G is 1.0. Although it is 

possible to biometrically decompose the unique variance as well, we do not do so here for 

the sake of simplicity (readers interested in a variation of this model that does biometrically 

decompose the unique variance are directed to the Supplementary Appendix, and to demos 

#2 and #3 in Table I). The unknown parameters to be estimated from data are loadings λ1, 

One approach to endogenous-variable regression that will certainly work is to analyze y as a dataset with 1 row and np columns, using 
the pre-existing mxExpectationNormal() and mxFitFunctionML(), as they allow the user to freely and explicitly specify the model-
expected mean vector (e.g., Eaves et al. 2014).
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λ2, and λ3, additive-genetic variance VA, the unique variances VU1, VU2, and VU3, and the 

three phenotypic means (not made explicit in the diagram).

The model portrayed in Figure 1 can also be represented by a system of structural equations. 

For random individual i,

Y 1i = λ1Ai + λ1Ei + U1i + μY 1
Y 2i = λ2Ai + λ2Ei + U2i + μY 2
Y 3i = λ3Ai + λ3Ei + U3i + μY 3

(3)

, where y1i, y2i, and y3i are phenotype scores, λ1, λ2, and λ3 are factor loadings as before, 

Ai and Ei are respectively scores on biometrical factors A and E, U1i, U2i, and U3iare scores 

on the three unique factors corresponding to y1i, y2i, and y3i, and μy1, μy2, and μy3 are the 

three phenotypic means (for ease of demonstration, this model does not condition on any 

covariates). This system of structural equations could be represented with matrices,

Y 1i
Y 2i
Y 3i

=
λ1 λ1
λ2 λ2
λ3 λ3

Ai
Ei

+
U1i
U2i
U3i

+
μY 1
μY 2
μY 3

(4)

, or more compactly,

yi = ΛFi + Ui + μ (5)

. By the Fundamental Theorem of Factor Analysis (Mulaik, 2010), the variance of yi is then

var yi = Λvar Fi ΛT + var Ui (6)

, where:

ΛT = λ1 λ2 λ3

var Fi =
GV A 0

0 1 − V A

var Ui =
V U1 0 0

0 V U2 0
0 0 V U3

(7)

It is important to recognize that additive-genetic component VA is identified due to the 

between-individual genetic resemblance represented by the GRM, which dictates the 

covariance structure among individuals’ latent A variables. Figure 2 depicts that covariance 

structure, for a random sample of three individuals. As in Figure 1, the variance of an 

individual’s own A equals his/her diagonal GRM element times VA. Further, the covariance 

between two individuals’ As equals their corresponding off-diagonal GRM element times 

VA.

Although a sample of only three participants would be too small to identify all the unknown 

parameters of the model, the small sample size makes explication of the model’s 
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specification more accessible to the reader. So, let us consider three random participants J, 

K, and L. Now, let y denote a 9-element column vector of participants’ stacked phenotype 

scores, “blocked by phenotype4,” let Λ denote a 9×3 matrix of factor loadings, let A and E 
denote 3-element column vectors of the three participants’ additive-genetic and nonshared-

environmental factor scores, let F = A+E, and let U denote a 9-element column vector of 

unique-factor scores. That is, after adjusting for fixed effects:

y = ΛF + U (8)

y =

Y 1J
Y 1K
Y 1L
Y 2J
Y 2K
Y 2L
Y 3J
Y 3K
Y 3L

(9)

ΛF = Λ(A + E) =

λ1 0 0
0 λ1 0
0 0 λ1
λ2 0 0
0 λ2 0
0 0 λ2
λ3 0 0
0 λ3 0
0 0 λ3

AJ
AK
AL

+
EJ
EK
EL

(10)

4See below, under “Customization: Data-handling”.
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U =

U1J
U1K
U1L
U2J
U2K
U2L
U3J
U3K
U3L

(11)

Then:

var(y) = Λvar(A + E)ΛT + var(U) (12)

var(A + E) =
GJJ GKJ GLJ
GKJ GKK GLK
GLJ GLK GLL

V A +
1 − V A 0 0

0 1 − V A 0
0 0 1 − V A

(13)

var(U) = diag( V U1 V U1 V U1 V U2 V U2 V U2 V U3 V U3 V U3
T) (14)

In practice, for computational reasons, the quadratic form in Λ in (12) is replaced with

λ1
2 λ1λ2 λ1λ3

λ1λ2 λ2
2 λ3λ2

λ1λ3 λ3λ2 λ3
2

⊗
GJJ GKJ GLJ
GKJ GKK GLK
GLJ GLK GLL

V A +
1 − V A 0 0

0 1 − V A 0
0 0 1 − V A

(15)

The example above illustrates the utility of the mxGREML feature. With the mxGREML 

feature, the user can (1) specify an arbitrary structure to the covariance across rows of data, 

and simultaneously (2) specify the covariance structure across multiple phenotypes. In 

Equation (15), the matrix on the left-hand side of the Kronecker-product operator specifies 

the covariance across multiple phenotypes according to a factor model, whereas the matrix 

on the right-hand side of the Kronecker-product operator specifies the covariance across 

multiple people according to their genetic relatedness. Importantly, the mxGREML feature 

is not limited to either of these structures. In the first case, the covariance structure across 

phenotypes could easily have been specified as a latent growth curve with the three 

phenotypes representing the same phenotype measured on three time points. Moreover, the 

user is not restricted to factor models or latent growth curves for the covariance across 

phenotypes. Virtually any covariance structure the user desires is possible. In the second 

case, the covariance structure across people is also arbitrary. Equation (12) models the 

covariance across people as a single GRM for additive genetic effects along with a diagonal 

matrix for unique environmental and residual variance. However, the user could instead 
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easily specify multiple GRMs of arbitrary structure. Technically speaking, the GRMs need 

not even be computed from genetic data. Rather, any feature that accounts for covariance 

across people could be used as a “relatedness matrix,” as long as the structure of that matrix 

is known. Examples of non-genetic sources of covariance across people include but are not 

limited to data-collection site, geographic location of the person (e.g., postal code), common 

rearing environment, or even “interviewer effects” that cause individuals assessed by the 

same data-collector to be more similar than they would be otherwise. Such flexibility in the 

covariance structure across persons and phenotypes is the major strength and contribution of 

the mxGREML feature.

User Customization

The flexibility and generality of mxGREML are made possible by user customizations 

beyond the defaults described above, for the GREML fitfunction and the GREML data-

handler. The customizations for the GREML fitfunction pertain to computational 

performance during optimization of the REML objective function. The customizations for 

the data-handler allow the user to tailor mxGREMLDataHandler()’s behavior as appropriate 

for his/her phenotypes and covariates.

Customization: GREML Fitfunction

In a GREML-type model, objective-function evaluations tend to be computationally costly 

because they involve inversion of a potentially large, non-sparse covariance matrix V. To 

reduce the number of function evaluations and speed up convergence, the GREML 

fitfunction backend can, at the user’s option, provide an optimizer with analytic first and 

second derivatives of the REML objective function with respect to the free parameters. To do 

so, the fitfunction object requires a user-provided expression for the first partial derivatives 

of V with respect to all free parameters5 (some worked examples of V’s analytic derivatives 

are in the Supplementary Appendix). Then, at runtime, the fitfunction’s computational 

backend analytically calculates the desired partial derivatives of the objective function (i.e., 

−2 times the restricted loglikelihood) from the user-provided “matrix derivatives” of V. It 

can be shown (see Supplementary Appendix) that the first and second partial derivatives of 

the objective at some point in the free-parameter space can be computed from these “matrix 

derivatives,” plus X, y, and V. That mapping from the derivatives of V to the second (but not 

the first) derivatives of the objective assumes that V is linear in the free parameters (Johnson 

& Thompson, 1995; Meyer & Smith, 1996); if the assumption is violated, the GREML 

fitfunction backend is only able to provide an approximation of the objective’s second 

derivatives. The specification of V, of course, is arbitrary and entirely up to the user, so the 

user bears responsibility for correctly analytically differentiating V with respect to the free 

parameters, so that the objective-function derivatives calculated from V’s derivatives will be 

correct (or at least approximately correct, for the objective’s second derivatives). However, 

the proprietary gradient-based optimizer NPSOL (Gill et al., 2001), which the OpenMx 

5As of this writing, the GREML fitfunction requires a partial derivative for all (or none) of the model’s explicit free parameters, 
though that requirement will be relaxed in the future. It is true that providing a derivative of V for every free parameter can require a 
fair amount of input from the user—see, for example, script #13 in Table I, which has 16 free parameters.
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development team ships with their builds of the package, can optionally check the gradient it 

receives from the fitfunction backend against its own numeric gradient.

All three of OpenMx’s gradient-based optimizers can use analytic first derivatives of the 

objective, whereas OpenMx’s Newton-Raphson optimizer (Neale et al., 2016) uses and 

requires analytic first and second derivatives. For computational efficiency, the GREML 

fitfunction backend approximates the matrix of second partial derivatives (the Hessian 

proper) with the “average-information” matrix (Gilmour, Thompson, & Cullis, 1995), which 

is the observed information matrix plus the expected information matrix, divided by 2. The 

average information matrix can also be used in place of the Hessian proper for calculating 

standard errors on parameter estimates.

Additionally, if multiple CPU threads are available to OpenMx, the GREML fitfunction 

backend will distribute across threads the calculation of the objective-function derivatives 

from the matrix derivatives of V. If the average-information matrix is to be calculated, the 

backend uses a “greedy algorithm” to load-balance the computational work across threads, 

taking into consideration the number of threads available, the number of free parameters, 

and the size of V. Making more threads available will reduce running time, but at the cost of 

greater memory demand, since each thread allocates additional memory to do its job.

The user can also use multiple threads to reduce running time through a feature that does not 

require him/her to do any matrix calculus: if the default gradient-based optimizer SLSQP 

(Kraft, 1994; Johnson, 2020) is in use, it will automatically distribute its finite-differences 

calculation of the gradient across threads. However, numeric differentiation is slower and 

less accurate than analytic differentiation. As with the GREML fitfunction’s analytic 

differentiation, using more threads will reduce running time but at the cost of greater 

memory usage.

Script #1 in Table I fits the same model twice—once using numeric derivatives, and again 

using analytic derivatives. The script compares the two approaches’ running times (using 

analytic derivatives is faster), and MxModel object size, as an approximation to total runtime 

memory footprint (using numeric derivatives uses less memory). Specifically, the MxModel 

that uses numeric derivatives is about 59MB in size, whereas the one that uses analytic 

derivatives is about 311MB in size. On the first author’s laptop (Intel Core 2 Duo CPU at 2.4 

GHz), it took about one minute to run the model using analytic derivatives, but almost 13 

minutes to run it using numeric derivatives. The two approaches reach substantially 

equivalent solutions in the demo, but that is not guaranteed to happen in every case, as 

numerical optimization is not an “exact science.

As is typical in numerical optimization, choosing good start values for the free parameters is 

something that the user can do to make it more likely that the optimizer converges to the 

global minimum relatively quickly. OpenMx has a function, mxTryHard(), which makes 

multiple attempts to optimize a model, and randomly perturbs the start values between 

attempts. Several of the scripts in Table I demonstrate various strategies to find data-

informed start values for the mxGREML model, for example, using Haseman-Elston 

regression and the residual variance from ordinary least-squares regression of phenotypes 
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onto covariates to respectively estimate heritability and phenotypic variance (#6 and #7), or 

fitting a model that ignores the GRM to get start values for factor loadings (#2 and #3) or for 

total latent-intercept and latent-slope variance (#11 and #12). Most recently, we have 

implemented mxAutoStart() support for mxGREML models, which provides a general-

purpose method for obtaining data-informed start values via least-squares estimation. This 

new feature will be included in the next stable release of OpenMx.

Customization: Data-handling

Although the default behavior is for OpenMx to call mxGREMLDataHandler() 

automatically at runtime, it is also possible for the user to invoke the data-handler directly. In 

that case, the user must provide the function with the raw dataset, the column names of the 

phenotypes, and the column names of the covariates. The function will then return a list with 

two elements. One element is an integer vector of the indices of the rows removed from y 
and X due to missing data. The other is a numeric matrix the first column of which is y, and 

the remaining columns of which are X. It is possible to use the matrix as the dataset of an 

MxModel, and to provide the vector of removed rows’ indices to the GREML expectation. 

Then, the user can instruct the GREML expectation to skip calling the data-handler at 

runtime, since its work has already been finished. Directly invoking 

mxGREMLDataHandler() in this manner is not necessary in typical use cases, but the matrix 

it outputs may be useful for complex cases in which the user must do some manual 

restructuring of the data (described below).

Exactly how the data-handler constructs y and X from the dataset’s columns depends upon 

the values the user provides for three logical (i.e., Boolean) arguments to 

mxGREMLDataHandler(); in the typical use case, the user provides these values when 

constructing the GREML expectation object, which then passes them to the data-handler at 

runtime. One of these arguments, addOnes, merely dictates whether one or more columns 

consisting only of 1.0 need to be included in X, for the regression intercept(s) (TRUE by 

default). The second such argument, blockByPheno, dictates whether the rows of y are to be 

“blocked” by phenotype (default) or by individual. If blocked by phenotype, then y will 

consist of scores on phenotype 1 for individuals 1 thru n, then phenotype 2 for individuals 1 

thru n, and so forth. If blocked by individual, then y will contain individual 1’s scores on 

phenotypes 1 thru p, then individual 2’s scores on phenotypes 1 thru p, and so forth. Note 

than in either case, X will be constructed so that its rows correspond to those of the resulting 

y. The user must take care to define V according to how y has been blocked; the 

blockByPheno argument allows the user to choose the style of blocking with which s/he 

feels more comfortable.

The third such argument to the data-handler is staggerZeroes. The default of 

staggerZeroes=TRUE is meant for cases where the multiple phenotypes genuinely are 

different traits, likely on different scales of measurement, possibly being adjusted for 

different covariates, and each needing its own regression intercept. Use of 

staggerZeroes=FALSE is meant for cases where the multiple “phenotypes” are actually 

repeated observations of the same trait, and the covariates are a time variable and possibly 

some “time-invariant” regressors.
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Some illustrative examples of the use of blockByPheno and staggerZeroes are in order. 

Suppose we have a sample of only 3 individuals, A, B, and C; three phenotypes y1, y2, and 

y3; and one covariate, x. If blockByPheno=TRUE and staggerZeroes=TRUE, then

y =

y1A
y1B
y1C
y2A
y2B
y2C
y3A
y3B
y3C

,

X =

1 xA 0 0 0 0
1 xB 0 0 0 0
1 xC 0 0 0 0
0 0 1 xA 0 0
0 0 1 xB 0 0
0 0 1 xC 0 0
0 0 0 0 1 xA
0 0 0 0 1 xB
0 0 0 0 1 xC

(16)

. If blockByPheno=FALSE and staggerZeroes=TRUE, then

y =

y1A
y2A
y3A
y1B
y2B
y3B
y1C
y2c
y3C

,
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X =

1 xA 0 0 0 0
0 0 1 xA 0 0
0 0 0 0 1 xA
1 xB 0 0 0 0
0 0 1 xB 0 0
0 0 0 0 1 xB
1 xC 0 0 0 0
0 0 1 xC 0 0
0 0 0 0 1 xC

(17)

. If blockByPheno=TRUE and staggerZeroes=FALSE, then y is as in (16), and

X =

1 xA
1 xB
1 xC
1 xA
1 xB
1 xC
1 xA
1 xB
1 xC

(18)

. Finally, if blockByPheno=FALSE and staggerZeroes=FALSE, then y is as in (17), and

X =

1 xA
1 xA
1 xA
1 xB
1 xB
1 xB
1 xC
1 xC
1 xC

(19)

The mxGREML feature can accommodate more-complex designs as well, but such designs 

will require at least some manual data-structuring on the user’s part. Consider the case of 

three different phenotypes, where the third phenotype has repeated measures at four 

timepoints. In this case, the user could use direct mxGREMLDataHandler() calls to facilitate 

preparing the data for mxGREML, as follows. First, the user would use the data-handler 

with blockByPheno=TRUE to obtain the stacked vector of the first two phenotypes—say, 

y12—and their corresponding matrix of fixed effects—say, X12. Then, the user would again 

use the data-handler with blockByPheno=TRUE to obtain the stacked vector of the repeated 
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measures on the third phenotype—say, y3—and their corresponding matrix of fixed effects

—say, X3. Then, to obtain the final y vector, the user would vertically adhere y12 and y3 by 

stacking the former on top of the latter. To obtain the final X matrix, the user would first 

define a matrix of zeroes, 0, with as many rows as X12 and as many columns as X3, and 

define

X =
X12 0

0T X3
(20)

. Finally, the user would horizontally adhere y to X, creating a new matrix in which the first 

column is y, and the remaining columns constitute X. This matrix is the dataset the user will 

provide to OpenMx, while making sure to set dataset.is.yX=TRUE when creating the 

GREML expectation object for his/her model.

Limitations and Future Directions

The motivation behind OpenMx’s GREML feature is to provide a flexible, general method 

for users to fit biometrical structural-equation models to samples of participants for whom 

genome-wide genotypic data are available. Therefore, the feature’s currently existing 

implementation primarily prioritizes generality and flexibility, leaving computational 

performance/efficiency (i.e, speed and memory usage) and ease-of-use as secondary and 

tertiary considerations, respectively. Thus, the limitations of the current mxGREML 

implementation chiefly concern its shortcomings in performance and user-accessibility, and 

we plan further development of the feature to address those shortcomings. We describe 

below our planned improvements regarding three aspects of the mxGREML implementation; 

for each aspect, we plan an easier and shorter-term minor improvement, as well as a longer-

term major improvement that will require more effort from the OpenMx development team.

We first consider OpenMx’s numerical linear-algebra performance, that is, how quickly 

OpenMx carries out matrix-related computations. The OpenMx backend currently uses the 

Eigen library (Jacob, Guennebaud, et al., 2010) for numerical linear algebra, and profiling 

mxGREML analyses has shown that the most time-consuming steps in such analyses take 

place in the Eigen library’s code. Quite likely, the computational bottleneck is Cholesky-

factoring and subsequently inverting V every time the GREML objective function must be 

evaluated. At compile-time, Eigen can be linked to a BLAS (Basic Linear Algebra 

Subsystem) implementation for it to use as a computational backend of its own (and R itself 

can likewise be compiled with an alternate BLAS). We have modified the OpenMx backend 

to allow Eigen to be linked to a BLAS when OpenMx is compiled, and thus, the minor 

improvement for numerical linear algebra is mostly complete. Presently, we have tested 

compiling OpenMx with three tuned BLAS implementations. Although we have not 

formally benchmarked the performance improvement6, our informal benchmarking suggests 

a 5.5x speedup with Intel MKL (https://software.intel.com/mkl), a 4.5x speedup with 

6To give the reader a sense of scale: on a computing cluster (Intel Xeon E5–2680 v4 CPU at 2.4 GHz), we recently ran script #11 (a 
five-timepoint latent-growth model) from Table I, except edited to have a sample size of 4000 and to use 8 processing threads. The job 
used about 55 GB of memory, and OpenMx’s running time was slightly under 20 hours.
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OpenBLAS (https://www.openblas.net/), and a 3x speedup with ATLAS (Whaley, Petitet, & 

Dongarra, 2001). We will consider this minor improvement complete once we have formally 

benchmarked the performance improvements and written user documentation explaining 

how to compile OpenMx with an alternate BLAS.

Our planned major improvement for linear-algebra performance is to modify the OpenMx 

backend to enable it to hand off matrix-related computations to a graphics-processing unit 

(GPU). Because GPUs can carry out linear-algebra computations in a massively parallel 

fashion, we anticipate even better performance improvements than those achieved from 

CPU-tuned BLAS implementations. Specifically, we will make it possible to compile 

OpenMx for use with NVIDIA CUDA™ (Sharma, Agarwala, & Bhattacharya, 2013). Since 

mxGREML is the motivating use case for an interface to CUDA, initially only backend code 

related to mxGREML will use it. Once OpenMx is compiled to use CUDA, the user will 

have to switch on an option to actually do so, since passing small-dimensional linear-algebra 

jobs to a GPU can be counterproductive. We will evaluate benchmark performance with 

CUDA and determine the practicality of extending the CUDA interface to more of 

OpenMx’s growing set of capabilities.

The second aspect in need of improvement is calculation of the GREML objective-function 

derivatives for optimization purposes. As described above, numerical differentiation (which 

is OpenMx’s default behavior) is slow because evaluation of the objective function is slow 

as well. The existing alternative is analytic differentiation, which requires the user to provide 

MxMatrices or MxAlgebras representing the analytic first partial derivatives of V with 

respect to the free parameters. Although this analytic approach does reduce the number of 

objective-function evaluations, it has several drawbacks. First, it increases OpenMx’s 

memory footprint, because the derivatives of V must be stored in memory. Secondly, and 

more importantly, it is a barrier to mxGREML’s ease-of-use, since many users will not know 

how to analytically differentiate V, and those that do are nonetheless prone to making errors 

in their calculus or their syntax (especially in light of how complicated the mapping from 

free parameters to V can be in SEM).

Therefore, our planned minor and major improvements to mxGREML’s objective-function 

differentiation are both intended to reduce memory demand and to automate analytic 

differentiation for the user’s convenience. The minor improvement might be described as 

“semi-analytic” differentiation—it will use OpenMx’s extant finite-difference subroutines to 

numerically differentiate V, and then use those derivatives of V to analytically differentiate 

the objective function. Each matrix derivative of V (there will be one per free parameter) 

would only need to be stored in memory until its corresponding objective-function derivative 

is calculated, at which point the matrix’s memory can be freed. Our planned major 

improvement relating to objective-function differentiation will be similar, but will automate 

analytic rather than numeric differentiation of V. That is, the major improvement will be 

implementation of a new OpenMx feature that automates analytic differentiation of 

MxAlgebra expressions, using existing automatic-differentiation libraries like Stan 

(Carpenter, et al., 2017) or TensorFlow (Abadi, et al., 2015). Creating an interface between 

OpenMx and those libraries will require more effort than implementing “semi-analytic” 

differentiation, but will yield more accurate derivatives.
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The third aspect in need of improvement is mxGREML’s user interface. The GREML 

feature is part of OpenMx, and like OpenMx itself, is designed to be a powerful and versatile 

tool, albeit at the expense of verbose syntax and a steep learning curve. Neither 

“improvement” we plan for the user interface will actually alter OpenMx itself. Rather, they 

both will augment OpenMx with external resources to make mxGREML more accessible to 

the end user. The minor “improvement” is the library of demonstration scripts at https://

github.com/RMKirkpatrick/mxGREMLdemos, an ongoing effort. The major “improvement” 

will be an R package of high-level functions that will automate fitting a set of fairly 

“standard” models that users are likely to fit frequently. Precedent for such packages already 

exists. For example, both the ‘umx’ and ‘EasyMx’ packages for R provide a suite of high-

level functions that automate fitting certain kinds of model, and shield the user from the 

underlying complexity of OpenMx’s “nuts and bolts”.

Conclusion

In summary, we have recently developed “mxGREML”, a versatile software tool that 

integrates SEM and GREML. The tool is implemented as a feature in OpenMx, an R 

package for extended structural equation modeling. It introduces a new type of expectation 

(statistical model specification) and fitfunction (objective function), and new functionality 

for data-handling. The feature allows a great deal of user customization to accommodate 

complicated datasets, and to improve performance during numerical optimization. By 

design, the feature allows the user to structure the phenotypic covariance matrix, V, as an 

arbitrary matrix or function of matrices (MxAlgebra). We have provided an example of how 

the feature might be applied, and provide additional example scripts in an online repository. 

Finally, we describe the feature’s current limitations with regard to numerical linear-algebra 

performance, calculation of the objective-function derivatives, and ease-of-use, and we 

provide a clear roadmap forward for overcoming those limitations with additional 

development effort.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Path diagram of phenotypic common-factor model (within-person perspective).
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Figure 2. 
Path diagram depicting the covariance structure among the A (additive-genetic) latent 

variables of three random participants. Ai, is the A variable of participant i, Gij is element i, j 
of the GRM, and VA is the additive-genetic variance component..
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