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Weakly supervised temporal model 
for prediction of breast cancer 
distant recurrence
Josh Sanyal1, Amara Tariq2, Allison W. Kurian3, Daniel Rubin1,4 & Imon Banerjee2,4*

Efficient prediction of cancer recurrence in advance may help to recruit high risk breast cancer 
patients for clinical trial on-time and can guide a proper treatment plan. Several machine learning 
approaches have been developed for recurrence prediction in previous studies, but most of them 
use only structured electronic health records and only a small training dataset, with limited success 
in clinical application. While free-text clinic notes may offer the greatest nuance and detail about a 
patient’s clinical status, they are largely excluded in previous predictive models due to the increase 
in processing complexity and need for a complex modeling framework. In this study, we developed 
a weak-supervision framework for breast cancer recurrence prediction in which we trained a deep 
learning model on a large sample of free-text clinic notes by utilizing a combination of manually 
curated labels and NLP-generated non-perfect recurrence labels. The model was trained jointly on 
manually curated data from 670 patients and NLP-curated data of 8062 patients. It was validated on 
manually annotated data from 224 patients with recurrence and achieved 0.94 AUROC. This weak 
supervision approach allowed us to learn from a larger dataset using imperfect labels and ultimately 
provided greater accuracy compared to a smaller hand-curated dataset, with less manual effort 
invested in curation.

According to the World Health Organization, breast cancer is the fifth leading cause of cancer mortality world-
wide, and breast-cancer-related mortality is mainly caused by metastasis and recurrence1. Recurrent breast cancer 
occurs months or years after the initial treatment. The cancer may come back on the same side of the breast as 
the original cancer (local recurrence), or it may spread to other areas of the body beyond the breast such as the 
bones, liver, lungs or brain (distant recurrence). Early prediction of breast cancer recurrence may help to guide 
a proper treatment plan. For example, patients whose chance of recurrence is very high may be considered for 
clinical trials of novel therapies to reduce metastatic recurrence, while those with lower probability may benefit 
from trials of treatment de-escalation2,3. Such predictions could also inform patients about their future risks, 
which may guide their life decisions.

With the advent of new digital technologies in medicine, large amounts of breast cancer data have been 
collected and are available to the medical research community4–6. Leveraging existing digital datasets, several 
predictive models have been proposed to aid breast cancer diagnosis and treatment7–9. However, the accurate 
prediction of a disease outcome is one of the most interesting and challenging tasks since it can help to discover 
and identify patterns and relationships between the complex electronic healthcare datasets and effectively predict 
future outcomes which will contribute to individualizing cancer treatment.

Recurrence prediction models that have been published to date10–12 used only a limited dataset for training 
and validation which may result in a highly simplified and conservative model with less generalizability for 
complex cases. The reason for using such a small dataset is mainly motivated by the fact that obtaining manu-
ally curated recurrence labels needs through chart-review by content experts, which is costly and impractical 
for more than 1000 cases. In such a situation, weak supervision is becoming a popular strategy in the machine 
learning field where noisy, limited, or imprecise sources are used for labeling large amounts of training data.

Natural Language Processing (NLP) models have been developed to extract breast cancer recurrence informa-
tion from clinical notes, electronic health records (EHR) and population-based cancer registries, with varying 
degrees of success in generating labels. Such NLP-generated labels can be used for weak supervision of a breast 
cancer prediction model, letting the model leverage a large-scale EHR for training. Carrel et al.13 were able to 
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extract information from clinical notes and identify 92% of recurrent breast cancer cases. Soyasal et al.14 used 
NLP to extract information about metastatic sites for lung cancer patients and were able to achieve recall of 0.84 
and 0.88 precision for metastatic status detection, and 89% recall and 93% precision for metastasis site detection. 
In our previous work, we developed a neural network-based NLP approach to extract breast cancer recurrence 
timeline information from progress notes, radiology and pathology reports and were able to achieve a sensitivity 
of 83%, specificity of 73% and AUROC of 0.9 for recurrence detection15.

In the current study, we propose a weak-supervision framework to predict breast cancer recurrence one 
year in advance using only unstructured clinical narratives, including progress notes, pathology and radiology 
reports, and nursing notes. The weak-supervision leverages our previously developed NLP model and allows us 
to generate a large annotated breast cancer recurrence dataset (8,956 breast cancer patient treated in Stanford 
between 2000 to 2018) for training the prediction model which to our knowledge is the first model to learn on 
such huge dataset. To evaluate the weak-supervision framework performance, we compared performance of two 
approaches—(1) weak-supervision #1—trained with manually curated data and our NLP-generated labels with 
optimal sensitivity and specificity and (2) weak-supervision #2—trained with manually-curated data and the 
NLP-generated labels with high sensitivity (only few false negative cases which ultimately increase the number 
of positive cases), against a traditional prediction model (only trained with manually curated data).

Results
We evaluate our research pipeline by broadly categorizing them into two components—(1) the semantic qual-
ity of the words and clinical notes embedding generated by the NLP methods through visualizations, (2) the 
performance of the temporal LSTM model to predict recurrence where we assess the performance of our model 
under different weak-supervision settings.

Textual embedding evaluation.  We evaluated the semantic quality of the embedding generated by our 
vectorization pipeline on two different levels. On the word-level, we found similar word clusters in a totally 
unsupervised manner to verify the positioning of synonyms (and related words). This suggests that our vector 
embedding is able to preserve legitimate semantics of the natural words and clinical terms. We first selected five 
clinically significant terms (mastectomy, stage, biopsy, gene, smoking) and for each of these, their ten most simi-
lar words. To determine the similarity between words, we calculated the cosine distance between the two-word 
vectors, with higher cosine values indicating higher similarity. Next, we used t-SNE16 to reduce the dimensional-
ity of the 300 length word vectors down to 2-dimensional space for visualization as shown in Fig. 1. The t-SNE 
dimensionality reduction technique was chosen because it reduces the tendency to crowd points in the center of 
the space, making it easier to visualize the separate clusters formed after training the word embeddings.

At the note-level, we visualized the document vectors of 1000 notes, with 500 randomly selected from each 
class to fulfill the purpose of analyzing the proximity of documents that have different recurrence labels. We 
labeled each document using the patient’s recurrence status at the time of the note’s creation (Fig. 2a), 3 months 
in the future (Fig. 2b), 6 months in the future (Fig. 2c), and 1 year in the future (Fig. 2d), with recurrence labeled 
as red and no recurrence as blue. If the documents corresponding to the same class (risk) appeared close to 
each other and form clusters, we inferred that our embedding carried substantial signals for recurrence, which 
could be useful to boost the performance of any standard classifiers. As we can see from the t-SNE projection 
in Fig. 2a, recurrence-positive cases (red) and negative cases (blue) formulate natural clusters which show that 
the vectorization was able to preserve the semantics of the clinical notes. Even as the labels represent timepoints 
further in the future, the subsequent visualizations still contain natural clusters, indicating that the document 
vectors, alone, are informative for the task of recurrence prediction.

Figure 1.   2D visualization of word embeddings computed using t-SNE16.
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LSTM prediction evaluation.  Figure 3 shows the model performance for distance recurrence prediction 
(1 year advance) in three distinct settings on the same annotated test cohort containing 224 patients where the 
recurrence timeline has been identified by manual chart-review. The optimal prediction performance was 0.94 
ROC AUC and at the optimal operating point of ROC, the sensitivity was 0.89 and specificity was 0.84. This was 
achieved in weak-supervision #2 setting where the manually curated data were combined with NLP-generated 
labels with high sensitivity in order to leverage more positive samples in training. In weak-supervision #1 set-
ting, the model obtains 0.92 ROC AUC, and 0.83 Sensitivity, 0.85 Specificity. This drop-in performance could be 
explained by the lower number of positive recurrence cases available in training for weak-supervision #1. While 
the lowest prediction performance was obtained in the traditional setting with all manually curated training data, 
the model achieved 0.84 ROC AUC, and at the optimal operating point of the ROC, the sensitivity was 0.72 and 
specificity was 0.82.

To better characterize the timeline over which the model is able to predict recurrence before the event, we 
create a histogram in Fig. 3.d to illustrate how far in advance the model captures the positive cases of recurrence 
in the test cohort. This is done using the best performing LSTM model and for each patient, we determine the 
earliest date when the model predicts a recurrence probability that exceeds the threshold set by the optimal 
operating point and find the difference between then and the confirmed recurrence date. The majority of suc-
cessfully predicted patients (57.9%) are predicted positively for recurrence within 300–400 days of the actual 
recurrence date, indicating the model’s ability to successfully capture cases of recurrence at the intended time.

To evaluate the extent to which the LSTM architecture is improving performance by incorporating informa-
tion across a large timeline of notes, we compare the performance of the LSTM model to a traditional machine 
learning model trained to predict recurrence using a single vectorized note. We choose XGBoost17, an imple-
mentation of gradient-boosted decision trees, for this comparison as it has achieved state-of-the-art results on 
a variety of machine learning tasks. To ensure comparable results, this XGBoost model was trained using the 
same 3 supervision strategies and evaluated on the same test cohort. As shown in Table 1, the XGBoost model 

Figure 2.   T-SNE visualization of document vectors labeled at (a) recurrence within 0 months, (b) recurrence 
within 3 months, (c) recurrence within 6 months, (d) recurrence within 1 year.
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achieved its best performance in weak supervision #2 with 0.81 ROC AUC, 0.77 sensitivity, and 0.73 specificity. 
The significant drop in performance between this model and the LSTM model across the different supervision 
strategies indicates that the LSTM architecture is able to capture complex temporal relationships in the note 
vectors beyond the information provided innote vectors at individual time points. Furthermore, the LSTM archi-
tecture is better able to improve its performance through the addition of weakly labelled data when compared 
to the performance boost from weak supervision in the XGBoost model.

Figure 3.   LTSM model performance evaluated as Receiver Operating Characteristic curves trained with (a) 670 
manually curated patients, (b) weak supervision combining manually curated (670 patients) and NLP generated 
labels of 7437 patients, (c) weak supervision combining manually curated (670 patients) and NLP generated 
labels of 7437 patients with more positives samples. (d) The distribution of prediction interval (time between 
positive recurrence prediction and actual recurrence) for patients in the test cohort using the best performing 
LSTM model.

Table 1.   Performance of the temporal LSTM and XGBoost models compared across all three supervision 
strategies.

Temporal LSTM model XGBoost

ROC AUC​ Sensitivity Specificity ROC AUC​ Sensitivity Specificity

Traditional supervision 0.84 ± 0.07 0.72 ± 0.07 0.82 ± 0.05 0.76 ± 0.10 0.67 ± 0.09 0.72 ± 0.07

Weak supervision #1 0.92 ± 0.05 0.83 ± 0.08 0.85 ± 0.06 0.79 ± 0.08 0.71 ± 0.08 0.73 ± 0.07

Weak supervision #2 0.94 ± 0.04 0.89 ± 0.07 0.84 ± 0.06 0.81 ± 0.07 0.77 ± 0.06 0.73 ± 0.08
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The overall high accuracy of the recurrence prediction model with weak supervision suggests that the pro-
posed model performed quite well on estimating recurrence one year before it occurred on the test set. In Fig. 4, 
we present the graph summary for multiple randomly selected patients which shows that the predicted probability 
sequence closely follows the ground truth labels.

Discussion
Prediction of breast cancer recurrence from clinical notes is a challenging problem; it not only needs an efficient 
way to handle ambiguity in the clinical text but also requires a sequential prediction model to capture the complex 
correlation between information from current and historic encounters. We propose a sequential deep learning 
model using LSTM which reads the clinic notes in order, creates note-level embedding and predicts recurrence 
risk one year in advance. The model was trained using a NLP-generated, large, labeled breast cancer dataset.

The core contribution of this work is (1) development of a robust and efficient breast cancer recurrence predic-
tion model using weak supervision; (2) embedding of clinical notes using weighted vectorization. Although in 
the current deep learning field, weak-supervision frameworks are very popular, application of weak supervision 
for clinical prediction could be perceived in a different way from the generic application. In clinical prediction, 
limited representation of the relevant class (often only 1–5% of the overall dataset) is the greatest challenge, even 
more than a lack of annotated samples. Thus, we proposed three parallel strategies for recurrence prediction—(i) 
traditional: train with limited manually curated data, (ii) weak supervision 1: train with weakly labeled data with 
high specificity (only few false recurrence—less positive cases), and (iii) weak supervision 2: train with weakly 
labeled data with high sensitivity (only few false no recurrence—more positive cases). We showed that our weak 
supervision model with more positive cases obtained optimal prediction performance with 0.94 ROC AUC, 0.89 
sensitivity and 0.84 specificity, and outperformed not only the model trained with manually curated data but 
also the weak supervision model with fewer positive cases.

Previous studies10–12 applied machine learning technology to predict breast cancer recurrence using demo-
graphics, procedure codes, diagnosis, treatment, prescription filling, chemotherapy codes, pathological, and 
genetic data. However, most of the previous breast cancer recurrence prediction models were either developed 
using only structured clinical data fields or with linear classification models that had limited success to model the 
complex co-relations of sparse structured clinical data18. For example, Nordstrom et al. selected a limited subset of 
the structured indicators for breast, non-small cell lung and colorectal cancer, used a traditional Random Forest 
classifier to predict recurrence, and concluded that their algorithm performed at approximately the same level 
as the presence of a secondary tumor diagnosis code, with low sensitivity and high specificity19. Lamont et al.20 
also used only structured information from Medicare and Medicaid data and Chawla et al.21 used SEER cancer 
registries and Medicare claims data to identify metastasis. Clinical notes, including progress notes, radiology 

Figure 4.   Predicted recurrence probability plotted against the actual recurrence status over time for three 
separate patients—x-axis shows the encounter date in ascending order starting from the first visit, y-axis shows 
the probability. Red line represents the ground truth: Definite recurrence = 1, No Recurrence = 0. Blue line 
represents the predicted probability score.
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and pathology reports, are documented mostly in a free-text format but may offer the greatest nuance and detail 
about a patient’s clinical status. However, clinic notes are mostly unexplored or under-explored with a simplistic 
processing approach for recurrence prediction due to the challenge of representing the unstructured nature of 
free-text data including varying structures, semantic qualities, and size, in a computer-manageable way. Some 
interesting work has been done in the area of cancer prediction with structured and unstructured data. Zhao et. 
al.22 used a key-word based search and Bayesian inference combining EHR and Pubmed abstracts for pancreatic 
cancer prediction.

We leveraged our previously published NLP methodology to curate a large set of training data for metastatic 
recurrence of breast cancer. This approach alleviates the expense of manual chart-review and can be used to create 
a strong predictive model trained on a large patient cohort. Our experiments showed that a weak-supervision 
framework with NLP generated labels with high sensitivity and enabled the model to learn from a large dataset, 
ultimately improving its performance on the evaluation set. The proposed weighted vectorization scheme for 
clinical notes also preserved clinical semantics, which ultimately boosted the model’s prediction performance. 
Our proposed framework will also be transferable to other clinical event prediction tasks with minimal fine-
tuning. Core limitation of our work is that the model was trained using single institutional data that contains 
biases regarding syntactic style of clinical narratives, patient populations, and treatment planning. In future, we 
plan to include multi-institutional test dataset to validate our model.

Methods
Figure 5 presents the proposed research workflow which can be broken down into core processing blocks: 1. 
Text cleaning—preprocessing of the clinical notes, 2. Neural Embedding—learn the language space, 3. Document 
vectorization—vector representation of the notes, 4. Prediction models—training three prediction models, and 
5. Performance evaluation and Visualization.

Cohort generation.  Patient cohorts.  In this study, we used two publicly available clinical note datasets 
to curate a corpus of generic clinical notes and learn generalizable note representations. Oncoshare, a patient-
specific corpus obtained from Stanford University, is then used to train the recurrence prediction model. Char-
acteristics of these datasets are summarized in Table 2.

Generic cohort.  To learn the clinical language space, we curated a generic clinical note cohort by compiling 
92.6 million open-source clinical notes from the I2B2 NLP research database23 and MIMIC-III critical care 
database24. The I2B2 research datasets are composed of fully de-identified notes collected from 2004 to 2014 and 
are available for general research purposes. The MIMIC-III database contains the data of patients who stayed in 
the intensive care units at Beth Israel Deaconess Medical Center. Several tables track different patient variables 
such as diagnoses, lab events, and prescriptions, but we used only the note events table, which consists of de-
identified notes including discharge summaries, ECG reports, and imaging reports.

Figure 5.   Proposed Research Workflow. The interaction between the components is shown by the arrow. 
Output from the previous component is being passed to the next component for analysis.

Table 2.   A variety of datasets are used to train generable note representations—description and statistics.

Dataset Size # Notes Location Description Mean # sentences Mean # words

I2B223 24.2 MB 2.2 K Beth Israel deaconess medi-
cal center + partners

Smoking, heart disease, 
obesity, etc 75.21 (51.13) 1065.81 (689.19)

MIMIC-324 4.01 GB 91.7 M Beth Israel deaconess medi-
cal center Intensive care unit visits 19.14 (24.43) 442.90 (823.59)

OncoShare25 2.79 GB 893 K Stanford healthcare Breast cancer recurrence 17.16 (37.43) 122.63 (387.54)
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Oncoshare cohort.  With the approval of Stanford University Institutional Review Boards, we used the Oncoshare 
breast cancer database25 which was developed as an integration of EHRs of Stanford Health Care (SHC), an aca-
demic health institution, and multiple sites of the Palo Alto Medical Foundation (PAMF), a community-based 
medical center in Northern California, and the California Cancer Registry. Table 3 presents the characteristics of 
the Oncoshare cohort. Following the Stanford IRB regulation, informed consent was obtained from the patients. 
The database captures individual patient-level information such as diagnoses, procedures, prescriptions, and 
clinical notes. For this study, we focused on 892,550 free-text clinical notes (medical and social histories, impres-
sions, visit summaries, etc.) collected from 8,956 de-identified breast cancer patients treated from 2000 to 2018 
at SHC. Figure 6 illustrates the distribution of notes per patient in the Oncoshare dataset. The mean number of 
notes per patient is 126 with a standard deviation of 172 notes. On average, patients had 7.46 years of follow-up 
data in Oncoshare with a standard deviation of 5.48 years.

Recurrence labels for the Oncoshare data.  All experimental protocols were approved by a Stanford University 
Institutional Review Boards and all methods were carried out in accordance with relevant guidelines and regula-
tions. Among the 8,956 patients in the Oncoshare database, we selected 1,519 patients to perform manual chart-
review to establish whether patients had distant metastatic recurrence (designated as “definite recurrence” or “no 
recurrence”). We presented the patient characteristics in Table 3. For manual chart-review, we recruited three 

Table 3.   Characteristics of the Oncoshare patients: overall and manually curated samples.

Whole dataset (patients: 8956) Manually Chart-reviewed (N = 1,519)

Age at primary diagnosis 54 (± 13) 54 (± 12)

Follow-up duration 6 years 5 years

Marital status

Single 1354 (15%) 139 (9.15%)

Married 5869 (65%) 1048 (69%)

Separated/divorced/widowed 1539 (17%) 130 (8.55%)

Domestic partner 11 (0.1%) 0 (0%)

Unknown 183 (2%) 202 (13.29%)

Ethnicity

Hispanic 842 (9%) 60 (4%)

Non-hispanic 7649 (85%) 1002 (66%)

Unknown 465 (5%) 457 (30%)

Race

White 6726 (75%) 759 (50%)

Asian 1353 (15%) 212 (14%)

Black 325 (4%) 46 ( 3%)

Pacific Islander 49 (1%) 18 (1%)

Native American 17 (1%) 2 ( 0%)

Unknown 486 (5%) 482 (32%)

Stage from Stanford cancer registry

0 419 (5%) 61 (4%)

1 1041 (12%) 182 (12%)

2 23 (1%) 1 (0%)

3 441 (5%) 133 (8%)

4 53 (1%) 0 (0%)

Unknown 6979 (78%) 1142 (75%)

Payer

Not insured 61 (1%) 15 (1%)

Insurance, NOS 891 (10%) 121 (8%)

Managed care/Health Management Organization/Preferred 
Provider Organization 299 (3%) 7 (0%)

Medicaid 643 (7%) 91 (6%)

Medicare 1643 (18%) 212 (14%)

Others 347 (4%) 60 (4%)

Unknown 5072 (57%) 536 (69%)

Grade

Grade 1 (Well differentiated) 1609 (18%) 273 (18%)

Grade 2 (Moderately differentiated) 3363 (38%) 531 (35%)

Grade 3–4 (Poorly differentiated) 3984 (44%) 713 (47%)
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senior medical students to undertake a chart review of each patient using a Web-based in-house tool26. Subse-
quently, two senior oncologists removed the uncertain patients and finally, 894 patients served as the ground 
truth data set. The mean inter-annotator agreement was 0.81. More detail about the annotation can be found 
in our previous publication15. The NLP method scored 0.9 AUROC for detecting the recurrence timeline of 
the test data (quarter-wise) and at the optimal operating point, the method obtained 0.82 specificity and 0.73 
sensitivity. The patient-level performance was 0.95 specificity and 0.93 sensitivity. All the remaining patients’ 
notes in the Oncoshare database (7437 patients) were weakly labeled by the neural network-based probabilistic 
NLP method. Using the probabilistic classifications, we used two different thresholds to separate them into posi-
tive and negative recurrence cases, the higher threshold focused on capturing only a few recurrences with high 
specificity, and the lower threshold focused on detecting more recurrences with high sensitivity. Specifically, the 
higher threshold resulted in 19,766 notes with positive recurrence status while the lower threshold resulted in 
165,630 notes with positive recurrence status.

Text cleaning: preprocessing of the clinical notes.  To reduce the linguistic and style variability, each 
note is transformed through a series of pre-processing steps as illustrated by Fig. 7. We first processed the notes 
using standard text cleaning steps—by removing excess whitespace and punctuation, converting all text to low-
ercase letters, and converting all numbers to words. Afterwards, we remove the following unwanted terms and 
phrases to eliminate noise: general stop words, words with less than 50 occurrences in the corpus, general section 
headings (“impression”, “findings”), medico-legal phrases, and proper nouns. These words provide little value 
in predictions and increase computation time when training word embeddings. Following this step, we use 
the publicly available CLEVER terminology (https://​github.​com/​stama​ng/​CLEVER/​blob/​master/​res/​dicts/​base/​
clever_​base_​termi​nology.​txt) to map similar common terms and related domain-specific terms to controlled 
terms. For example, common terms like “brother”, “mother”, and “son” were mapped to “FAM” and domain-
specific terms such as “cancer”, “lesion’, and “oncology” were mapped to “CA”.

Figure 6.   Distribution of visits (left) and follow-up times (right) for all patients in the breast cancer recurrence 
dataset.

Figure 7.   Pictorial representation of a free-text radiology report (a), transformed through the preprocessing 
steps of text cleaning (b), unwanted phrase removal (c), and word mapping (d).

https://github.com/stamang/CLEVER/blob/master/res/dicts/base/clever_base_terminology.txt
https://github.com/stamang/CLEVER/blob/master/res/dicts/base/clever_base_terminology.txt
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Neural embedding: learn the language space.  In order to represent the words appearing in the clini-
cal notes into a machine-understandable form, we created a Language Space Model that generates embedding 
of the words in a vector space where vector representation of similar words are mapped near each other. We 
trained a language space following a distributional semantics approach where we used all the preprocessed text 
corpus (I2B2, Mimic-III, Oncoshare) and learned in an unsupervised manner. We used the word2vec model, 
introduced by Mikolov et al27. The word2vec model iteratively analyzes context words around a specific center 
word to learn memory-efficient vector representations of each word while keeping the word similarity based on 
context. We use the skip-gram variant of word2vec which aims to predict these context words from the center 
word as opposed to continuous bag-of-words (CBOW) which does the inverse by predicting the center word 
given context words. While CBOW is faster, we use skip-gram because it performs better for infrequent words 
which may be informative for recurrence prediction, given recurrence is minority class. This was confirmed in 
cross validation on the training data, where optimal performance was achieved by a skip-gram architecture with 
a vector size of 300 and window size of 30. All other parameters were set to their default settings and the model 
was trained for 30 epochs. The model is trained on a total 92.6 million clinical notes.

Document vectorization: weighted vectorization of the notes.  We create note-level embeddings 
for the 892,550 clinical notes by computing a weighted average of all word vectors in each clinical note. First, 
we calculate the tf-idf (term frequency-inverse document frequency) score for all unique words in each note as: 
tf ∗ log( Ndf ) , where tf is the number of occurrences of the word in the note, df is the number of notes with the 
word, and N is the total number of notes. This score is high for terms which occurs many times in a note, but 
infrequently throughout other notes in the corpus. These scores are then used as a weighting factor for each word 
vector, with high tf-idf scores emphasizing potentially clinically significant and discriminative features which 
are informative from recurrence prediction. Finally, each note is represented as an average of all of these word 
vectors weighted by their tf-idf score as: Vnote =

1
N

∑N
i=1 Wi ∗ VWi , where VWi is the vector representation of 

i-th word, Wi is tf-idf weight, and N is the total number of words in the preprocessed note. Initial experiments 
showed that this unsupervised approach performed better than other document representation techniques such 
as doc2vec, TF-IDF, and a simple average of word2vec.

Recurrence prediction model.  Using the note-level embeddings, we train a recurrent neural network 
(RNN) with long short-term memory (LSTM) units28 to predict the probability of breast cancer recurrence in 
1 year. This model architecture is designed to process each patient’s clinical note ordered based on encounter 
timestamp as a longitudinal series over time. We chose to use LSTM units over vanilla RNN units based on the 
fact that LSTM better retains memory of important events in a long time series. The long-term memory encodes 
general information regarding the entire visit sequence while short-term memory keeps track of immediate 
changes in patient visits. The model architecture as displayed in Fig. 8 consists of a 1-directional, many-to-many, 
stacked stateful LSTM with 2 layers and a total of 78 K trainable parameters. The first layer consisted of 50 hid-
den neurons, followed by batch normalization and 20% dropout. The next LSTM layer consisted of 25 hidden 
neurons, followed by 20% dropout. Batch normalization and dropout are used to accelerate training, prevent 
overfitting, and improve overall model performance.

Prior to training, the notes of each patient are concatenated in chronological order and this sequence of 
notes can be represented as Xi = (Vi

(1),Vi
(2), . . . ,Vi

(n)) where Vi
(t) represents the vector representation of the 

i-th patient’s t-th note. To preserve as much meaningful data without vastly increasing computational time, we 
set the maximum length of these sequences to 800 notes based on the distribution of visits for all patients as 
shown in Fig. 6. While only 79 patients had more than 800 notes, there were three patients with over 2000 notes 
(2291, 2310, 2900) and using all of these notes would result in more padded data than actual visits. Removing 
all notes beyond each patient’s 800th note dramatically reduced computational time and only eliminated 2.6% 

Figure 8.   LSTM model architecture for breast cancer recurrence prediction.
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(23,237) of all notes. For patients with less than 800 notes, their note sequences are padded to 800 length using 
the zero vector. These sequences of notes are then labelled as Yi = (yi

(1), yi
(2), . . . , yi

(n)) where yi(t) represents the 
recurrence status of the patient 1 year from the note’s date and padded notes are assigned a separate class label.

The one directional LSTM units aim to predict recurrence probability by using the notes from all current 
and previous time points. The first-layer LSTM unit at time point t receives the input of Vi

(t) which represents 
the current note and the previous unit’s hidden state h(t−1) which captures the relevance of all prior notes. This 
unit then passes the current hidden state h(t) to its corresponding second-layer unit and the successive first-layer 
LSTM unit. The second-layer LSTM units at time point t then use these hidden states and recurrent connections 
with previous second-layer units to compute ŷ(t) = softmax(L ◦ h(t)) , a vector of three probabilities which cor-
respond to no recurrence, positive recurrence, and padded note. The trainable parameters for each LSTM block 
in the model include the input-to-hidden matrix in layer 1, hidden-hidden matrix in layer 2, and the bias vector.

We optimized the model using weighted Categorical Cross Entropy loss and used the Adam optimizer29 with 
a decaying learning rate starting at 10–3. During the loss estimation, the padded notes were assigned zero weight 
to ensure they do not affect model training. In total, the model was trained for 20 epochs with a batch size of 32.

Using the same prediction model architecture and hyperparameters, we compare the performance of the 
traditional model trained on the manually curated labeled data against two weakly supervised approaches which 
incorporate the remaining 8,062 patients annotated by the NLP algorithm. In order to evaluate the performance 
using weakly supervision, the test cohort of 224 patients fixed across all three models to ensure comparable 
results.

Performance evaluation.  The manually labeled set of 894 patients was randomly split into a 75% training 
set (670 patients) and 25% test set (224 patients). To optimize hyperparameters such as learning rate and the 
number of hidden neurons, the model was validated on the training set via fivefold cross validation. Following 
validation, the model was trained on the entire training set and performance was computed using the holdout 
test set, treating each note as an individual sample for evaluation. We also exclude all notes from the test set that 
occur after the date of recurrence to ensure we are measuring the model’s predictive ability rather than detec-
tion. We choose to measure the performance using the area under the receiver operating curve (ROC AUC) 
based on its ability to accurately determine model performance from 1 (perfect) to 0, despite class imbalance or 
a specific threshold. This allows clinicians to choose their preferred tradeoff between specificity and sensitivity. 
In addition to this primary metric, we selected the operating point that maximizes the sensitivity and specificity 
to determine a potential model threshold and report the model’s sensitivity and specificity as additional metrics 
for performance measure.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to the 
patient data privacy restriction, but de-identified subset of data is available from the corresponding author on 
reasonable request. The prediction models can be obtained through an MTA.

Code availability
Authors are committed to release the code in the Dr. Banerjee’s GitHub respository for public access with open 
source licensing.
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