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Abstract

Background—Findings and interpretations of myocardial perfusion imaging (MPI) studies are 

documented in free-text MPI reports. MPI results are essential for research, but manual review is 

prohibitively time-consuming. This study aimed to develop and validate an automated method to 

abstract MPI reports.

Methods—We developed a natural language processing (NLP) algorithm to abstract MPI reports. 

Randomly selected reports were double-blindly reviewed by two cardiologists to validate the NLP 

algorithm. Secondary analyses were performed to describe patient outcomes based on abstracted-

MPI results on 16,957 MPI tests from adult patients evaluated for suspected ACS.

Results—The NLP algorithm achieved high sensitivity (96.7%) and specificity (98.9%) on 

the MPI categorical results and had a similar degree of agreement compared to the physician 

reviewers. Patients with abnormal MPI results had higher rates of 30-day acute myocardial 

infarction or death compared to patients with normal results. We identified issues related to 

the quality of the reports that not only affect communication with referring physicians but also 

challenges for automated abstraction.
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Conclusion—NLP is an accurate and efficient strategy to abstract results from the free-text MPI 

reports. Our findings will facilitate future research to understand the benefits of MPI studies, but 

requires validation in other settings.
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myocardial perfusion imaging; data abstraction; ischemia; noninvasive stress test; natural language 
processing; nuclear cardiology

INTRODUCTION

Myocardial perfusion imaging (MPI) is the most common noninvasive cardiac test to 

evaluate emergency department (ED) patients with suspected acute coronary syndrome 

(ACS).1 Prior studies have demonstrated a strong association of abnormal MPI studies with 

adverse cardiovascular events during follow-up.2,3 There is still much to learn regarding 

the effectiveness MPI and other noninvasive cardiac tests related to patient outcomes, care 

affordability and the patients most likely to benefit.4,5 Comparative effectiveness studies 

to assess the value of MPI or other noninvasive tests in acute care settings pose many 

challenges, including the high costs of large randomized trials, and the confounding factors 

associated with non-randomized study designs.4,6 Efficiently capturing the results of large 

numbers of MPI, would provide the information necessary to do large scale observational 

studies to answer important clinical questions about the clinical effectiveness, risks, and 

benefits to patients.

MPI reports document crucial details on MPI testing that are essential to downstream care. 

Such text-formatted reports are written in human language, which is difficult for computers 

to process. Natural Language Processing (NLP) is a subfield of artificial intelligence and 

computer science focused on the interactions between computers and natural (human) 

languages. With electronic health records (EHR) being more accessible, NLP has increased 

use in the clinical field. For clinical research, NLP enabled computers to identify and extract 

information that is unavailable or inaccurate in structured data.7,8 When compared with 

manual chart review of medical records, NLP is more efficient and produces more consistent 

results.9

We previously developed NLP algorithms for the extraction of cardiovascular variables, 

such as ejection fraction, aspirin, and warfarin usages.10–12 Recently, we demonstrated 

NLP’s ability to identify clinical variables from the electrocardiogram treadmill test (ETT) 

reports.13

In this study, we aim to derive and validate an algorithm to identify and extract MPI results 

from MPI reports. We applied the NLP algorithms to a large MPI cohort and described 

whether NLP-classified risk is associated with an increased risk of cardiac events. Our study 

builds on previous research,13,14 and leverages a unique data set of a substantial patient 

cohort with MPI testing.
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METHODS

Study Setting

We performed this retrospective cohort study at Kaiser Permanente Southern California 

(KPSC), an integrated healthcare organization with over 7,600 physicians, 15 hospitals, 

234 medical offices, and approximately 1 million annual ED visits. KPSC provides prepaid 

health care to over 4.7 million racially and socio-economically diverse members in KPSC-

owned facilities and contracting facilities. In 2007, KPSC implemented an EHR system 

based on an Epic Systems platform. All KPSC ED sites use the same troponin lab assay 

(Beckman Coulter Access AccuTnI+3). ED physicians at KPSC can order noninvasive 

cardiac testing as part of the discharge and follow-up plan of patients with suspected ACS. 

In May 2016, KPSC implemented the HEART (History, Electrocardiogram, Age, Risk 

factors, Troponin) score into routine ED care allowing for a standardized risk assessment for 

patients with suspected ACS.15 The KPSC Institutional Review Board approved this study.

Study Population

We included all KPSC members aged 18 years or older with an ED visit with clinically 

suspected ACS resulting in a troponin lab order between 01/01/2015 and 11/30/2018, who 

underwent an MPI within 30 days of their visit. We excluded patients who were transferred 

from a non-KPSC hospital or passed away during the ED visit. We also excluded patients 

without KPSC health plan membership because our data set does not accurately capture 

comorbidities and patient outcomes for non-members. MPI studies were identified using 

Current Procedural Terminology (CPT®) codes (78451–78452) or a referral order linked to 

the index ED visit.

We obtained demographic information such as age, sex, and race from administrative 

records; smoking and family history of coronary artery disease (CAD) from self-reported 

fields in EHR; medications from our prescription and pharmacy systems. Body mass index 

(BMI) was measured from ED intake documentation or the most recently available visit. 

Troponin values were extracted from the lab data. HEART scores calculated at the time 

of the index ED visit were retrieved from the EHR. Comorbidities were defined using 

the International Classification of Diseases Ninth/Tenth Revision, Clinical Modification 

(ICD-9/10-CM) codes included in the Elixhauser score.

MPI Reports

KPSC does not have structured reporting for MPI exams. The MPI reports were dictated or 

written by the interpreting physicians as unstructured or free-text formats. The MPI reports 

were saved to the Epic Clarity system running on Oracle Exadata.

Training and Validation Datasets

The necessary size for the validation dataset was 147,16 assuming a prevalence rate of 

non-normal MPI findings of 13%,17–19 an expected maximum marginal error of 0.1, and 

NLP sensitivity and specificity of 95% compared with a reference standard.13 We created 

training (n=120) and validation (n=150) datasets by random sampling from the study 

population. Two cardiologists (M.F. and M.S.L.) independently reviewed the MPI reports 
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in the training and validation datasets. The cardiologists were blinded to each other’s 

reviews and abstracted solely based on the reports. The results of physician review were 

compared, and discrepancies were resolved by consensus and discussion with the other 

physician on the research team (R.F.R.). The adjudicated results served as the reference 

standard against which NLP was compared. We compared the agreements between the 

two physician reviewers and calculated the weighted Cohen’s kappa20 and the intraclass 

correlation coefficient (ICC).21

NLP Algorithm Development

We developed an NLP based algorithm to extract information from the MPI reports. The 

basic NLP processes were described previously.9,10 First, we converted the clinical notes 

extracted from the EHR system into formats suitable for the NLP search. A pre-precessing 

step removed ill-formatted text and detected sections and sentence boundaries. We created 

terminologies for MPI-related information. Each report was searched at different scales: 

section, sentence, and its neighboring sentences. A relationship detection algorithm was 

applied to identify the associated clinical entities. Negation and temporal relationship 

algorithms were used to identify and exclude negated, uncertain, historical, and future 

statements. Negation algorithm handles double negations that are commonly occurred in 

MPI reports, e.g., ‘no significant abnormality.’ Regular expressions were used to capture 

the semi-structured information, e.g., left ventricular ejection fraction (EF) values. We 

extracted information that was commonly available in MPI reports (Figure 1). We derive 

the final set of variables based on the clinical logic described below. For our study, our 

main aim was to identify patients with evidence indicating concerns of ACS. Therefore, we 

categorized our MPI results as follows:

Ischemia: An ischemic or reversible defect was identified.

Infarction: No definitive ischemic finding, but a fixed or irreversible defect was 

identified.

Non-diagnostic: Ischemia or infarction cannot be ruled out due to the presence of 

artifacts or sub-optimal test quality.

Normal: Test quality was sufficient to rule out ischemia or infarction.

For ischemic cases, we further identified ischemic location, size, and severity. For unstated 

defect size, we estimated it based on the number of left ventricular segments involved. We 

used the 17-segments model to define the defect size as small (involving 1–2 segments), 

medium (3–4 segments), and large (≥5 segments).22 We dichotomized the defect size 

results into “Small_medium” and “Large,” and the defect severity into “Mild_moderate” 

and “Severe.” The EF result was categorized into abnormal (≤40%), borderline (41–49%), 

and normal (≥50%).

MPI reports include equivocal findings. For instance, “There is a small sized mild severity, 

fixed defect in the inferior wall likely due to soft tissue attenuation artifact, although scar 

cannot be entirely excluded.” Therefore, we built rules to provide a consistent summary 

interpretation. For example, we used the wall motion and EF values to differentiate defects 

resulting from ischemia from artifacts.23 If there was no wall motion or EF abnormality, 
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we considered the defect to be an artifact. Since both resting and stress-test are needed 

to differentiate acute ischemia from old infarction, we excluded MPI tests without both 

resting and stress test results. The NLP algorithm was developed and iteratively improved 

using the training dataset. We used the programming language Python to pre-process MPI 

reports. In terminology development, we used word embedding techniques, which capture 

the underlying and context representation of words and phrases. To extract information from 

MPI reports, we used Linguamatics I2E. We built a post-processing step, using Python to 

integrate and finalize the results based on the information extracted.

Criterion Validity of NLP Algorithm

We evaluated the performance of NLP against the reference standard created by double-

blinded review and consensus among cardiologist reviewers. We compared the agreements 

between the NLP results and the reference standard using weighted Cohen’s kappa and the 

ICC. For the multi-class MPI result, we dichotomized it by each class in order to calculate 

the counts of true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN) for each class. Then for an individual class, we calculate its sensitivity, specificity, 

positive/negative predictive value (PPV/NPV). We calculate the overall performance metrics 

based on the sum of counts of TP, TN, FP, and FN as micro-averaged scores for the MPI 

result. The micro-averaged scores are the preferred performance metrics for multi-class 

classification with imbalanced data.24

Construct Validity of NLP Algorithm

We applied the NLP algorithms to the entire study cohort and compared the patient 

characteristics and comorbidities among the different MPI results. We treat the MPI result 

as a nominal variable rather than an ordinal variable. We included 30-day acute myocardial 

infarction (AMI) or all-cause mortality, from the date of MPI as a descriptive patient 

outcome, as well as 30-day major adverse cardiac event (MACE) rates, which was the 

composite of death, AMI, and any coronary revascularization procedures. We calculated p 

values using the Chi-square or the Fisher exact test for all the categorical variables and the 

Wilcoxon test for all the continuous variables. We set the significance threshold at 0.05. We 

used SAS version 9.4 (SAS Institute, Cary, NC, USA) for data analysis.

RESULTS

Study Population

Our study population included 16,957 patients with a mean age of 69±12 years; 53 % 

were women, 60% were white (Table 1). Over 45% of the study population had a smoking 

history, 40% were obese, 38% had a family history of CAD. The mean Elixhauser score was 

5.4±3.1. The mean ± standard deviation and median (interquartile range) days from ED to 

MPI tests were 2.3 (5.6) and 0 (0, 1), respectively. One-third of the patients had a HEART 

score, and among them, 73.7% and 12.9% respectively had low and moderate-risk HEART 

scores. The mean troponin level was 0.1 ng/mL. The majority (97.2%) of these patients 

had a troponin level <0.5 ng/mL (Supplemental Table S1). These 16,957 MPI reports were 

written by 111 interpreting physicians.
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Criterion Validity of NLP Algorithm

The two cardiologists had an excellent agreement on the majority of the variables, with 

over 90% ICC and Kappa (Supplemental Table S2). They disagreed more on ischemic 

severity, with 87.6% ICC and 87.3% Kappa. NLP had a similar level of agreement with 

the reference standard as compared to the agreement between the two cardiologist reviewers 

(Supplemental Table S2). NLP had a perfect match on ejection fraction, over 95% ICC 

and Kappa on MPI result, ischemia, and ischemic size, and over 90% ICC and Kappa on 

ischemic severity, infarction, and artifact.

Compared with the reference standard (n=150), NLP achieved 96.7% sensitivity and PPV, 

98.9% specificity, and NPV on MPI results using micro-averaged evaluation metrics (Table 

2). NLP achieved 100% sensitivity, 99.2% specificity, 96.9% PPV and 100% NPV on 

identifying ischemia cases. NLP had lower sensitivity (50%) for non-diagnostic cases partly 

due to the small number of non-diagnostic cases (n=4). NLP had a lower PPV (89.3%) for 

identifying infarction.

Construct Validity of NLP Algorithm

In the overall study population, the percentages of ischemia, infarction, non-diagnostic, 

and normal MPI results as identified by NLP were 16.1%, 12.2%, 1.5%, and 70.2%, 

respectively (Table 1). Compared with the patient group with normal MPI results, the groups 

with ischemia and infarction findings were more likely to be male, have smoking history, 

have cardiovascular-related comorbidities and medications. Patients with ischemia and non-

diagnostic findings were more likely to be obese with BMI ≥35. Compare with other groups, 

the non-diagnostic group had the highest mean and median days (3.2 and 1) from ED to 

MPI test. Over 68% of our sample had an undetectable troponin (<0.02 ng/mL) at the ED 

encounter, and approximately 50% of the MPIs with ischemia or infarction did as well 

(Supplemental Table S1). Patients who underwent MPI had more cases of moderate (73.7%) 

and high (13.4%) HEART scores compared with our general ED patients25 (Supplemental 

Table S3). Among the ischemia cases, the majority had small to medium-size defects and 

mild to moderate severities (Supplemental Table S4).

Overall 30-day event rates for the study cohort were 4.1% for death/AMI and 5.5% for 

MACE (Table 3). There were associations of increasing 30-day death/AMI and MACE with 

MPI results from normal (1.4% and 1.6%) to infarction (7.3% and 8.1%), non-diagnostic 

(10.7% and 14.1%), and ischemia (12.6% and 20.0%).

DISCUSSION

Artificial intelligence (AI), including machine learning (ML) and NLP, has been 

increasingly adopted within cardiology.26 In cardiovascular imaging, ML has been used 

to extract imaging variables from raw images and predict outcomes by combining with other 

clinical variables.27 NLP is another AI-based tool that can identify and extract variables 

from unstructured text data such as clinical notes and radiology reports. However, NLP is 

less discussed in cardiovascular imaging, especially in nuclear cardiovascular imaging.
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In this study, we developed a computer-based method to identify and extract information 

from the free-text MPI reports. Compared with the reference standard, the NLP algorithm 

accurately classified the MPI results. NLP also achieved high accuracy in extracting other 

clinical variables from the MPI reports, such as ischemic size, severity, artifact, and EF 

values. To the best of our knowledge, this is the first study to use a computer-based 

method for abstracting MPI reports. This approach does not depend on any particular 

clinical features from our institution. Therefore, it will also be applicable to other healthcare 

institutions.

Based on the NLP-abstracted summary results from the MPI reports, it showed that MPI 

had good differentiating power in identifying patients at short-term cardiac risk. There 

were significantly increasing 30-day cardiac event rates with worsening MPI abnormalities. 

For instance, the patients with ischemia had 9-fold increased 30-day death/AMI rates 

compared with patients with normal MPI. Compared with our previous studies, the 30-day 

death/AMI rates for MPI, ETT, and overall ED populations were 4.1%, 0.3%,13 and 0.6%,25 

respectively. The type of stress test ordered may reflect the clinician’s perception of a 

patient’s risk.

Patients with non-diagnostic studies had high 30-day death/AMI rates, even above those 

with a previous infarct. These non-diagnostic patients were likely heterogeneous since there 

were a variety of reasons leading to a non-diagnostic MPI. Our results may indicate a need 

for special attention to patients with non-diagnostic MPI results, who may be at higher than 

expected risk for adverse events.

Compare with previous studies on ED patients who underwent MPI, the patients in this 

study were older (mean age 69 vs 52–59), had more cardiovascular-related comorbidities, 

and a much higher rate of abnormal MPI findings (30% vs 8–20%) (Supplemental Table 

S5).17–19,28–30 Conversely, the rate of abnormal findings in our study was at the low-end 

(30% vs 29–49%) compared to studies in non-ED settings.31–33 The differences in the 

patients’ characteristics of our study from other studies might be related to the integrated 

model in our institution. The findings in our institution might argue against the national 

trend of using more noninvasive imaging. For instance, while the US observed a 5-fold 

increase in noninvasive imaging testing from 1998 to 2008, the rate of ACS diagnosis has 

dropped by half.34 The decrease in abnormal findings may be attributed to testing younger 

and healthier patients.

Nevertheless, MPI is still an important diagnostic tool for downstream care. The clarity and 

completeness of MPI reports are crucial for the risk assessment by the referring providers. 

However, approximately half of the reports do not adhere to recommended reporting 

standards, and referring providers frequently misestimate the extent of the ischemia.14 Levy 

et al. reviewed a set of sample MPI reports from 44 sites in the Veterans Affairs system.14 

They found that less than 5% of the reports had an explicit assessment of ischemic risk. 

However, nearly all of the reports had the data elements to assess the ischemic risk. We 

found similar and additional challenges in implementing the NLP method. Even in the 

same institution, there were substantial differences in the format and quality of the MPI 

reports. We listed three sample reports from this study in the Supplemental Data S1–S3. 
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As demonstrated in the sample reports, MPI reports frequently had ambiguous and hedging 

words that made accurate interpretation difficult (Supplemental Data S1). Although the 

majority of these reports described the location of the ischemia, they often were not using 

the standard terms (Supplemental Data S2). For reports with abnormal findings, the ischemic 

size and severity were not always clearly stated. Despite these challenges, we found that 

NLP could provide a coherent summary interpretation by synthesizing the data elements 

presented in the reports. As an automated method, NLP offers low human review costs, 

higher efficiency, and consistency.

The MPI reports included in this study were based on conventional free-text reporting. 

This type of report was generated by dictation or typing with full flexibility. Over the 

past decades, a number of professional societies have promoted standardized and structured 

reporting of MPI studies.22,35 Structured reports will increase uniformity, reduce variability 

and improve readability compared to conventional reports. Since structured reports were 

still written in natural language, NLP is still necessary to process large numbers of such 

reports, although it is less challenging to do so. In addition, structured reporting is less likely 

to resolve all problems in conventional reporting. First, there are variations in structured 

reporting, such as templates, required components and degrees of standardization.36 Second, 

despite the promotion of structured reporting, some physicians still favor free-text based 

reporting.37 Finally, despite improved compliance, the proportion of non-compliant reports 

still stands at 43% in nuclear cardiology laboratories that applied for accreditation.38 

Therefore, in studies performed across multiple institutions, the NLP algorithm must adapt 

to these heterogeneous types of reports.

Our study has some unique strengths. We validated our algorithm on a large and diverse 

population within an integrated care system with a comprehensive EHR. Moreover, 

our prepaid health plan reduced the racial-specific difference in seeking medical care. 

Furthermore, few studies have focused on the prognostic value of MPI in short-term cardiac 

events in a population referred from ED with suspected ACS. Our study was able to assess 

the short-term cardiac outcomes due to the large size of our study population, despite the 

low event rates.

Study Limitations

Our study has some limitations. MPI results were based on the reading physicians’ 

interpretations, rather than adjudicated by a core lab. Variations in the accuracy of the test 

interpretation are expected among physicians. We did not have resources to validate the 

written MPI reports by re-examining the MPI images. We limited our analyses using the 

ischemia/infarction related findings since it is often the only information used in clinical 

decision making by the referring providers. The other variables extracted by NLP could 

augment the MPI results for a better outcome prediction. Nevertheless, the NLP-extracted 

variables were not comprehensive. We did not include variables that the MPI reports did 

not consistently document. Moreover, we limited our analyses on the short-term outcomes 

since it was the main clinical interest in managing the ED population. Finally, the language 

and style of reporting can be different across institutions. Our NLP algorithm might perform 

differently in other testing datasets.
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CONCLUSION

The conventional MPI reports documented by dictation or typing are highly variable based 

on physician preferences and practices complicating the interpretation of results either by 

referring physicians, researchers, or by automated abstraction. We developed and validated 

an automated NLP algorithm to abstract the conventional MPI reports with high accuracy. 

This computational tool could support a population-based studies of MPI results, which 

would be otherwise infeasible to capture due to the resources needed for manual chart 

review of thousands of results. Structured reporting could further assist these efforts.

NEW KNOWLEDGE GAINED

Natural language processing provides an efficient way to categorize MPI reports as well 

as identify and extract other variables from a large number of conventional free-text MPI 

reports found in electronic health records. Automated abstraction of MPI reports by NLP 

will facilitate future research to inform how best to manage patients with suspected ACS and 

to make informed clinical recommendations about which patients may benefit most from 

MPI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Disclosures

This work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under 
Award Number R01HL134647. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health. Author, B.C.S., was a consultant for Medtronic. The 
remaining authors have no conflicts of interest to report.

Abbreviations

ACS acute coronary syndrome

AMI acute myocardial infarction

EHR electronic health record

ETT exercise treadmill test

ED emergency department

EF ejection fraction

HEART History, Electrocardiogram, Age, Risk factors, Troponin

MACE major adverse cardiac events

MPI myocardial perfusion imaging

NLP natural language processing
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Figure 1. Diagram illustrates the NLP process on MPI reports
NLP extracted commonly available information from the MPI reports. The extracted 

information was used to derive the final set of variables based on the clinical logic.

MPI = myocardial perfusion imaging; NLP = natural language processing; EF = ejection 

fraction.
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Table 1.

Comparison of patient characteristics by NLP-identified myocardial perfusion imaging results

Characteristic Ischemia Infarction Non-diagnostics Normal Total

N (%) 2729 (16.1) 2070 (12.2) 262 (1.5) 11896 (70.2) 16957 (100)

Days between ED and MPI 2.1 ± 4.9 1.7 ± 4.1 3.2 (8.4) 2.4 ± 5.9 2.3 ± 5.6

Age 69.4 ± 11.9 70.8 ± 11.5 69.5 ± 12.1 68.3 ± 12.0 68.8 ± 11.9

Female 1091 (40) 762 (36.8) 145 (55.3) 7029 (59.1) 9027 (53.2)

Hispanic 721 (26.4) 517 (25) 82 (31.3) 3609 (30.3) 4929 (29.1)

Race

 White 1685 (61.7) 1211 (58.5) 155 (59.2) 7109 (59.8) 10160 (59.9)

 Black 420 (15.4) 448 (21.6) 44 (16.8) 1657 (13.9) 2569 (15.2)

 Asian 243 (8.9) 151 (7.3) 26 (9.9) 1332 (11.2) 1752 (10.3)

 Alaska Native/Pacific Islander 60 (2.2) 27 (1.3) 5 (1.9) 190 (1.6) 282 (1.7)

 Others 321 (11.8) 233 (11.3) 32 (12.2) 1608 (13.5) 2194 (12.9)

Body mass index, kg/m2 †

 <18 27 (1) 25 (1.2) 4 (1.5) 102 (0.9) 158 (0.9)

 ≥18 & <25 564 (20.7) 521 (25.2) 59 (22.5) 2866 (24.1) 4010 (23.6)

 ≥25 & < 30 901 (33) 693 (33.5) 77 (29.4) 4116 (34.6) 5787 (34.1)

 ≥30 & < 35 606 (22.2) 476 (23) 57 (21.8) 2579 (21.7) 3718 (21.9)

 ≥35 610 (22.4) 342 (16.5) 63 (24) 2133 (17.9) 3148 (18.6)

 Missing 21 (0.8) 13 (0.6) 2 (0.8) 100 (0.8) 136 (0.8)

Smoking Behavior

 Current / Passive 201 (7.4) 147 (7.1) 21 (8) 664 (5.6) 1033 (6.1)

 Former 1237 (45.3) 985 (47.6) 113 (43.1) 4304 (36.2) 6639 (39.2)

 Never 1284 (47.1) 934 (45.1) 125 (47.7) 6859 (57.7) 9202 (54.3)

 Missing 7 (0.3) 4 (0.2) 3 (1.1) 69 (0.6) 83 (0.5)

Family history of coronary artery disease 1107 (40.6) 784 (37.9) 93 (35.5) 4443 (37.3) 6427 (37.9)

Medications ‡

 ACEi/ARB 1889 (69.2) 1397 (67.5) 150 (57.3) 6070 (51) 9506 (56.1)

 Aldosterone 159 (5.8) 203 (9.8) 9 (3.4) 359 (3) 730 (4.3)

 Beta blocker 2221 (81.4) 1647 (79.6) 170 (64.9) 5587 (47) 9625 (56.8)

 Calcium channel blockers 849 (31.1) 565 (27.3) 72 (27.5) 3219 (27.1) 4705 (27.7)

 Diuretics 1348 (49.4) 1138 (55) 122 (46.6) 4175 (35.1) 6783 (40)

 Vasodilators 285 (10.4) 202 (9.8) 24 (9.2) 696 (5.9) 1207 (7.1)

Troponin, ng/mL 0.2 ± 1.3 0.3 ± 3.2 0.1 ± 0.3 0.0 ± 0.9 0.1 ± 1.4

HEART score, N 803 604 74 4061 5542

5.5 ± 1.4 5.6 ± 1.4 5.3 ± 1.4 4.8 ± 1.3 5.0 ± 1.4

HEART score (risk groups)

 Low (0–3) 59 (2.2) 35 (1.7) 7 (2.7) 616 (5.2) 717 (4.2)
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Characteristic Ischemia Infarction Non-diagnostics Normal Total

 Moderate (4–6) 553 (20.3) 423 (20.4) 57 (21.8) 3051 (25.6) 4084 (24.1)

 High(≥ 7) 191 (7) 146 (7.1) 10 (3.8) 394 (3.3) 741 (4.4)

 Missing 1926 (70.6) 1466 (70.8) 188 (71.8) 7835 (65.9) 11415 (67.3)

Elixhauser score 6.3 ± 3.2 6.6 ± 3.2 6.0 ± 3.1 5.0 ± 3.0 5.4 ± 3.1

Comorbidities

 Atrial fibrillation 995 (36.5) 868 (41.9) 93 (35.5) 3384 (28.4) 5340 (31.5)

 Congestive heart failure 812 (29.8) 909 (43.9) 58 (22.1) 1307 (11) 3086 (18.2)

 Coronary artery disease 1632 (59.8) 1200 (58) 109 (41.6) 3178 (26.7) 6119 (36.1)

 Diabetes 1485 (54.4) 1049 (50.7) 111 (42.4) 4603 (38.7) 7248 (42.7)

 Essential Hypertension 2348 (86) 1754 (84.7) 211 (80.5) 8982 (75.5) 13295 (78.4)

 Lipid Disorder§ 2345 (85.9) 1769 (85.5) 206 (78.6) 9275 (78) 13595 (80.2)

 Renal insufficiency 1098 (40.2) 861 (41.6) 93 (35.5) 2974 (25) 5026 (29.6)

 Stroke 228 (8.4) 149 (7.2) 13 (5) 501 (4.2) 891 (5.3)

Values are mean ± SD or n (%), unless otherwise indicated.

ACEi = angiotensin-converting enzyme inhibitor; ARB = Angiotensin II receptor blockers.

†
BMI: the last measure before the ED encounter

‡
Medication usage in the 90 days before the ED visits

§
Dyslipidemia/Hyperlipidemia

We calculated the p values using the Chi-square test for categorical variables and ANOVA for numerical variables. All p values were < .001 for 
variables listed in this table.
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Table 2.

Comparison of NLP to the reference standard (n=150) for identifying the MPI results

Confusion Matrix NLP

Reference standard Normal Non-diagnostic Infarction Ischemia Total

Normal 87 0 2 0 89

Non-diagnostic 1 2 1 0 4

Infarction 0 0 25 1 26

Ischemia 0 0 0 31 31

Total 88 2 28 32 150

Accuracy measurements (95% CI)

MPI result TP TN FN FP Sensitivity Specificity PPV NPV

Normal* 87 60 2 1 97.8
(92.1–99.7)

98.4
(91.2–100)

97.8
(91.8–99.4)

98.4
(89.5–99.8)

Non-diagnostic* 2 146 2 0 50
(6.8–93.2)

100
(97.5–100)

100 98.7
(96.5–99.5)

Infarction* 25 121 1 3 96.2
(80.4–99.9)

97.6
(93.1–99.5)

89.3
(73.1–96.2)

99.2
(94.7–99.9)

Ischemia* 31 118 0 1 100
(83.8–99.9)

99.2
(96.9–100)

96.9
(81.5–99.5)

100

Micro-averaged † 145 445 5 5 96.7
(92.4–98.9)

98.9
(97.4–99.6)

96.7
(92.4–98.6)

98.9
(97.4–99.5)

CI = confidence interval; MPI = myocardial perfusion imaging; NLP = natural language processing; FN = false negative; FP = false positive; TN = 
true negative; TP = true positive; NPV = negative predictive value; PPV = positive predictive value.

*
For evaluation purposes, we dichotomized the MPI result in the confusion matrix to calculate the counts of TP, TN, FN, FP; and derive the 

performance metrics for each class.

†
The MPI result was evaluated using micro-averaging metrics, which were calculated based on the summarized counts of TP, TN, FN, and FP.
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Table 3.

30-day major adverse cardiac outcomes stratified by NLP identified MPI results after an emergency 

department visit for a suspected acute coronary syndrome

NLP identified MPI results

Characteristic % Ischemia Infarction Non-diagnostics Normal p Value* Total N (%)

N (%) 2729 (16.1) 2070 (12.2) 262 (1.5) 11896 (70.2) 16957 (100)

Death or AMI 12.6 7.3 10.7 1.4 <.001 695 (4.1)

Unstable angina 9.3 3.0 9.5 2.5 <.001 640 (3.8)

MACE 20.0 8.1 14.1 1.6 <.001 939 (5.5)

 AMI 12.4 6.9 10.3 1.3 <.001 666 (3.9)

 Death 0.5 0.6 0.4 0.1 <.001 39 (0.2)

 Revascularization 10.8 1.3 8.4 0.3 <.001 376 (2.2)

  CABG 4.5 0.4 3.8 0.1 <.001 152 (0.9)

  PCI 6.5 0.9 4.6 0.2 <.001 229 (1.4)

AMI = acute myocardial infarction; CABG = coronary artery bypass grafting; MPI = myocardial perfusion imaging; MACE = major adverse 
cardiac events which include AMI, death, CABG, and coronary revascularization; PCI = Percutaneous coronary intervention.

*
Fisher’s Exact Test

Data was presented as % unless otherwise indicated.

Revascularization includes CABG and PCI.
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