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DeepVISP: Deep Learning for Virus Site Integration
Prediction and Motif Discovery

Haodong Xu, Peilin Jia, and Zhongming Zhao*

Approximately 15% of human cancers are estimated to be attributed to
viruses. Virus sequences can be integrated into the host genome, leading to
genomic instability and carcinogenesis. Here, a new deep convolutional
neural network (CNN) model is developed with attention architecture, namely
DeepVISP, for accurately predicting oncogenic virus integration sites (VISs) in
the human genome. Using the curated benchmark integration data of three
viruses, hepatitis B virus (HBV), human herpesvirus (HPV), and Epstein-Barr
virus (EBV), DeepVISP achieves high accuracy and robust performance for all
three viruses through automatically learning informative features and
essential genomic positions only from the DNA sequences. In comparison,
DeepVISP outperforms conventional machine learning methods by
8.43–34.33% measured by area under curve (AUC) value enhancement in
three viruses. Moreover, DeepVISP can decode cis-regulatory factors that are
potentially involved in virus integration and tumorigenesis, such as HOXB7,
IKZF1, and LHX6. These findings are supported by multiple lines of evidence
in literature. The clustering analysis of the informative motifs reveales that the
representative k-mers in clusters could help guide virus recognition of the
host genes. A user-friendly web server is developed for predicting putative
oncogenic VISs in the human genome using DeepVISP.

1. Introduction

Viral infection has been frequently reported in human dis-
eases including cancer.[1] The molecular mechanisms of viral
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oncogenesis are complicated. To date, nu-
merous mechanisms have been reported,
such as chronic inflammation, cell cy-
cle dysregulation, interference with cellu-
lar DNA repair mechanisms resulting in
genome instability and disruption of host
genetic and epigenetic integrity, among
others.[2] Epstein-Barr virus (EBV) is the
first human virus to be classified as car-
cinogenic in 2004.[3] Since then, studies
have reported EBV infection in a vari-
ety of human cancers, including Burkitt
lymphoma, Hodgkin lymphomas, NK/T
cell lymphomas, and many subtypes of
gastric carcinomas.[3–4] Persistent hepati-
tis B virus (HBV) infection associated
with chronic inflammation may result in
chronic liver diseases, progression to cir-
rhosis and subsequent development of
hepatocellular carcinoma (HCC), which is
the fifth or sixth most prevalent cancer
today.[5] Human herpesvirus (HPV) infec-
tion, specifically its subset of mucosotropic
HPVs (i.e., “high-risk” HPVs), is associ-
ated with more than 99% of human cer-
vical carcinoma, squamous-cell carcinoma

and head and neck squamous cell carcinoma (HNSC)[1b,6]. For
instance, the integration of HBV in SERCA1 gene disrupts the
calcium homeostasis of the endoplasmic reticulum and induces
apoptosis.[7] In another example, insertion of HPV E7 gene into
tumor suppressor gene RB1 could activate the infected quies-
cent cells to become a proliferative state, which might induce
viral genome replication.[8] Moreover, the insertion of EBV into
some tumor suppressor genes or inflammation-related genes
(e.g., TNFAIP3, CDK15, and PARK2) could disrupt gene func-
tion and, accordingly, dysregulate many biological pathways lead-
ing to cancer.[9] In summary, ≈15% of human cancer cases are
attributed to oncogenic viruses.[10] This calls for novel methods
and computational tools for better detecting viruses and their in-
tegration sites in the host genome.

Various approaches have been applied to detect virus infection
in the host cells, and if infected, whether viruses are integrated
into the host genome and where those viral integration sites
(VISs) are located. Traditional approaches include fluorescence
in situ hybridization (FISH), amplification of papillomavirus
oncogenic transcript assay, and various polymerase chain re-
action (PCR) methods. Recently, next-generation sequencing
(NGS) has become a powerful method for detecting virus
infection and identify VISs or other types of mutations.[11]

For example, using high-throughput sequencing, Zhao et al.
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Figure 1. DeepVISP overview. It includes A) benchmark datasets and feature processing, B) deep learning model construction, and C) evaluation,
features, and website of DeepVISP.

reported more than 4220 HBV integration events in tumor and
adjacent non-tumor samples from 426 patients with HCC and
systematically explored genomic and oncogenic preferences for
HBV integration.[12] Moreover, Hu et al. detected 3667 HPV
integration events by conducting whole genome sequencing
and high-throughput viral detection. They further identified
the clustered genomic hot spots and a potential mechanism
for integration by microhomology.[13] Computational tools have
been developed for the detection of viruses and VISs in the
host genomes from genome sequencing data.[14] Subsequently,
many VISs with experimental evidence have been reported in
the human genomes. We have recently manually curated these
VISs, including their flanking sequences, and released the Viral
Integration Site DataBase (VISDB).[15] The current version of
VISDB contains a total of 77632 VISs of five DNA viruses and
four RNA retroviruses. Our curated VIS data provide bench-
marks for the development of computational methods to predict
potential viral integration sites in the host (human) genome.

Deep learning has recently been demonstrated powerful for
mining large but complex biomedical data, including natural lan-
guage processing and imaging data.[16] In this study, we devel-
oped a deep convolutional neural networks (CNN) model with
attention architecture for accurately predicting oncogenic VISs
in the human genomes through automatically learning infor-
matic features and essential genomic positions from primary
DNA sequences. We called our model DeepVISP (Deep learn-
ing for Viral Integration Site Prediction) (Figure 1). We first com-
piled three benchmark datasets from our VISDB database, con-
taining 20588, 5118 and 1112 experimentally validated VISs for
HBV, HPV and EBV, respectively. These three viruses contained
the largest number of VISs in VISDB. We examined the target
genes and other genome characteristics of these VISs. We imple-

mented six other machine-learning models, i.e., AdaBoost (AB),
Decision Trees (DT), K-Nearest Neighbors (KNN), Logistic Re-
gression (LR), Random Forests (RF) and Support Vector Machine
(SVM), and compared the DeepVISP with these conventional
machine-learning algorithms across three sets of baseline data.
DeepVISP consistently had average Area Under Curve (AUC) val-
ues above 0.8 using multiple fold cross-validations (CVs) among
all three types of viruses in the training and independent datasets,
demonstrating its robustness. In comparison, DeepVISP outper-
forms conventional machine learning methods by increasing the
AUC value by a range of 8.43% to 34.33% in these three viruses.
In addition, CNN is effective on motif discovery through extract-
ing important sequence features. When we applied DeepVISP to
decode informative motifs in different types of oncogenic VISs,
some motifs could match DNA-binding transcription factors that
were previously reported to be involved in virus insertion or tu-
morigenesis, such as HOXB7,[17] LHX6,[18] and IKZF1.[19] Our
results provided some novel insights into cis-regulatory factors in
the human genome for future study of their oncogenic viral inte-
gration and clinical outcome. A deeper view of these motifs sug-
gested that dominant k-mers in the clusters might play a crucial
guidance role in viral recognition of host genes. A user-friendly
online tool for oncogenic VIS prediction is publicly available at
https://bioinfo.uth.edu/DeepVISP.

2. Results

2.1. The Landscape of Oncogenic Viral Integration in the Human
Genome

In this study, three oncogenic viruses were compiled from the
VISDB database, which was manually extracted and curated from
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Figure 2. Summary of viral integration site (VIS) data for three viruses. A) Number of VISs of each virus. B) Distribution of VISs of each virus across the
human chromosomes. C) The top 10 genes harboring the largest number of HBV integration sites in the human genome. D) The top 10 genes harboring
the largest number of HPV integration sties in the human genome. E) Frequency of HBV and HPV VISs falling into the transcript start site (TSS) regions.
F) Frequency of HBV and HPV VISs falling into the CpG island (CGI) regions.

the literature and other publicly available resources, contain-
ing 20588 HBV, 5118 HPV, and 1112 EBV VISs, respectively
(Tables S1–S3, Supporting Information; Figure 2A). Figure 2B
shows the distribution of these oncogenic VISs across the human
chromosomes. For HBV, the top three chromosomes with the
largest number of VISs were chromosomes 2 (8.85%), 5 (8.16%),
and 1 (7.56%). For HPV, the number of VISs varied among the
24 human chromosomes, with the largest number of VISs oc-
curring on chromosomes 2 (8.89%), 3 (8.87%), and 1 (6.86%).
EBV had fewer VISs than HBV and HPV. Its top three chro-
mosomes with the largest number of VISs were chromosomes
2 (8.72%), 7 (7.10%), and 1 (6.74%). We next examined the tar-
get genes of VISs. Figure 2C,D showed the top 10 genes with
the largest number of VISs for HBV and HPV. In this case,
a target gene is defined as it has at least one VIS. If a VIS is
positioned within several genes (some genes may overlap), all
these genes are considered as the target genes. For the HBV, fi-
bronectin 1 (FN1), telomerase reverse transcriptase (TERT1) and
lysine-specific methyltransferase 2B (KMT2B) had the largest
number of VISs. Specifically, it was found that 424, 286, and 261
HBV VISs were inserted into these three genes, respectively (Fig-
ure 2C), while these genes were also reported as recurrent target
genes by HBV integration.[12,20] Among the target genes of HPV,
Bis(5′-adenosyl)-triphosphatase (FHIT), low-density lipoprotein
receptor-related protein 1B (LRP1B) and DNA repair protein
RAD51 homolog 2 (RAD51B) were integrated more frequently
than other genes, with the number of VISs reaching 54, 36, and
36, respectively. Previous studies have indicated that VIS tends

to occur near the transcript start site (TSS).[15] Accordingly, the
distance between VISs and their nearest TSSs was estimated for
HBV and HPV (Figure 2E). Only about 10% of VISs were found
to be within the 10 kb regions of TSSs. When the range was ex-
panded, ≈70% VISs were located within 50 kb flanking the TSS
(including TSS). We further analyzed the closest CpG islands
(CGIs) within the flanking region of the VISs (Figure 2F). Our
result revealed that ∼5% of VISs were inserted in the 10 kb re-
gions of CGIs. Even when the region was extended to 50 kb, the
proportion was still less than 50%.

2.2. Predicting Oncogenic Viral Integration Sites by DeepVISP

We developed a deep learning-based predictor, namely Deep-
VISP, for accurately predicting oncogenic VISs in the human
genome by automatically learning informative features and es-
sential genomic positions. We tested it using three benchmark
datasets we collected. The DNA sequences were encoded and
taken as input. Then, two convolution-pooling modules were fol-
lowed to make feature extraction and representation. Moreover,
an attention layer was joined to link the last convolution-pooling
module and the output layer (Figure 3). In addition to deep
learning model, we implemented six other conventional ma-
chine learning models, i.e., AB, DT, KNN, LR, RF, and SVM, and
compared the performance of DeepVISP with them. The results
showed that DeepVISP could achieve moderate to large AUC
value improvement (an increase AUC value by 8.43–34.33%)
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Figure 3. The deep learning framework implemented in DeepVISP. A) The overview of deep learning framework in DeepVISP. B) The schematic view of
attention architecture.

when compared to conventional models in these three viruses.
Accordingly, the accuracy of DeepVISP is superior to other con-
ventional models, (Figure 4), indicating that deep learning could
effectively extract features for predicting oncogenic VISs.

To further evaluated the accuracy and robustness of Deep-
VISP, we performed 4-, 6-, 8-, and 10-fold CVs on the training
data sets for each virus and the receiver operating characteristic
(ROC) curves are shown in Figure 4. We found that DeepVISP
had high performance with the average AUC values of multi-
ple CVs greater than 0.8 in all viruses, with a range from 0.8112
(HPV) to 0.8529 (HBV). For HBV, the AUC values of 4-, 6-, 8-,
and 10-fold CVs were 0.8531, 0.8538, 0.8522, and 0.8526, respec-
tively. The high and consistent AUC values by different CVs in
our results demonstrated the promising accuracy and robustness
of DeepVISP models. Moreover, using the independent datasets,
we tested the adaptability of our models. As shown in Figure 4,
DeepVISP achieved AUC values of 0.8579, 0.8071, and 0.8131 in
HBV, HPV, and EBV, respectively, indicating that DeepVISP can
provide accurate prediction on independent dataset.

2.3. DeepVISP Decoded Regulatory Factors Involved in
Oncogenic Viral Integration

The convolutional step represents the engine of the CNN frame-
work and highly attributed to the performance of the model.
The kernels of the convolution layer generated several weight
matrices over the inputs to distinguish important patterns. Nu-
merous studies have utilized kernels of the first convolutional

layer to derive motifs from massive sequence data. In the Deep-
VISP, multiple convolution kernels were applied to detect rep-
resentative motifs within the input DNA sequences. We calcu-
lated the positions of the maximum activation from the output
vectors of convolutional layer and mapped them to the input se-
quences to extract a number of subsequences. Only those sub-
sequences whose maximum activation score exceeds a certain
threshold (i.e., the maximum of the MMAs per class) were con-
sidered. For each kernel, all the extracted subsequences were
aligned to create a PWM format. We measured the importance
of detected motifs and calculated the score of each motif. As a re-
sult, a total of 248, 211, 245 informative motifs were characterized
for HBV, HPV, and EBV, respectively. All motifs and the distribu-
tion of the PWMs were graphically illustrated (available at https:
//bioinfo.uth.edu/DeepVISP/Download.php). For instance, the
top three motifs for HBV integration were “AAAAATA,” “AT-
TATAAA,” and “TAGAAAGT” with scores of 0.083, 0.076, and
0.068. And the most representative motifs for HPV integration
were “ATCCTTTA,” “ACATTTTG,” and “CTATAATA.”

After interacting with their host cells, viruses generally domi-
nated the expression of host RNA by virally encoded molecules,
which can be realized through physical interactions between a
viral transcriptional co-factor and a host transcription factor af-
fecting the downstream host gene expression.[21] Accordingly, we
used TOMTOM[22] to compare the motifs that DeepVISP learned
for different oncogenic viruses with the known DNA motifs in the
JASPAR2020,[23] a database of transcription factor binding pro-
files. We identified a good number of regulatory factors whose
binding site preference was highly consistent with the motifs
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Figure 4. DeepVISP performance evaluation and comparison with other six machine learning methods. Comparison of AUC values between CNN and
other six conventional machine learning classifiers, AB, DT, KNN, LR, RF and SVM using A) HBV, B) HPV, and C) EBV data. The abbreviation of methods
is provided in the main text. ROC curves and AUC values of DeepVISP using the training datasets with multiple cross-validations (CVs) in D) HBV, E)
HPV, and F) EBV. ROC curves and AUC values of DeepVISP using the independent datasets with multiple CVs in G) HBV, H) HPV, and I) EBV.

reported by DeepVISP. More specifically, among the top 50
learned PWMs of HBV, HPV, and EBV integrations, 13, 16, and
18 could be matched with known motifs of 60, 30, and 45 DNA-
binding transcription factors, respectively. (Figure 5A–C).

Specifically, the PWM M4 of HBV matched DNA motif of
homeobox protein Hox-B7 (HOXB7) (Figure 5D), which acts
as a sequence-specific transcription factor associated with cell
proliferation and differentiation. Many studies have shown that
HOXB7 plays an important role in the pathogenesis and progres-
sion of liver cancer.[17] For instance, by activating the MAPK/ERK
pathway induced by the basic fibroblast growth factor (bFGF),
Wang et al. found that HOXB7 increased the proliferation, mi-

gration, and invasion of HCC cells, whereas its expression was
highly correlated with poor prognosis and tumor recurrence of
HCC patients[17c]. Moreover, the PWM M4 of HBV was consis-
tent with the motif of the DNA-binding protein LIM/homeobox
protein Lhx6 (LHX6) (Figure 5D). It has been reported that
expression of LHX6 gene was significantly down-regulated by
DNA methylation and plays a tumor suppressing role dur-
ing hepatocarcinogenesis, suggesting that LHX6 can be consid-
ered as a potential target gene and a biomarker for liver can-
cer treatment.[18] In another example, the PWM M23 of HBV
could match the motif of DNA-binding protein Ikaros (IKZF1).
A previous study demonstrated that abnormal function of the
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Figure 5. Top 50 informative motifs learned from DeepVISP and also matching the known regulatory motifs in A) HBV, B) HPV, and C) EBV using the
TOMTOM server. P <= 0.01 was used as the statistical threshold. It also displays the sequence logos and distributions of the position weighted matrices
(PWMs) learned by DeepVISP and the matching DNA-binding transcription factors in JASPAR2020 database for D) HBV, E) HPV, and F) EBV.

IKZF1/MYC/MDIG axis affected the progression of liver cancer
by regulating H3K9me3/p21 activity.[19] We also carefully exam-
ined the motifs learned for HPV (Figure 5E). For example, the
PWM M45 of HPV was similar to the motif of the DNA-binding
protein of interferon regulatory factor 2 (IRF2). The IRF fam-
ily proteins regulate viral and cellular gene expression involving
many extracellular signals, and they are involved in cell immu-
nity and oncogenesis. A previous study suggested that IRF2 par-
ticipated in early transcription of HPV-16 gene and was associ-
ated with the regulation of cell growth.[24] Moreover, PWM M29
of HPV matched the motif of the zinc finger protein 16 (ZNF16).
ZNF16 is a tumor associated gene and its alteration might pro-
mote malignancy of tongue squamous cell carcinoma (TSCC)
cells.[25] We also found that the PWM M30 of EBV matched the
motif of the transcriptional activator, namely, transcription factor
COE1 (EBF1) (Figure 5F). Interestingly, EBF1 is the direct tar-
get gene of Epstein-Barr virus nuclear antigen 1 (EBNA1) and is
involved in EBV-infected B-lymphocyte survival.[26] Other DNA-
binding transcription factors corresponding to the PWMs learnt
by DeepVISP are summarized in Tables S4–S6 in the Support-
ing Information. Although it remains unclear how these binding
elements present in the human genome associated with onco-
genic virus latency and pathogenesis, our results provided poten-
tial guidance to probe cis-regulatory factors in the human genome
for future study of their oncogenic viral integration and clinical
outcome.

2.4. Sequence Patterns for Oncogenic Viral Integration

Deep neural network can capture strong motifs multiple times.
These motifs are called dominant ones, and the dominant pat-
terns may be interrelated. Based on the maximum activations
calculated for each sequence-kernel pair, we performed the hi-
erarchical clustering analysis to explore extensive intercorrelated
sequence patterns for oncogenic viral integration. Taking HBV
as an example, five clusters were identified among the top 30
kernels of CNN model. Figure 6A shows five clusters and the
distribution of the correlated motifs. In this figure, the column
is the input DNA sequence, and the row represents the kernel.
There were six motifs in cluster 1 and most of these motifs con-
tained two consensus k-mers of “TTT” or “TTTT,” which was
strongly clustered in the positive samples. We further analyzed
two motifs, e.g., “TCATTTTC” and “TCTTTCT,” in this cluster
(Figure 6B,C). Histogram plots show the position of the maxi-
mum activations where the motif was extracted from the DNA
sequences. The violin plots show the distribution of the max-
imum activation values for VISs and randomly selected non-
VDSs. Here, VDS refers VIS-centric DNA segment (see Meth-
ods). In addition to the occurrence in the same cluster, we ob-
served that both motifs had higher activation scores and larger
distribution in the positive samples than non-VDSs. Additionally,
cluster 2 consisted of eight similar motifs. This cluster was mod-
eled by a group of predominant k-mers, including “AA,” “AAA,”
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Figure 6. Cluster analysis of the DeepVISP motifs for HBV viral integration. A) Five clusters were identified from the top 30 kernels of DeepVISP
with all training data as input and the distribution of co-occurring motifs in different clusters. B,C) Two representative motifs in cluster 1. D,E) Two
representative motifs in cluster 2. The histogram shows the positions of the maximum activation, i.e., the positions where the motif was extracted from
the DNA sequences. The violin plots display the distribution of the maximum activation values for HBV VISs and the randomly selected non-VIS DNA
segments.

and “AAA.” A great number of k-mers cognate in the kernels al-
lowed the model to capture the full complexity of viral integra-
tion specificities and the effect of the flanking bases, leading to
a richer representation. We checked two motifs in this cluster,
“AAAAATAA” and “ATTATAAA” (Figure 6D,E). Both motifs held
higher proportions and activation scores in positive samples than
non-VDSs. The results above indicated that the dominant k-mers
in the simultaneous motifs might contribute to the classification
performance of the CNN models and play an important guidance
role in viral recognition of host genes. Neural networks are always
hard to interpret and require detours to supplement information.
Nevertheless, clustering may provide some approximative guid-
ance on the sequence preference of oncogenic viral integration.

2.5. Online Server for the VIS Prediction

An online DeepVISP web server is implemented and is publicly
available at https://bioinfo.uth.edu/DeepVISP. The web server
is developed on the open-source web platform LAMP (Linux-
Apache-MySQL-PHP) and has been tested on popular web
browsers, including Google Chrome, Internet Explorer, Safari
and Mozilla Firefox. On the DeepVISP prediction web page (Fig-
ure 7A), users can input the query data with tab-delimited format
in the textbox. The first column of the query sequence represents
the chromosome number, and the second column is for position.
Users can choose different types of viruses for prediction. To con-
trol false-positive rate, a set of threshold values is made available

(e.g., 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99). The threshold value here
refers to the class probability of the input sequencing being a po-
tential VIS. A score above 0.5 indicates a candidate virus inte-
gration event. Users can set the threshold to filter results in the
web server. When the threshold is set to all, all prediction results
will be displayed. Users are recommended to select the predicted
VISs with higher scores if they will perform further experimental
verification. All prediction results generated are stored in a tab-
ular format with detailed information regarding the positions of
predicted VISs, scores and DNA sequence around the predicted
VISs (Figure 7B). On the browse webpage, it provides a visualiza-
tion of the motifs that DeepVISP learns and the distributions of
the PWMs for each motif (Figure 7C). Users can select different
types of viruses to view the motifs, which are sorted by scores.

3. Discussion

Virus infection, including its integration into the human
genome, is one common factor leading to the development of
disease. Although many experiments have generated various
datasets to explore oncogenic viral integration, our understand-
ing of the underlying mechanisms remains limited. In addition,
it is both labor intensive and costly to generate such experimen-
tal data, while computational prediction can be a complementary
approach for virus infection and VIS detection. Of note, virus
research has become urgently needed because of frequent pan-
demic events during the recent years, especially the COVID-19
pandemic this year. The significance of virus infection research
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Figure 7. DeepVISP online web server. A) Users can input the query data with tab-delimited format in the textbox and choose the three virus types for
prediction: HBV, HPV and EBV. To control false-positive rates, a set of threshold values are listed (i.e., 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 0.99). For a
specific threshold value, only the sites whose scores are greater than the threshold value will be displayed. B) The webpage for the predicted results.
All generated prediction results are saved in a tabular format containing detailed information regarding the positions of predicted VISs, scores, and
DNA sequences around the predicted VISs. (C) The browse webpage showing all the motifs learned by DeepVISP (only showing two here) and the
distributions of the PWMs for each motif.

has been recognized by the recent announcement of the Nobel
Prize in Physiology or Medicine 2020 being awarded to Drs. Har-
vey J. Alter, Michael Houghton and Charles M. Rice for their dis-
covery of hepatitis C virus. The integration-associated virus la-
tency has increasingly attracted research interest. In this study,
using the benchmark datasets that we manually curated, we first
examined the distribution of oncogenic VISs on human chro-
mosomes and pinpointed the genes with high VISs. We further
explored some critical features of gene function, such as tran-
script start sites and CpG islands. Next, we introduced a new
deep learning model with attention architecture, named Deep-
VISP, to accurately predict three types of oncogenic VISs (i.e.,
HBV, HPV, and EBV) in the human genome. Through automat-
ically extracting informatic features and important genomic po-
sitions from the primary DNA sequences with CNN framework,
DeepVISP achieved excellent performance: its AUC values were
consistently higher than 0.8 for all three oncogenic viruses in all

CVs we have evaluated. Even we applied 2-fold CV, which is rarely
used in literature due to the requirement of large dataset, we
could have AUC values around 0.8 (HBV: 0.8146; HPV: 0.7571;
EBV: 0.7786). When compared with traditional machine learn-
ing methods, DeepVISP obtained superior accuracy with the im-
provement of AUC value from 8.43% to 34.33% in three viruses.
In summary, these comparison results demonstrated the robust-
ness and superiority of DeepVISP.

CNN represents a useful approach for motif discovery.
Through uncovering sequence motifs enriched in the first con-
volution layer, we decoded several regulatory factors, such as
HOXB7, IKZF1, and LHX6, that might contribute to oncogenic
viral integration selection. With the calculated maximum acti-
vations for sequence-kernel pairs, we performed the hierarchi-
cal clustering analysis. The results indicated that the dominant
k-mers in some cluster contributed to the classification perfor-
mance of the CNN model and played an important role in virus
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recognition of host genes. DeepVISP can be useful in several
ways. If a virus is integrated into cellular genome at specific po-
sitions that disrupt critically important gene(s), the affected cell
may become dysfunctional (e.g., immune system cells) or over-
functional (e.g., cancerous cells). Thus, insertional mutagenesis
is a potential risk that may accompany virus integration events.
Deep learning methods like DeepVISP can efficiently screen in-
sertional mutagenesis in the large genomic datasets to detect the
potential virus infection and specific genes and biological path-
ways being affected. This will assist with the early detection of
oncogenic virus infection and development of clinical gene ther-
apy. Moreover, we can combine the experimental and computa-
tional work to save the cost in an effort on effectively searching
the potential virus infection sites in the host genomes. To better
use our method and data, an online public web server for Deep-
VISP was implemented at https://bioinfo.uth.edu/DeepVISP.

Our study demonstrates the usefulness of deep learning, es-
pecially convolutional neural network, in prioritizing and analyz-
ing oncogenic viral integration. However, the number of VISs
in some viruses is not very large, which may affect the classi-
fication performance and subsequent motif mining. We expect
more functional important and clinically relevant VISs to be dis-
covered, as genome sequencing has become feasible in a typical
research lab. Accordingly, a large number of experimental VISs
will greatly enhance the prediction power of deep learning model.
In addition, more features, such as structural information, gene
expression and survival information, should be considered when
such data on oncogenic viral integration are available. While a
considerable number of VISs has been identified, the biologi-
cal or regulatory roles of most of these sites remain unknown.
It is particularly important to explore the interplay between the
known virus insertion features and the functional elements in
the host genome. We anticipate that our DeepVISP method will
help researchers to find candidates for experimental validation or
future discovery. Such VISs will provide more valuable insights
for the future studies of oncogenic viral integration in the human
cells.

4. Experimental Section

Data Collection and Processing: The experimental VIS data
was retrieved from the in-house VISDB database.[15] It had 20588
HBV, 5118 HPV, and 1112 EBV VISs. They were considered as
three positive data sets in this work. To train the tumor-specific
models, only retained VISs were retained in the tumor samples.
To learn features from surrounding sequence, each VIS was rep-
resented by a 1000-nucleotide VIS-centric DNA segment (VDS),
with 500-bp flanking regions of upstream and downstream of
the VIS (500, 500), respectively. Next, highly similar sequences
were removed to ensure the reliability of the benchmark dataset.
The CD-HIT software[27] was used to calculate the similarity score
and excluded those VDSs (500, 500) that had the sequence sim-
ilarity of more than 90% with each other. After elimination of
homologous sequences, three non-redundant datasets with 4738
HBV, 3459 HPV, and 1089 EBV VDSs were retained. Negative
data was selected with the size that matched the number of posi-
tive samples ten times (i.e., the above non-redundant VDSs) from
a large number of randomly selected non-VIS containing DNA
segments (non-VDSs) (1000 bp in length), followed by eliminat-

ing highly similar sequences. Samples were taken out with a
1:1 ratio of positive and negative labels each time for training
and calculated the average performance of all models. To facil-
itate the training and testing of the model, benchmark data sets
were strictly separated into non-overlapping training and testing
datasets. These collected benchmark datasets can be downloaded
at: https://bioinfo.uth.edu/DeepVISP/Download.php.

Feature Encoding: The one-hot encoding represents the
position-specific composition of the nucleotides in a VDS, of
which a 4-digit binary vector s associated with each nucleotide.
Specifically, A is encoded by (1, 0, 0, 0), C is encoded by (0, 1, 0,
0), G is encoded by (0, 0, 1, 0) and T is encoded by (0, 0, 0, 1),
respectively. For each VDS (500, 500), a 4-channel input data is
encoded as:

B =
(
bn1, bn2, bn3, bn4, … , bn1000

)
, b ∈

⎧⎪⎨⎪⎩
A : 1, 0, 0, 0
C : 0, 1, 0, 0
G : 0, 0, 1, 0
T : 0, 0, 0, 1

,

n ∈ {A, C, G, T} (1)

Conventional Machine Learning Methods: In this study, six
conventional machine learning classifiers, included AB, DT,
KNN, LR, RF, and SVM, were implemented. Each classification
algorithm was trained using the one-hot encoding with feature
selection by chi-square test. The receiver operating characteris-
tic curve (ROC) curves were drawn and AUC values were cal-
culated based on the 10-fold CV to evaluate each algorithm’s
performance. This process was repeated ten times to ensure
the reliability of the results. Moreover, hyperparameter optimiza-
tion was preformed using the RandomizedSearchCV of scikit-
learn v0.21.3 (https://scikit-learn.org/) for each classification al-
gorithm to obtain the best model. For the process of hyperparam-
eter tuning, 10-fold cross validation approach was applied to train
the model; that is, the available training data was divided into
10 partitions, while 10 identical models were instantiated. Each
model was trained on 9 partitions and then evaluated on the re-
maining, non-overlap partition. The verification score of the final
model was equal to the average of the 10 verification scores. In
this process, the remaining partition does not participate in the
training process, and the performance of the model can be nota-
rized. Through this method, the performance of each set of pa-
rameters was evaluated, and the corresponding AUC values were
calculated. The group of parameters with the highest AUC values
was selected as the final parameters of the model. Three measure-
ments of sensitivity (Sn), specificity (Sp), and Matthews Correla-
tion Coefficient (MCC) were calculated to evaluate the prediction
performance. The three measurements were defined as below

Sn = TP
TP + FN

Sp = TN
TN + FP

(2)

MCC =
(TP × TN) − (FN × FP)√

(TP+FN) × (TN +FP) × (TP+FP) × (TN +FN)
.

(3)

Deep Convolutional Neural Networks (CNN) with Attention Ar-
chitecture: In this work, the CNN model was designed with four
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components, including an input layer, two convolution-pooling
modules, an attention layer and an output layer (Figure 3A). For
the input data, each nucleotide in the VDS (500, 500) was con-
verted to a binary vector of length 4 by one-hot encoding (bn1,
bn2, bn3, …, bn1000), where bn stands for the nucleotide at the nth

position. In the convolutional layer, different fitters and kernel
sizes were adopted over the 4-channel input data to execute con-
volution operations and extract the features for different viruses.
Each convolution operation refers to a weight matrix (i.e., ker-
nel) that can be considered as a position weight matrix (PWM).
More specifically, given a VDS (500, 500), i.e., B = (bn1, bn2, bn3,
…, bn1000), the convolutional layer calculates C = conv(E)

Ci, j =
b−1∑

a = 0

4∑
c = 1

Wi,a,cEc,j+a (4)

Where 1 ≤ j ≤ 1000 – b+1, 1 ≤ i ≤ d, b denotes the kernel size, d
denotes the kernel number and W denotes the kernel weight. The
rectified linear unit (ReLU) was used as the activation function:

ReLU (x) =
{

x, if x ≥ 0
0, if x < 0

(5)

where x denotes the weighted sum of a neuron. The function of
max-pooling was used to conduct dimension reduction after the
convolution and activation.

To better retain the implied sequence characteristic of the
VDS (500, 500), an attention layer was introduced into the
model[16g,28] (Figure 3B). The attention layer takes the feature rep-
resentation of the last convolution-pooling module as input and
calculates a score (i.e., C), suggesting whether the neural network
should pay more attention to the features at that position. More
specifically, column b in the feature matrix F (d × h feature ma-
trix) can be considered as a vector (i.e., vb) that illustrates the fea-
tures of the bth position in the VDS (500, 500), of which each
dimension refers to a kernel of the convolutional layer. Then, the
columns of the feature matrix F were averaged by using the nor-
malized importance scores wb as weights, generating a dense fea-
ture representation Fw

Fw =
h∑

b = 1

wbvb (6)

wb =
exp

(
Cb

)
∑h

m = 1 exp
(
Cm

) (7)

where Wb denotes the corresponding normalized score and Cb
denotes the importance score.

Subsequently, the feature vectors captured by the last
convolution-pooling module and the attention scores were in-
tegrated and fed to a logistic regression classifier to acquire an
output score that indicates the probability of VIS, which can be
defined as follow

prediction (y) = 1
1 + e−y

(8)

where y denotes the input of the sigmoid node from the com-
bination of convolution-pooling feature vectors and attention

scores. The prediction score ranges between 0 and 1, represent-
ing the probability of a VDS (500, 500) for a viral integration
site.

The hyperparameters of DeepVISP were optimized for each
virus with the tree-structured parzen estimator approach using
the Hyperas package. Specifically, 100 evaluations were executed
using separate training (inner loop) and validation sets (outer
loop). The performance of each set of parameters was evaluated
and the corresponding AUC values were calculated. The group
of parameters with the highest AUC values was selected as the
final parameters of the model. For model training, NVIDIA Ten-
sor Cores with four Tesla V100 were used. The Keras version 2.3,
a highly useful neural networks API, and the tensorflow-gpu 1.15
version were adopted for a rapid parallel computing.

Motif Decoding, Comparison, and Clustering: To visualize the
motifs learned by DeepVISP, the method described in the pre-
vious study was used.[29] Given an input sequence, a kernel in
the first convolutional layer generates an output vector (i.e., acti-
vations). The maximum activation positions were computed and
mapped to the input sequence and a subsequence with kernel
length can be extracted from the input sequence. Only subse-
quences whose maximum activation score exceeds the thresh-
old [maximum of the mean maximum activations (MMAs) per
class] were taken into account. In this way, it generates a good
number of subsequences that can be used to construct a motif.
For each kernel, all subsequences extracted were aligned to create
a PWM in the MEME motif format.[22] The pysster package[29b]

(https://github.com/budach/pysster) was used for sequence logo
generation and the TOMTOM webserver[22] (http://meme-suite.
org/tools/tomtom) was used for PWM comparison with JASPAR
database,[23] which contains a curated, non-redundant set of pro-
files derived from published and experimentally defined tran-
scription factor binding sites.

The motif score was calculated as maximum of the MMAs in
the positive data minus minimum of the MMAs in the negative
data. Accordingly, the score measures the degree of difference
across the classes, i.e., kernels that were strongly enriched in
some classes but were very weak or even none in other classes. A
higher score means that the corresponding kernel is more impor-
tant for the network to deliver correct predictions. Given the max-
imum activations for each sequence-kernel pair, a hierarchical
clustering using Ward’s method and the Euclidean distance[30]

was performed and the values were standardized before
clustering.

Implementation of the Web Service: The online service of Deep-
VISP was constructed with PHP and JavaScript with a user-
friendly interface. Users can choose three viruses (e.g., HBV,
HPV and EBV) and various threshold options. By default, an “All”
option was implemented to show all the predictions on VISs.
DeepVISP was extensively tested on various web browsers in-
cluding Google Chrome, Internet Explorer, Safari and Mozilla
Firefox. It provides a robust and publicly available service at https:
//bioinfo.uth.edu/DeepVISP.
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