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Abstract

Methylation of cytosine in CpG dinucleotides and histone lysine
and arginine residues is a chromatin modification that critically
contributes to the regulation of genome integrity, replication, and
accessibility. A strong correlation exists between the genome-wide
distribution of DNA and histone methylation, suggesting an inti-
mate relationship between these epigenetic marks. Indeed, accu-
mulating literature reveals complex mechanisms underlying the
molecular crosstalk between DNA and histone methylation. These
in vitro and in vivo discoveries are further supported by the finding
that genes encoding DNA- and histone-modifying enzymes are
often mutated in overlapping human diseases. Here, we summa-
rize recent advances in understanding how DNA and histone
methylation cooperate to maintain the cellular epigenomic land-
scape. We will also discuss the potential implication of these
insights for understanding the etiology of, and developing
biomarkers and therapies for, human congenital disorders and
cancers that are driven by chromatin abnormalities.
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Introduction

Methylation of the 5-position of cytosine is a highly conserved chro-

matin modification among vertebrates. The majority of cytosine

methylation occurs in the context of CpG dinucleotides. Neverthe-

less, in certain tissue and cell types such as brain and embryonic

stem cells, non-CpG methylation is readily detectable (He & Ecker,

2015). In mammals, 60–80% of CpGs are methylated (Ehrlich et al,

1982; Lister et al, 2009), which are non-randomly distributed in

repetitive sequences, gene bodies, and intergenic regions (Suzuki &

Bird, 2008; Jones, 2012). At these regions, CpG methylation is

believed to play a primary role in restricting chromatin accessibility,

leading to silencing of retrotransposon elements, prevention of cryp-

tic transcription (Neri et al, 2017), and regulation of transcription

factor binding (Zhu et al, 2016). In contrast, genomic regions

containing high density of CpGs, known as CpG islands, are

normally free of methylation. CpG islands are often located within

gene promoters and cis-regulatory elements, and their low methyla-

tion levels are thought to facilitate a transcriptionally permissive

state for their target genes.

The landscape of DNA methylation is shaped by the collective

action of DNA methyltransferases (DNMTs), including DNMT1,

DNMT3A, and DNMT3B, and enzymes involved in DNA demethyla-

tion, including the TET family of methylcytosine dioxygenases. The

two de novo DNA methyltransferases DNMT3A and DNMT3B cata-

lyze CpG methylation at previously unmethylated CpGs. Once estab-

lished, during replication DNMT1 serves to copy pre-existing CpG

methylation to newly synthesized daughter strand with high fidelity,

thus preserving the patterns of CpG methylation through cell divi-

sion (Goll & Bestor, 2005). However, it should be noted that in

certain contexts, DNMT3A/B could facilitate maintenance DNA

methylation (Jones & Liang, 2009), while DNMT1 could mediate de

novo DNA methylation (Yarychkivska et al, 2018; Li et al, 2018b);

therefore, their functional distinctions are not univocal. On the other

hand, TET1-3 enzymes catalyze stepwise oxidation of methylcy-

tosine, generating 5-hydroxymethylcytosine, 5-formylcytosine, and

5-carboxylcytosine that contribute to either active or passive DNA

demethylation (Wu & Zhang, 2014).

In the cycle of mouse development, there are two major waves

of global genome demethylation and re-methylation: one occurring

following germ cell specification and the other during early embry-

onic development after fertilization (Zeng & Chen, 2019). While the

bulk levels of CpG methylation are otherwise relatively stable, it is

evident that DNMTs and TETs continuously act to shape focal CpG

methylation to yield tissue- and development-specific DNA methy-

lomes that are strongly correlative with chromatin accessibility and

enhancer activation (He et al, 2020). Accordingly, genetic knockout
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of DNMTs arrests embryonic or neonatal mouse development (Li

et al, 1992; Okano et al, 1999), and tissue-specific ablation of

DNMTs and TETs affects organ homeostasis and regeneration

(Challen et al, 2011; Rinaldi et al, 2016; Bowman & Levine, 2017).

Moreover, germline and somatic mutations in DNA methylation

modifiers are associated with human developmental disorders

(Hansen et al, 1999; Tatton-Brown et al, 2014; Heyn et al, 2019) and

cancers (Abdel-Wahab et al, 2009; Ley et al, 2010). These findings

suggest that precise regulation of the dynamics of CpG methylation

is key to proper cell fate specification and represents a barrier to

neoplastic transformation.

A central question in the field is how DNA methylation

machineries interact with other chromatin components to ensure

faithful establishment and maintenance of genome-wide CpG

methylation. Whereas the roles of transcription factors and non-

coding RNAs in shaping cellular methylome have been excellently

reviewed elsewhere (Zhu et al, 2016; Zhao et al, 2016b), in this

review we focus on the interplay between DNA and histone arginine

and lysine methylation. Indeed, early genome-wide profiling of CpG

methylation noted a strong correlation between DNA methylation

and histone methylation, including a positive correlation with

histone H3K9 methylation and a negative correlation with H3K4

methylation (Meissner et al, 2008). Furthermore, recent studies

have uncovered that various regulatory domains within DNA

methylation modifiers and their associated factors possess intrinsic

affinity to histones in a modification-dependent manner (Table 1).

We will summarize the progress made toward a better understand-

ing of the molecular mechanisms underlying the crosstalk between

DNA and histone methylation and discuss their implications for

human diseases driven by dysregulation of these chromatin marks.

Interaction between DNMT1/UHRF1 and histone
methylation facilitates maintenance DNA methylation

DNMT1 plays an indispensable function in propagating patterns of

CpG methylation across cell cycles by reinstalling hemi-methylated

CpG to full methylation state. UHRF1, a RING E3 ubiquitin ligase

also known as NP95 in mouse or ICBP90 in human, is essential for

DNMT1-mediated maintenance of DNA methylation. UHRF1 is

required for DNMT1’s loading to replicating heterochromatin and

genetic knockout of Uhrf1 phenocopied loss of Dnmt1, leading to

DNA hypomethylation and early developmental arrest (Sharif et al,

2007). Furthermore, UHRF1 specifically recognizes hemi-methylated

DNA through its SET- and RING-associated (SRA) domain, therefore

bridging DNMT1 to its substrate to maintain DNA methylation

(Bostick et al, 2007; Sharif et al, 2007). The recruitment can occur

directly as UHRF1 physically interacts with DNMT1 during the S

phase. Moreover, the E3 ubiquitin ligase activity of UHRF1 catalyzes

the ubiquitination of histone H3K18 and H3K23, which can be

recognized and bound by DNMT1 via its ubiquitin-interacting motif

(UIM) within the replication foci targeting sequence (RFTS) domain

(Nishiyama et al, 2013; Qin et al, 2015). Recent crystal structures

revealed that the RFTS domain of DNMT1 binds simultaneously to

Table 1. Annotated regulatory domains of DNMTs and associated
proteins.

Gene
(-Domain) Interaction Location

Functional
significance

DNMT1- RFTS H3K18ub (+)
H3K23ub (+)

Replication fork Maintenance
methylation

DNMT1- RFTS H3K9me3 (+) Heterochromatin Maintenance
methylation

UHRF1-TTD/
PHD

H3K9me3 (+) Heterochromatin Replication-
uncoupled
maintenance
methylation

UHRF1-PHD H3R2me2a
(�)

Active genes Prevent aberrant
maintenance
methylation

DNMT3L/A/B-
ADD

H3K4me3 (�) Active gene
promoter

Prevent aberrant
de novo
methylation

DNMT3B-
PWWP

H3K36me3
(+)

Active gene body Genic de novo
methylation

DNMT3A-
PWWP

H3K36me2
(+)

Intergenic region Intergenic de novo
methylation

Glossary

ADD ATRX-DNMT3-DNMT3L
ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
ChIP chromatin immunoprecipitation
cryo-EM cryogenic electron microscopy
DIPGs diffuse intrinsic pontine gliomas
DLBCLs diffuse large B-cell lymphomas
DNMTs DNA methyltransferases
ERVs endogenous retroviruses
H3Kx histone H3 lysine number x
hm-DNA hemi-methylated DNA
ICF immunodeficiency, centromeric instability, facial anomalies

syndrome
MDSs myelodysplastic syndromes
MEFs mouse embryonic fibroblasts
mESCs mouse embryonic stem cells

MPNs myeloproliferative neoplasms
MPNST malignant peripheral nerve sheath tumor
OGID overgrowth and intellectual disability
PMDs partially methylated domains
PRC1 polycomb repressive complex 1
PRC2 polycomb repressive complex 2
RFTS replication foci targeting sequence
SRA SET- and RING-associated
TBRS Tatton-Brown–Rahman syndrome
TCL T-cell lymphoma
TET ten-eleven translocation
TTD tandem Tudor domain
UBL ubiquitin-like
UHRF ubiquitin-like, containing PHD and RING finger domains
UIM ubiquitin-interacting motif
WGBS whole-genome bisulfite sequencing
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both H3K18 and H3K23 mono-ubiquitination, which not only facili-

tates DNMT1 chromatin targeting but also stimulates its methyl-

transferase activity (Ishiyama et al, 2017; Li et al, 2018a). Therefore,

through direct and indirect mechanisms, UHRF1 can target DNMT1

onto newly synthesized DNA substrates during semi-conservative

DNA replication.

In addition to SRA domain and RING domain, UHRF1 contains

multiple functional domains including a tandem Tudor domain

(TTD) and PHD finger connected by a linker region. When analyzed

individually in vitro, the TTD of UHRF1 was reported to preferen-

tially recognize histone H3K9 methylation (Rottach et al, 2010;

Nady et al, 2011), while the PHD finger specifically recognizes the

N-terminal region of histone H3 with unmodified arginine 2 (H3R2)

(Hu et al, 2011; Rajakumara et al, 2011; Wang et al, 2011). Interest-

ingly, the TTD recognition of H3K9 methylation is independent of

H3S10 phosphorylation (H3S10P) (Rothbart et al, 2012). H3S10

phosphorylation (H3S10P) is a mitotic “phospho-methyl switch”

and acts to antagonize H3K9 methylation readers such as HP1

during cell cycle (Fischle et al, 2003, 2005). Structural analysis

suggested that compared to other H3K9me3-interacting domains,

UHRF1 TTD, enabled by Asn147, readily accommodates H3S10P.

Indeed, mutating Asn147 to negatively charged glutamate abolishes

UHRF1’s insensitivity toward H3K9me3-to-S10P switch, which is

important for UHRF1’s association with chromatin during mitosis

and maintenance of DNA methylation especially at late-replicating

genomic regions (Rothbart et al, 2012).

Tandem Tudor domain and PHD finger of UHRF1 are only sepa-

rated by a 17-aa linker region, raising the possibility that the two

domains may operate as a single functional unit to recognize combi-

natorial histone modifications. Structural and biochemical studies of

the linked TTD-PHD finger module demonstrated that while the

recognition of N-terminal histone H3 by PHD seems to be indepen-

dent of TTD, the binding to H3K9 methylation by TTD is markedly

enhanced by the presence of PHD finger (Arita et al, 2012; Xie et al,

2012; Cheng et al, 2013; Rothbart et al, 2013). The linker region also

appears to play a role, as its mutation and phosphorylation disrupt

the higher order structure and the binding to H3K9me3 (Arita et al,

2012). The coordinated recognition of histone tails by TTD-PHD fin-

ger module in vitro suggests that UHRF1’s recruitment to chromatin

is dependent on histone engagement through cooperation between

multiple reader domains. Indeed, point mutations in either the TTD,

PHD, or linker regions reduce UHRF1’s association with chromatin

in cells and compromise UHRF1’s ability to maintain DNA methyla-

tion (Rothbart et al, 2013). This is further illustrated by a recent

study that identified a splicing variant of mouse UHRF1, which has

additional 9 amino acids inserted in the TTD-PHD finger linker

region compared to canonical mouse and human UHRF1 (Tauber

et al, 2020). As a result, the variant UHRF1 had distinct H3K9me3

binding profiles and displayed enhanced ubiquitination activity

toward H3K9me3-modified nucleosomes.

Beyond TTD and PHD finger, recent reports also pointed to the

importance of SRA domain, which recognizes hemi-methylated

DNA (hm-DNA), in directing the histone engagement and substrate

specificity of UHRF1 (Fang et al, 2016; Harrison et al, 2016). It was

shown that prior to binding histones and DNA, UHRF1 adopts a

“closed” conformation, in which the histone-binding (e.g., PHD fin-

ger) and DNA-binding (e.g., SRA) modules are physically associ-

ated. Upon chromatin recruitment, the inter-domain rearrangement

of UHRF1 allows it to transit into “open” conformation in which the

SRA binds to the hm-DNA and TTD-PHD finger to H3K9me2/3 via a

positive feedback mechanism. Furthermore, the recognition of hm-

DNA by SRA domain allosterically activates and directs the ubiqui-

tin ligase activity of UHRF1 toward H3K18 and H3K23. Collectively,

these biophysical and structural data suggest a highly sophisticated

mechanism involving extensive inter-domain communication and

cooperation in directing UHRF1’s chromatin engagement and acti-

vating its enzymatic activity (Fig 1A). Indeed, yet another domain—

ubiquitin-like domain (UBL)—was found to interact with other

UHRF1 domains to facilitate histone/DNA binding and H3 ubiquiti-

nation (DaRosa et al, 2018; Foster et al, 2018).

In parallel to in vitro studies of the multidomain-mediated

UHRF1 binding to histones, in vivo analyses have generated interest-

ing insight into the functional importance of these reader domains

and the interacting histone modifications (Fig 1B). Veland et al

(2017) identified PRMT6 as the arginine methyltransferase for

histone H3R2me2a. Overexpressing PRMT6 in mouse embryonic

stem cells (mESCs) resulted in dissociation of UHRF1 from chro-

matin and global DNA hypomethylation, supporting the notion that

unmodified H3R2 facilitates UHRF1 chromatin recruitment and

maintenance of CpG methylation (Veland et al, 2017). In mouse

embryonic fibroblasts (MEFs) deficient for Suv39h genes encoding

H3K9 methyltransferases, the decrease in H3K9 methylation at peri-

centric heterochromatin is correlated with a reduced localization of

UHRF1 (Karagianni et al, 2008), suggesting an important role of

H3K9 methylation for UHRF1 chromatin recruitment. Using the

same system, it was shown that the PHD finger and SRA domain are

required for UHRF1 to localize to pericentric heterochromatin.

These two domains are also necessary for UHRF1 to restore or main-

tain DNA methylation in various cell types (Qin et al, 2015; Harrison

et al, 2016; Kong et al, 2019).

In contrast, the role of TTD seems to be more context-dependent.

Whereas a point mutation (Y188A) that abolishes TTD’s interaction

with H3K9me2/3 is unable to complete CpG re-methylation follow-

ing UHRF1 re-expression in UHRF1-depleted cells (Rothbart et al,

2012), the same mutation in TTD does not affect UHRF1’s function

in maintaining CpG methylation in colorectal cancer cells (Kong

et al, 2019). Moreover, a knock-in TTD mutant mouse model has no

overt phenotypes and shows modest (� 10%) reduction in CpG

methylation (Zhao et al, 2016a). Similarly, the RING domain

appears to be essential for de novo or re-methylation, but dispens-

able for maintaining CpG methylation (Qin et al, 2015; Harrison

et al, 2016; Li et al, 2018a; Kong et al, 2019).

A recent in-depth analysis of the kinetics and fidelity of DNMT1-

mediated maintenance methylation offers critical insights into the

function of UHRF1-TTD in the process (Ming et al, 2020) (Fig 1C).

By developing a novel method—Hammer-seq—that combines

EdU labeling, biotin-mediated enrichment, and hairpin bisulfite

sequencing technologies, Ming et al (2020) uncovered two distinct

maintenance kinetics: replication-coupled and replication-uncoupled

maintenance phases. The TTD is required for both phases, yet

through interactions with different ligands: The interaction of TTD

with methylated replication fork protein LIG1 (Ferry et al, 2017) is

required for replication-coupled maintenance phase, whereas TTD-

H3K9me2/3 for replication-uncoupled maintenance phases. At

steady state, the inactivation of TTD causes delays in replication-

coupled CpG methylation maintenance that could be compensated
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by other mechanisms, resulting in modest reduction in bulk CpG

methylation. However, when replication-coupled phase is compro-

mised, or when the genome is largely devoid of CpG methylation

(e.g., UHRF1 depletion), TTD mutation will significantly impact the

rate of replication-uncoupled re-methylation. In support of this

notion, genomic regions of high H3K9me2 display greater loss of

CpG methylation in UHRF1-TTD mutant cells (Ming et al, 2020). It

is possible that the RING domain of UHRF1 plays a similar function

in replication-uncoupled maintenance of CpG methylation.

Finally, in addition to recognizing H3K18 and H3K23 ubiquitina-

tion catalyzed by UHRF1, a recent study demonstrates that the RFTS

domain of DNMT1 also specifically binds to H3K9me3 (Ren et al,

2020). It was proposed that the direct interaction between DNMT1-

RFTS and H3K9me3 in conjunction with H3 mono-ubiquitination

could compensate for the loss of UHRF1-TTD to maintain

CpG methylation. While DNMT1 does not harbor any canonical

histone-binding domains, it would be interesting to explore whether

DNMT1 directly interacts with additional histone modifications via

non-canonical mechanisms.

Role of histone methylation in targeting de novo DNMTs

In mammals, de novo CpG methylation is catalyzed by DNMT3A

and DNMT3B. During embryogenesis, DNMT3L, which shares

partial sequence homology with DNMT3A/B yet lacks the catalytic

domain, acts as an essential accessary protein for establishing

genomic methylation (Bourc’his, 2001). DNMT3L is absent or

expressed at extremely low levels in adult tissues. Its function,

however, can be partially compensated by catalytically inactive

isoforms of DNMT3B such as DNMT3B3 (Weisenberger et al, 2004;

Duymich et al, 2016; Zeng et al, 2020). DNMT3A and DNMT3B have

distinct mechanisms of DNA substrate engagement and show dif-

ferential preference for the flanking sequence of target CpG (Handa

& Jeltsch, 2005; Dukatz et al, 2020; Gao et al, 2020; Mallona et al,

2021), and we point readers to the excellent reviews of the molecu-

lar and structural basis for the catalysis of de novo methylation by

DNMT3 (Jurkowska & Jeltsch, 2016; Ren et al, 2018). Furthermore,

DNMT3A/B as well as DNMT3L can interact with histone tails

through shared regulatory domains. Thus, pre-existing histone

A

B

C

Figure 1. Interaction between DNMT1/UHRF1 and histone methylation during maintenance DNA methylation.

(A) In the absence of chromatin interaction, UHRF1 adopts a closed conformation, where the linker region between SRA and RING domains binds to the TTD domain and
the SRA domain binds to PHD finger. Upon engagement with histone and hemi-methylated DNA, inter-domain conformational change will enable the TTD-PHD module
to recognize H3K9me3 and H3R2, and SRA domain to bind to hemi-methylated DNA. This open conformation will facilitate the ubiquitination of histone H3K18 and
H3K23 by UHRF1, which in turn recruits DNMT1 to catalyze maintenance DNA methylation. (B) Schematics summarizing the functional impact of various domain-
inactivating UHRF1 missense mutations on maintenance DNA methylation or re-methylation following global demethylation. (C) Recent study suggests two distinct
modes of maintenance methylation by DNMT1-UHRF1. At the replication fork, interactions between DNMT1 and PCNA, and UHRF1-TTD and methylated LIG1, facilitate
replication-coupled maintenance methylation. The interaction between UHRF1-TTD and H3K9me3, on the other hand, facilitates replication-uncoupled maintenance
methylation.
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methylation plays a plausible role in shaping the non-random target-

ing of de novo DNMTs and distribution of CpG methylation through-

out the genome. Indeed, recent meta-analysis of whole-genome

bisulfite sequencing (WGBS) and ChIP-seq datasets from 35 human

cell types revealed that CpG methylation is negatively correlated

with H3K4 and H3K27 methylation and positively correlated with

H3K9 and H3K36 methylation (Fu et al, 2020).

ADD domain-mediated interaction with H3K4 methylation
Genome-scale profiling study revealed a strong anti-correlation

between CpG methylation and H3K4 methylation that is particularly

pronounced at CpG islands (Meissner et al, 2008). Immunoprecipita-

tion and in vitro biochemical assays found that DNMT3L directly

binds to N-terminal tail of histone H3 and the binding is abolished

with methylation of H3K4 (Ooi et al, 2007). Crystal structure

revealed a direct interaction between the first seven amino acids of

H3 and the cysteine-rich region within the ATRX-DNMT3-DNMT3L

(ADD) domain of DNMT3L. As expected from the significant

sequence homology, the ADD domains of DNMT3A/B interact with

H3 tails in a similar manner (Otani et al, 2009; Zhang et al, 2010).

In addition to H3K4 methylation, this interaction is sensitive to

phosphorylation of H3T3, H3S10, or H3T11 (Zhang et al, 2010).

Furthermore, unmodified but not H3K4-methylated histone H3

peptide can stimulate the activity of DNMT3A up to 8-fold (Li et al,

2011). Therefore, it appears that H3K4 methylation, a mark for

active transcription, antagonizes the recruitment as well as the allos-

teric activation of DNMT3A/B-DNMT3L complex to prevent de novo

CpG methylation and gene silencing.

The opposing action between H3K4 methylation and de novo

DNMTs is also supported by in vivo evidence. By introducing

DNMT3A and DNMT3L into yeast, Hu et al (2009) reported that the

histone H3 N-terminal tail is required for ectopic genomic methyla-

tion (Hu et al, 2009). Notably, in yeast stains lacking H3K4 methyl-

transferases, the levels of de novo methylation are substantially

increased in a manner dependent on the ADD domain of DNMT3L.

The H3K4 demethylase KDM1B is highly expressed in growing

oocytes, and its ablation results in increased H3K4 methylation and

subsequent failure of de novo DNA methylation and establishment

of genomic imprints (Ciccone et al, 2009). These findings were con-

firmed by Stewart et al (2015), which further nominated another

H3K4 demethylase KDM1A/LSD1 in regulating DNA methylation

during oogenesis (Stewart et al, 2015). Similarly, during the devel-

opment of male germline, H3K4me2-enriched CpG islands are

protected from de novo methylation (Singh et al, 2013). A point

mutation in the ADD domain of DNMT3L that abolishes its histone-

binding activity is sufficient to impair establishment of both

CpG and non-CpG methylation, spermatogenesis and fertility

(Vlachogiannis et al, 2015). In the context of embryogenesis,

complete loss of maternal KDM1A/LSD1 arrests embryo at the

maternal-to-zygotic transition stage, whereas partial loss of maternal

KDM1A leads to developmental and behavioral abnormality that is

associated with DNA hypomethylation and misexpression of

imprinted genes (Wasson et al, 2016). It should be noted, however,

that the maternal effects of KDM1A during embryogenesis may be

independent of H3K4 methylation, since it has been demonstrated

that KDM1A also directly demethylates DNMT1 which in turn

affects maintenance CpG methylation (Wang et al, 2009). Finally,

through structural modeling and protein engineering, Noh et al

(2015) identified point mutations that render the ADD domain of

DNMT3A insensitive to either H3K4 methylation or H3T3 phospho-

rylation (Noh et al, 2015). Re-expression of H3K4 methylation-

insensitive mutant DNMT3A in DNMT triple knockout mESCs

results in accumulation of DNA methylation at H3K4me3/2-enriched

regions and a defect in mESC differentiation. Expression of H3T3

phosphorylation-insensitive mutant DNMT3A, on the other hand,

leads to chromosomal instability. Together, these functional analy-

ses corroborate with in vitro studies and strongly support a pivotal

role of ADD-H3K4me3/2 antagonism for protecting transcriptionally

active promoter CpG islands from de novo methylation (Fig 2A).

PWWP domain-mediated interaction with H3K36 methylation
In contrast to promoters, actively transcribed genes have high levels

of CpG methylation at their gene bodies (Jones, 2012). These

regions are also enriched for tri-methylation of histone H3K36

(H3K36me3), and as expected DNA methylation has been shown to

be associated with the deposition of H3K36me3 (Fu et al, 2020).

Interestingly, comparative studies of DNA methylomes found that

H3K36me3-rich genes in Drosophila can predict CpG methylation

and content of orthologous genes in other organisms, suggesting

that the crosstalk between H3K36me3 and CpG methylation is

highly evolutionarily conserved (Nanty et al, 2011). Both DNMT3A

and DNMT3B harbor PWWP domain, which in other proteins such

as BRPF1 has been shown to bind to H3K36me3 (Vezzoli et al,

2010). Indeed, the PWWP domains of DNMT3A and DNMT3B inter-

act with H3K36me3 peptide in vitro (Dhayalan et al, 2010; Baubec

et al, 2015). Furthermore, ChIP-seq revealed preferential localiza-

tion of DNMT3B in the gene bodies of highly expressed, H3K36me3-

enriched genes in mESCs, which is dependent on its PWWP domain

and the H3K36me3 “writer” enzyme SETD2 (Baubec et al, 2015).

Similarly, when DNMT3B is heterologously expressed in yeast, its

binding and de novo methylation correlate with H3K36me3 and are

abolished upon deletion of SET2—the yeast homologue of SETD2

(Morselli et al, 2015). More recently, it has been shown that mater-

nal depletion of SETD2 causes loss of H3K36me3, followed by

decreased genic CpG methylation yet aberrant gain of intergenic

methylation, which contributes to the defects in oocyte maturation

and embryonic development arrest at 1-cell stage (Xu et al, 2019).

These findings agree with prior observations from growing murine

oocytes and 195 human/mouse DNA methylomes, where a positive

correlation between co-transcriptionally deposited H3K36me3 and

DNA methylation across the gene body has been noted (Morselli

et al, 2015; Stewart et al, 2015; Salhab et al, 2018). The function of

H3K36me3-mediated gene body CpG methylation (Fig 2B) remains

unclear, though one hypothesis is that it ensures the efficiency and

fidelity of transcriptional elongation through preventing spurious

intragenic transcription initiation (Neri et al, 2017). While further

investigation is needed, this notion is consistent with the role of

H3K36me3 in yeast where it prevents cryptic transcription through

histone deacetylation (Carrozza et al, 2005).

Interestingly, the binding pattern of DNMT3A differs substan-

tially from that of DNMT3B and is enriched in the intergenic regions

of euchromatin (Wu et al, 2010; Baubec et al, 2015). Indeed,

whereas DNMT3B-PWWP preferentially interacts with H3K36me3,

DNMT3A-PWWP can recognize both H3K36me3 and di-methylated

H3K36 (H3K36me2) with a slightly higher affinity for H3K36me2

(Sankaran et al, 2016; Dukatz et al, 2019; Weinberg et al, 2019; Xu

ª 2021 The Authors EMBO reports 22: e51803 | 2021 5 of 21

Yinglu Li et al EMBO reports



et al, 2020a; Xu et al, 2020b). While closely related, H3K36me2 is a

highly abundant chromatin modification which is catalyzed by a

distinct set of methyltransferases (NSD1-3 and ASH1L) (Kuo et al,

2011). It is spatially separated from H3K36me3 and mainly enriched in

the intergenic regions (Rao et al, 2005). Genome-wide DNMT3A bind-

ing and DNMT3A-mediated de novo CpG methylation show positive

correlation with H3K36me2 (Weinberg et al, 2019). Genetic knockout

of NSD1/2 depletes intergenic H3K36me2 and CpG methylation, and

redistributes DNMT3A to H3K36me3-enriched genic regions (Weinberg

et al, 2019). Conversely, overexpression of NSD2 in multiple myeloma

cells is coupled with elevated intergenic CpG methylation (Xu et al,

2020a; Xu et al, 2020b). Taken together, these findings support a

model in which H3K36me2-DNMT3A interaction complements and

competes with H3K36me3-DNMT3B to establish intergenic and genic

CpG methylation at euchromatin, respectively (Fig 2C). It remains

unclear what is the structural basis for the valence-specific recognition

of H3K36 methylation by DNMT3A-PWWP versus DNMT3B-PWWP.

A crystal structure of DNMT3B-PWWP bound to H3K36me3 is avail-

able (Rondelet et al, 2016), and it would be interesting to compare and

contrast that to DNMT3A-PWWP.

Consistently, the H3K36me2 methyltransferase NSD1 has been

linked to DNA methylation in several developmental and disease

contexts. NSD1-mediated H3K36me2 is critical for guiding de novo

methylation and establishing paternal imprints in the male germline

(Shirane et al, 2020). Nsd1 knockout male mice exhibit defects in

spermatogenesis and are infertile. This is in sharp contrast to the

role of SETD2/H3K36me3 in oocyte development and de novo

methylation (Xu et al, 2019), and suggests that the sex-specific land-

scape of CpG methylation in the germline could result from distinct

state of H3K36 methylation. Germline NSD1 mutations define Sotos

syndrome which is characterized by developmental overgrowth and

intellectual disability (Douglas et al, 2003). Blood samples from

Sotos patients display profound genome-wide CpG hypomethylation

compared to the controls (Choufani et al, 2015). Interestingly, this

pattern mimics aging-induced loss of DNA methylation, leading to

the hypothesis that NSD1 depletion accelerates the “epigenetic

clock” (Martin-Herranz et al, 2019). Similarly, somatic mutations

and deletions of NSD1, which are common in squamous cell

carcinomas of the head and neck and other body sites (Papillon-

Cavanagh et al, 2017), are associated with CpG hypomethylation

(Brennan et al, 2017; Bui et al, 2018) that are particularly

pronounced at the intergenic regions (Lee & Wiemels, 2016;

Weinberg et al, 2019). The mechanism by which loss of intergenic

H3K36me2 and DNA methylation affects gene regulation remains

elusive, although recent reports suggests that the dosage of NSD2

and H3K36me2 is linked to the binding of methylation-sensitive

genome architecture protein CTCF, reprogramming of 3D chromatin

organization and distal enhancer activation (Lhoumaud et al, 2019).

Mechanisms of DNMT3A/B localization to
constitutive heterochromatin
Both DNA methylation and H3K9 methylation are involved in the

formation and maintenance of constitutive heterochromatin and

the silencing of retrotransposons. In some organisms including

A B

C D

Figure 2. Various mechanisms underlying targeting of de novo DNMTs by histone methylation.

(A) At promoters of actively transcribing genes, high levels of H3K4me3 oppose ADD domain and the binding of DNMT3L-DNMT3A/B to prevent de novo CpG methylation.
(B) At gene bodies of actively transcribing genes, high levels of H3K36me3 interact with PWWP domain of DNMT3B and facilitate its genic localization. (C) A parallel
pathway operates at the intergenic region, where H3K36me2 interacts with PWWP domain of DNMT3A and facilitates its intergenic localization. (D) At repetitive
elements and retrotransposons, interactions between H3K9 methyltransferases and DNMT3A/B enable co-localization of H3K9me3 and CpG methylation for
transcriptional silencing.
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Neurospora crassa and Arabidopsis thaliana, DNA methylation is

strictly guided by methylation of H3K9 (Tamaru & Selker, 2001;

Jackson et al, 2002). Although there is a genome-wide positive

correlation between H3K9 and CpG methylation (Meissner et al,

2008; Fu et al, 2020), the interplay between these two repressive

marks seems to be complex in mammalian cells. There are three

groups of methyltransferases, Suv39h1/2, G9a/GLP, and Setdb1,

which catalyze H3K9 methylation at various parts of the genome.

In mESCs, double knockout of Suv39h1/2 abolishes the localiza-

tion of DNMT3B as well as DNA methylation at pericentric satel-

lite repeats (Lehnertz et al, 2003). DNMT3B was also found to

interact with H3K9 methylation “readers” HP1a and HP1b. Simi-

larly, DNMT3A was co-purified with H3K9 methyltransferase

activity in HeLa cells and a direct interaction between DNMT3A

and Suv39h1 and HP1b was observed (Fuks, 2003). This interac-

tion appears to be mediated through the ADD domain of

DNMT3A, although it is noteworthy that the PWWP domains of

DNMT3A/B are required to direct their localization to pericentric

heterochromatin (Chen et al, 2004). Therefore, additional histone-

binding domains could be involved. SETDB1, which is often

complexed with KRAB-Zinc Finger proteins and KAP1 to silence

endogenous retroviruses (ERVs), also facilitates de novo DNA

methylation. Depletion of either SETDB1 or KAP1 abolishes de

novo methylation of natural or ectopically introduced ERVs (Rowe

et al, 2013). Consistently, Leung et al (2014) observed that dele-

tion of Setdb1 in mESCs induces hypomethylation and misexpres-

sion of LTR retrotransposons and class I and II ERVs, as well as

several imprinted genes (Leung et al, 2014). This seems to be

mediated through active rather than passive demethylation, as

TET-mediated 5-hydroxymethylcytosine was transiently found

prior to demethylation. Again, a direct interaction between

DNMT3A (ADD domain) and SETDB1 (N-terminal region) could

be the underlying recruitment mechanism (Li et al, 2006). Finally,

G9a-dependent de novo CpG methylation has been shown in

mESCs during silencing of imprinted genes (Xin et al, 2003), retro-

transposons (Dong et al, 2008) and provirus (Leung et al, 2011).

The proviral silencing defect in G9a knockout cells could be

phenocopied by knockout of Dnmt3a, suggesting that the recruit-

ment of de novo methylation activity is important for initiating

transcriptional repression (Leung et al, 2011). In differentiating

mESCs, methylation of several pluripotent genes is dependent on

G9a (Epsztejn-Litman et al, 2008), and in G9a-/- embryos,

promoter methylation of germline-specific genes is decreased

which is coupled by increased gene expression (Auclair et al,

2016). This G9a-dependent de novo methylation seems to be

independent of H3K9 methylation, since catalytically inactive G9a

is sufficient to restore or maintain CpG methylation (Dong et al,

2008; Epsztejn-Litman et al, 2008; Tachibana et al, 2008). Instead,

several models have been proposed: G9a’s ankyrin repeat

region can directly interact with DNMT3A/B’s catalytic domain

(Epsztejn-Litman et al, 2008); alternatively, Ga9 may indirectly

recruit DNMT3A/B, which can be bridged by either the HUSH

complex member MPP8 (Chang et al, 2011) or UHRF1 (Meilinger

et al, 2009). Collectively, these studies suggest that while

DNMT3A/B do not harbor functional reader domains that recog-

nize H3K9 methylation, they can be recruited either directly or

indirectly by H3K9 methyltransferases to promote methylation and

reinforce silencing at heterochromatin regions (Fig 2D).

Complex interplay between de novo CpG methylation and
H3K27 methylation
Histone H3 lysine 27 methylation, established by the polycomb

repressive complex 2 (PRC2), is a hallmark of facultative hete-

rochromatin and associated with silencing of genes involved in cell

cycle and differentiation (Comet et al, 2016). The enzymatic compo-

nent EZH1/2, along with three core components (SUZ12, EED, and

Rbbp4) and various accessary units of PRC2, catalyze the mono-, di-,

and tri-methylation of H3K27 (Yu et al, 2019). PRC2 closely interacts

and cooperates with polycomb repressive complex 1 (PRC1) for

gene silencing: Canonical PRC1 recognizes H3K27me3 to mediate

chromatin compaction and transcriptional repression, while variant

PRC1 complex could initiate polycomb-mediated gene silencing

through catalyzing H2AK119 ubiquitination (Holoch & Margueron,

2017).

The relationship between DNA methylation and H3K27 methyla-

tion is complex and highly dynamic. Genome-wide studies in stem

cells and cancer cells demonstrate that H3K27me3 and DNA methy-

lation are anti-correlated and have no obvious co-localization

(Kondo et al, 2008; Meissner et al, 2008; Lister et al, 2009; Hon

et al, 2012; Fu et al, 2020). This is particularly evident at the so-

called DNA methylation valleys or canyons—large conserved

genomic regions with very low (< 10%) levels of CpG methylation

(Xie et al, 2013; Jeong et al, 2014). These domains are highly

enriched for H3K27me3 and binding of polycomb proteins and

recently have been shown to form megabase-long chromatin contact

loops (Zhang et al, 2020). The overall mutual exclusivity between

DNA and H3K27 methylation could be attributed to a role of CpG

methylation in antagonizing PRC2. In multiple cell types, depletion

of CpG methylation via the deletion of various DNMTs leads to

pervasive increases of H3K27me3 at previously methylated regions

of the genome (Brinkman et al, 2012; Lynch et al, 2012; Reddington

et al, 2013). Similarly, in the transitioning of mESCs from na€ıve to

2i-induced ground state (Ying et al, 2008), there is a marked

decrease in DNA methylation that is accompanied by a gain of

H3K27me3 (van Mierlo et al, 2019). Interestingly, these genome-

wide increases and redistributions of H3K27me3 can result in a

“titration” effect on the localization of PRC1 and therefore have a

negative impact on polycomb-mediated gene silencing (Reddington

et al, 2013) or 3D loop formation (McLaughlin et al, 2019). Conver-

sely, re-expressing wild-type but not catalytically dead DNMTs in

methylation-deficient mESCs restore patterns of H3K27me3 as well

as activity of H3K27ac-associated enhancers (King et al, 2016).

Importantly, by inserting artificial sequences into the genome, two

studies identified the cis-elements that are sufficient to induce accu-

mulation of H3K27me3 and found that CpG methylation directly

counteracts H3K27me3 recruitment (Jermann et al, 2014; Wachter

et al, 2014). These results are consistent with prior studies in vitro

showing that CpG methylation of nucleosomal DNA inhibits PRC2

binding to H3K27me3-marked nucleosomes (Bartke et al, 2010; Wu

et al, 2010). Indirect mechanisms are also likely to be at play. For

example, MTF2, an accessary subunit of PRC2, binds to CpG islands

in a methylation-dependent manner (Perino et al, 2018). Similarly,

KDM2B, a component of the variant PRC1.1 that facilitates the

recruitment of PRC2 (Holoch & Margueron, 2017), carries a CXXC

domain that recognizes unmethylated CpGs (Blackledge et al, 2010).

Finally, while less characterized, studies have suggested a reciprocal

role of PRC2 in opposing CpG methylation. For example, deletion of
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EED leads to aberrant accumulation of CpG methylation in DNA

methylation valleys in mESCs (Li et al, 2018c). This effect is recapit-

ulated by triple knockout of TET1-3 enzymes, consistent with the

observation that PRC2 directly interacts with TET1 and regulates

levels of 5-hydroxymethylcytosine (Neri et al, 2013a).

It should be noted, however, that despite the well-documented

antagonism between H3K27 and DNA methylation, these two marks

can co-occur in low CpG regions in more differentiated cells

(Statham et al, 2012). Moreover, dynamic switch from H3K27me3-

marked to DNA-methylated CpG islands has been observed at some

imprinted genes during embryonic development (Chen et al, 2019)

and at pluripotency and germline-specific genes during mESC-

to-neuron differentiation (Mohn et al, 2008). The molecular mecha-

nisms underlying these transitions remain poorly understood. PRC2

may directly recruit DNMT1 and DNMT3A/B (Vir�e et al, 2006). It

was also suggested that DNMT3L competes with DNMT3A/B for the

binding to PRC2 (Neri et al, 2013b). Hence, variations in DNMT3L

expression could represent a mechanism for controlling de novo

methylation of PRC2 target genes. Consistently, the long isoform

of DNMT3A, DNMT3A1, preferentially localizes to H3K27me3/

H3K4me3 bivalent CpG islands in mESCs (Manzo et al, 2017). Inter-

estingly, aberrant CpG methylation of polycomb target genes has

been observed when the PWWP domain of DNMT3A is inactivated

(Heyn et al, 2019; Send�zikait _e et al, 2019) or when DNMT3B is over-

expressed (Zhang et al, 2018a). Since the levels of H3K36 methyla-

tion are low at CpG islands (Blackledge et al, 2010), it appears that

the interaction between H3K36me2/3-PWWP domain could

normally serve to “trap” DNMT3A/B away from PRC2-regulated

CpG islands.

Interplay of DNA and histone methylation in disease
development and therapy

Developmental disorders
DNMT3B and ICF syndrome

Consistent with the importance of CpG methylation in development,

germline mutations in all three DNMTs and TET3 have been associ-

ated with human congenital disorders (Hansen et al, 1999; Klein

et al, 2011; Winkelmann et al, 2012; Tatton-Brown et al, 2014; Heyn

et al, 2019; Beck et al, 2020). DNMT3B is the first DNA-modifying

enzymes implicated in human diseases (Hansen et al, 1999). Genetic

alterations in DNMT3B are found in patients with immunodefi-

ciency, centromeric instability, facial anomalies syndrome (ICF;

OMIM 602900). ICF syndrome is a rare, autosomal recessive disor-

der characterized by distinct facial features, absence of B and

plasma cells and chromosome instability, often leading to death

during early childhood. The majority of ICF-associated DNMT3B

mutations are loss of function, including nonsense, splice-site, or

missense mutations within the catalytic domain, consistent with

hypomethylation of pericentromeric satellite 2 and 3 repeats in the

genomes of affected patients (Jeanpierre et al, 1993). Intriguingly,

homozygous missense mutations (S282P) in the PWWP domain of

DNMT3B have been reported (Shirohzu et al, 2002), in agreement

with a role of PWWP domain in mediating DNMT3B’s localization

to pericentromeric heterochromatin (Chen et al, 2004). Further-

more, the homologous (S277P) mutation in mESCs abolishes

DNMT3B’s interaction with H3K36me3 and intragenic localization

(Baubec et al, 2015), and recent findings have shown that ICF-asso-

ciated DNMT3B mutant cells exhibit defects in intragenic DNA

methylation and mRNA splicing (Gatto et al, 2017). Therefore, DNA

hypomethylation at both repeat regions and gene bodies could

contribute to the etiology of ICF syndrome. In addition to DNMT3B,

three genes have been linked to ICF syndrome: ZBTB24, CDCA7,

and HELLS (Velasco et al, 2018). Patients carrying mutations in

these genes have overlapping clinical features and share hypomethy-

lated pericentromeric repeats with DNMT3B-mutant patients, suggest-

ing their involvement in de novo CpG methylation. Indeed, in MEFs

or mESCs deficient for HELLS (also known as LSH), maintenance of

DNA methylation is not affected but establishing methylation at retro-

viral transgene is impaired (Zhu et al, 2006). HELLS directly interacts

with DNMT3A/B in mESCs. In more differentiated cell types, it seems

that HELLS recruits and cooperates with H3K9 methyltransferase

G9a/GLP to promote methylation at select loci (Myant et al, 2011). A

few patients with ICF syndrome-like feature do not have mutations in

the known genes (Weemaes et al, 2013), and it would be interesting

to examine whether any histone methylation modifiers are altered in

these patients.

DNMT3A and Tatton-Brown–Rahman syndrome

Germline heterozygous mutations in DNMT3A, on the other hand,

define Tatton-Brown–Rahman syndrome (TBRS, OMIM 615879)

(Tatton-Brown et al, 2014). TBRS is characterized by tall stature,

macrocephaly, intellectual disability, and distinctive craniofacial

features. Intriguingly, TBRS belongs to a group of genetic disorders

known as overgrowth and intellectual disability (OGID) syndromes,

which share many overlapping clinical features (Tatton-Brown et al,

2017). Among them, germline deletions/mutations in NSD1 are

associated with Sotos syndrome (OMIM 117550) (Kurotaki et al,

2002; Douglas et al, 2003). PRC2 complex members—EZH2, EED,

and SUZ12—are associated with Weaver syndrome (OMIM 277590),

Cohen–Gibson syndrome (OMIM 617561), and Weaver-like syndrome,

respectively (Tatton-Brown et al, 2011; Gibson et al, 2012; Cohen &

Gibson, 2016; Imagawa et al, 2017; Cyrus et al, 2019). Furthermore,

germline duplications of 5q35 involving NSD1 and missense mutations

in the PWWP domain of DNMT3A correlate with opposite develop-

mental characteristics, including dwarfism and microcephaly (Dikow

et al, 2013; Rosenfeld et al, 2013; Heyn et al, 2019). These DNMT3A

PWWP domain mutations (W330R and D333N) are putatively gain of

function, as they impair DNMT3A-H3K36me2/H3K36me3 interaction

yet cause DNA hypermethylation at key developmental genes enriched

for H3K27me3 (Heyn et al, 2019; Send�zikait_e et al, 2019). The fact that

alterations in NSD1, PRC2, and DNMT3A cause developmental disor-

ders with considerable phenotypic overlap offers strong human genetic

evidence in support of the molecular crosstalk between these chro-

matin enzymes (Deevy & Bracken, 2019). Indeed, consistent with the

finding that H3K36me2 is required for DNMT3A targeting and inter-

genic DNA methylation (Weinberg et al, 2019; Xu et al, 2020a; Xu

et al, 2020b), NSD1 mutations/deletions in Sotos patients are associ-

ated with a profound DNA hypomethylation phenotype in the blood

(Choufani et al, 2015). Furthermore, TBRS-associated missense

mutations in DNMT3A fail to interact with chromatin and cause

protein instability (Heyn et al, 2019; Weinberg et al, 2019). The

DNA methylomes from the blood of TBRS patients cluster closely

with that of Sotos patients (Weinberg et al, 2019) and both display

signatures of accelerated aging (Jeffries et al, 2019), suggesting
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that impaired NSD1-H3K36me2-DNMT3A interplay represents a

common mechanism underlying the pathogenesis of TBRS and

Sotos syndrome. A similar mechanism could be at play for

mutations in SETD2, which have been found in patients with

“Sotos-like” syndromes (Luscan et al, 2014).

In contrast, OGID syndrome mutations in EZH2, EED, and

SUZ12 do not cause aberrant DNA hypomethylation found in TBRS

and Sotos syndrome patients (Choufani et al, 2015; Martin-Herranz

et al, 2019; Weinberg et al, 2019). Instead, as described above,

patterns of DNA methylation could directly or indirectly affect PRC2

activity. Moreover, H3K36 methylation has a well-documented role

in opposing H3K27me3. Nucleosomes decorated with H3K36me2/3

can directly inhibit PRC2 activity in vitro (Schmitges et al, 2011;

Yuan et al, 2011). In multiple myeloma and acute lymphoblastic

leukemia (ALL) with overexpression or gain-of-function mutations

of NSD2, global increases in H3K36me2 are accompanied by a loss

of H3K27me3 (Martinez-Garcia et al, 2011; Jaffe et al, 2013).

Conversely, genetic ablation of Nsd1 in mESCs or expression of an

oncohistone H3.3K36M mutation leads to a reduction of H3K36me2

and a gain of H3K27me3 (Lu et al, 2016; Streubel et al, 2018). Simi-

larly, in SETD2-deficient oocytes and NSD1-deficient sperms, in

addition to abnormal CpG methylation there is also an “invasion”

of H3K27me3 into former H3K36me2/3 territories (Xu et al, 2019;

Shirane et al, 2020). Several accessary units of PRC2 contain

“reader” domains for H3K36me3. PHF19 (PHD finger protein 19)

and PHF1 are known to facilitate the recruitment of PRC2

through their Tudor domains (Hunkapiller et al, 2012). Both

Tudor domains of PHF1 and PHF19 act as readers for H3K36me3,

and it is believed that the recognition of H3K36me3 by PHF1/19

initiates PRC2 targeting, H3K27me3 deposition, and silencing of

actively transcribed genes (Ballar�e et al, 2012; Brien et al, 2012;

Musselman et al, 2012; Cai et al, 2013). Moreover, a direct sensing

mechanism of H3K36 methylation state by EZH2 has recently been

reported (Jani et al, 2019). Biochemical and structural analysis

shows that EZH2 contains a specific sensing pocket for H3K36 that

allows the complex to distinguish between modified and unmodi-

fied H3K36 residues, altering enzymatic activity accordingly to

preferentially methylate the unmodified nucleosome substrate.

Interestingly, a Weaver syndrome-associated EZH2 mutation

(K634E) renders the enzyme less sensitive to the inhibition by

H3K36 methylation (Jani et al, 2019). Notably, the majority of

mutations affecting EZH2/EED/SUZ12 in OGID syndromes are

missense. While studies have suggested that the mutations reduce

the catalytic activity of PRC2 (Cohen et al, 2016; Imagawa et al,

2017), it remains to be determined if change-of-function mutations

exist that alter the interaction between PRC2 and H3K36/DNA

methylation.

Taken together, it is plausible that several OGID syndromes share

a common etiology linked to the dysregulated crosstalk between

NSD1, PRC2 and DNMT3A (Fig 3). Future efforts are required to

validate this hypothesis and determine how the imbalance between

these chromatin marks contributes to disease development. To this

end, it is noteworthy that mice with heterozygous loss of Ezh2, Eed,

Suz12, Nsd1, or Dnmt3a are overall developmentally normal, while

homozygous knockouts lead to prenatal or neonatal lethality (Faust

et al, 1995; Okano et al, 1999; O’Carroll et al, 2001; Rayasam et al,

2003; Pasini et al, 2004). Therefore, alternative models, such as

tissue-specific knockout mice or patient-derived induced pluripotent

stem cells, are needed to better model and study chromatin-related

OGID syndromes.

Additional developmental disorders linked to abnormal DNA and

histone methylation

Additional histone-modifying enzymes are linked to human congen-

ital disorders which are associated with abnormal CpG methylation

landscape. Loss-of-function mutations in KMT2D (also known as

MLL2), an H3K4 methyltransferase, and KDM6A (also known as

UTX), an H3K27 demethylase, are the primary cause of Kabuki

syndrome (Ng et al, 2010; Lederer et al, 2012). Kabuki syndrome

patients are characterized by developmental delays, congenital

abnormalities, and globally altered CpG methylation (Sobreira et al,

2017). Mutations in H3K4 demethylase KDM5C (also known as

JARID5C) are linked to X-linked intellectual disability (Iwase

et al, 2007), and blood samples from patients carrying KDM5C

mutations display CpG hypomethylation at several genomic

loci (Grafodatskaya et al, 2013; Schenkel et al, 2018). Frameshift

mutations affecting HIST1H1E, a gene encoding histone H1, are

found in another OGID syndrome known as Rahman syndrome

(Tatton-Brown et al, 2017; Takenouchi et al, 2018) which exhibits a

specific DNA hypomethylation signature (Ciolfi et al, 2020). Future

studies are required to determine whether the aberrant CpG methy-

lation profiles associated with these disorders are directly caused by

altered histone methylation or reflect patterns of gene expression.

Nevertheless, the unique DNA methylation signatures can be reli-

able molecular biomarkers to classify genetic variants of uncertain

significance (Aref-Eshghi et al, 2017, 2019; Choufani et al, 2020)

and facilitate accurate diagnosis of clinically overlapping disorders

caused by mutations in distinct chromatin enzymes (Aref-Eshghi

et al, 2018).

Cancers
Dysregulation of DNA and histone methylation has been widely

implicated in various types of human cancers. Whereas the mecha-

nistic details are being actively investigated, several lines of

evidence support an intimate interaction between DNA and histone

methylation in driving cancer initiation and progression. First, like

OGID syndromes, mutations in DNA- and histone-modifying enzymes

are found in closely related cancer types, particularly within hemato-

logical malignancies. In myeloid neoplasms, DNMT3A and TET2 are

frequently mutated in acute myeloid leukemias (AML), myelodysplas-

tic syndromes (MDSs), and myeloproliferative neoplasms (MPNs)

(Delhommeau et al, 2009; Ley et al, 2010; Stegelmann et al, 2011;

Haferlach et al, 2014). Inactivating mutations in EZH2 are also

frequently found in MDS and MPN (Ernst et al, 2010), whereas loss-

of-function mutations in SETD2 and chromosomal translocations of

NSD1 and NSD3 were recurrently identified in acute leukemias (Jaju

et al, 2001; Rosati et al, 2002; Zhu et al, 2014). In lymphoid malig-

nancies, DNMT3A and TET2 mutations have been linked to adult

acute lymphoblastic leukemias (ALL) (Grossmann et al, 2013) and T-

cell lymphomas (TCL), in particular angioimmunoblastic T-cell

lymphomas and peripheral T-cell lymphomas, not otherwise specified

(PTCL, NOS) (Couronn�e et al, 2012; Lemonnier et al, 2012; Sakata-

Yanagimoto et al, 2014). Gain-of-function mutations in NSD2 are

found in 14% of ETV6/RUNX1-fusion pediatric ALL (Jaffe et al,

2013), and modifiers of histone methylation and acetylation

(KMT2D, SETD2, KMT2A, KDM6A, EP300, CREBBP) are collectively
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mutated in up to 36% of patients with PTCL, NOS (Ji et al, 2018;

Watatani et al, 2019). On the other hand, mutations in KMT2C,

KMT2D, and EZH2 are common events in diffuse large B-cell

lymphomas (DLBCLs) (Morin et al, 2010, 2011), where DNMT3A and

TET2 mutations have also been reported albeit at lower frequencies

(Asmar et al, 2013; Reddy et al, 2017). Furthermore, neomorphic

mutations in the genes encoding metabolic enzymes IDH1 and IDH2,

which produce an oncometabolite 2-hydroxyglutarate that competitive

inhibits both histone and DNA demethylation (Figueroa et al, 2010; Lu

et al, 2012), are frequently found in AML and TCL (Mardis et al, 2009;

Cairns et al, 2012). The widespread mutations affecting DNA/histone

methylation machinery genes are consistent with the findings that

genetic perturbations of these enzymes result in abnormal hematopoi-

etic self-renewal and differentiation (Challen et al, 2011; Mochizuki-

Kashio et al, 2011; Zhang et al, 2018b; Leonards et al, 2020), and

epigenetic drugs, such as inhibitors of DNA methyltransferase, histone

deacetylases, and IDH1/2, are approved to treat leukemias and

lymphomas (Bates, 2020). Future investigations are required to

Figure 3. Dysregulated interplay between DNA and histone methylation in human OGID syndromes.

During normal development, H3K36me2 facilitates the deposition of CpG methylation by recruiting DNMT3A at euchromatic intergenic regions, and these two
modifications act together to antagonize PRC2 and H3K27me3. In Soto syndrome, NSD1 mutations and deletions lead to reduced H3K36me2 and CpG methylation, and a
resulting gain of H3K27me3. In TBRS, loss-of-function mutations in DNMT3A reduce CpG methylation, although its impact on H3K36me2 and H3K27me3 is unclear. Some
Weaver syndrome patients carry missense mutation of EZH2 (e.g., K634E) that renders the PRC2 insensitive to inhibition by H3K36 methylation, which could potentially
leads to accumulation of H3K27me3 at intergenic regions despite the presence of H3K36me2. The significant overlap in clinical features of Soto, Weaver, and TRBS
patients suggests that an imbalance of H3K36me2, H3K27me3, and CpG methylation could represent a common pathogenic mechanism.
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address whether, and how, alterations in histone and DNA

methylation pathways act redundantly or cooperatively to drive

hematopoietic malignancies.

Second, although somatic mutations affecting DNMTs and TETs

are rare in solid tumors, mutations in histone-modifying enzymes

and histones themselves can have a direct effect on reprogramming

DNA methylome. As described above, NSD1 mutations and dele-

tions in squamous cell carcinomas result in global DNA hypomethy-

lation as a consequence of defective DNMT3A recruitment by H3K36me2

(Lee & Wiemels, 2016; Brennan et al, 2017; Papillon-Cavanagh et al,

2017; Bui et al, 2018; Weinberg et al, 2019; Farhangdoost et al, 2021).

Histone H3 lysine 36 to methionine (H3K36M) mutations deplete

H3K36 methylation by inhibiting the catalytic activities of H3K36

methyltransferases, and H3K36M mutations are mutually exclusive

with NSD1 loss-of-function mutations in head and neck squamous

cell carcinomas (Lu et al, 2016; Papillon-Cavanagh et al, 2017).

Consistently, H3K36M mutation also leads to global decreases in

DNA methylation (Rajagopalan et al, 2021). In contrast, SETD2

mutations in renal cell carcinoma and other cancer types are associ-

ated with global DNA hypermethylation (Tiedemann et al, 2016).

This unexpected finding could be recapitulated in cellular models

and is hypothesized to result from ectopic gain of H3K36me3 at large

intergenic regions upon SETD2 inactivation. While counterintuitive,

similar observation has been made in female germline following

Setd2 deletion (Xu et al, 2019). Genetic inactivation of PRC2 complex

is associated with malignant peripheral nerve sheath tumors

(MPNST), and Wojcik et al (2019) demonstrated that PRC2-null

MPNST cells exhibit genome-wide hypermethylation (Wojcik et al,

2019). This is likely due to a decreased ratio of H3K27me3/

H3K36me2, as knockdown of NSD2 could reverse the changes in

gene expression by PRC2 inactivation. Interestingly, oncohistone H3

lysine 27 to methionine (H3K27M) mutation—found in diffuse

intrinsic pontine gliomas (DIPGs)—dominantly inhibits PRC2 activ-

ity and reduces global H3K27me3 yet results in DNA hypomethyla-

tion (Bender et al, 2013; Lewis et al, 2013). Furthermore, EZHIP/

CXORF67, a germline-specific gene, encodes a protein that binds to

and blocks PRC2 spreading from H3K27me3-occupied CpG islands

through an H3K27M-like mechanism (Jain et al, 2019; Ragazzini

et al, 2019). EZHIP is silenced through promoter methylation in adult

tissues, and its de-repression upon DNA hypomethylation results in

PRC2 inhibition (Bayliss et al, 2016; Piunti et al, 2019). These find-

ings again highlight the complex interplay between H3K27me3 and

DNA methylation. Lastly, a recent study points to a role of H3K4me1

in predisposing CpG island methylation during cancer progression

(Skvortsova et al, 2019). In breast and prostate cancers, the invasion

of methylation at the edges of CpG island is linked to enrichment of

H3K4me1. Inactivation of KMT2D leads to a concurrent loss of

H3K4me1 and CpG methylation. It would be interesting to determine

the impact of DNA methylation reprogramming on gene expression

and tumor development driven by mutations in HMTs and, conse-

quently, whether these tumors display altered sensitivity to DNA

hypomethylating therapies.

Third, altered DNA methylation is a well-established pan-cancer

molecular hallmark. DNA hypomethylation across intergenic

regions and DNA hypermethylation at promoter CpG islands have

been described in many cancer contexts, independently of specific

genetic mutations and tissue types (Baylin & Jones, 2016). Interest-

ingly, both features can be predicted from pre-existing histone

methylation marks in corresponding normal cells (Fig 4). Promoter

CpG islands that gain DNA methylation in cancers are marked by

H3K27me3 in embryonic or tissue stem/progenitor cells (Ohm et al,

2007; Schlesinger et al, 2007; Widschwendter et al, 2007; McGarvey

et al, 2008). More recently, it was shown that the ratio of

H3K27me3 to H3K4me3 at bivalent promoters can predict the likeli-

hood of cancer-associated DNA hypermethylation (Dunican et al,

2020). On the other hand, the loss of DNA methylation in cancers is

found to mainly occur at partially methylated domains (PMDs)

(Zhou et al, 2018). PMDs are associated with nuclear lamina and

late-replicating regions (Berman et al, 2012). Recent evidence

suggests that DNA hypomethylation at PMDs is coupled to mitotic

cell division (possibly due to ineffective maintenance methylation)

and gain of heterochromatic histone marks such as H3K9me3 (DEEP

Consortium et al, 2018; Zhou et al, 2018). In contrast, regions of

H3K36me3 where de novo DNMTs are targeted are protected from

progressive hypomethylation (Zhou et al, 2018). Collectively, these

correlative studies raise an intriguing possibility that by comparing

DNA methylomes of cancer and histone methylomes of normal

cells, one may be able to delineate the potential tissues and cells of

origins for certain difficult-to-diagnose tumors.

Therapeutic implication
The close interplay between DNA and histone methylation

enzymes in development and human diseases represents an oppor-

tunity for designing new therapeutic approaches. One strategy is to

develop inhibitors of the “reader” domains that are key for

enzyme interaction and activation. For example, two studies

screened for inhibitors that prevent the binding between UHRF1’s

TTD-PHD finger and H3K9me3 (Houliston et al, 2017; Senisterra

et al, 2018). These compounds can be used as powerful chemical

probes and have the potential to become a new class of DNA

hypomethylating agents with distinct mechanisms of action from

that of catalytic inhibitors of DNMT1 for cancer therapy. Chemical

probes for the NSD2-PWWP and NSD3-PWWP domains were

recently reported (Böttcher et al, 2019), and similar approaches

could be adopted to identify inhibitors of the DNMT3A/B PWWP

domains to modulate de novo DNA methylation. Compared to inhi-

bitors targeting the catalytic domains, reader domain inhibitors are

expected to specifically correct disease-associated mislocalization

of methyltransferases while leaving their normal function unaf-

fected, therefore providing a higher therapeutic index.

As another therapeutic strategy, combined inhibition of histone

and DNA methylation has demonstrated synergy in cancer therapy.

In gastric cancer, inhibition of EZH2 following DNA demethylation

fully activates the expression of tumor suppressor RUNX3, suggest-

ing a redundancy between H3K27me3 and CpG methylation in

silencing certain genetic loci (Kodach et al, 2010). Indeed, in

mESCs exposed to DNA hypomethylating culture condition, the

initial de-repression of retrotransposons is quickly silenced by

H3K27me3 (Walter et al, 2016). Similarly, in breast cancer cells,

global DNA hypomethylation seems to be compensated by gains in

H3K9me3 and H3K27me3 with a remarkable allelic-specific mutual

exclusivity between these epigenetic marks (Hon et al, 2012).

Accordingly, in colorectal cancer cells or chemotherapy-resistant

breast cancer lines, genetic or pharmacological inhibition of H3K27

or H3K9 methyltransferases significantly augments the effects of

DNA hypomethylation on de-repressing retrotransposons (Ohtani
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et al, 2018; Deblois et al, 2020). Since the expression of these

transposable elements induces a “viral mimicry” that increases

tumor infiltration (Chiappinelli et al, 2016), combined treatment

of repressive HMTs and DNMTs may represent an effective strat-

egy to sensitize poorly immune-infiltrated tumors to immune

checkpoint inhibitors.

Concluding remarks

It is increasingly evident that DNA and histone methylation marks

cooperate to maintain patterns of epigenome in a stable and some-

times mitotically heritable manner. The molecular mechanisms, in

large part, seem to involve the recognition (or the lack thereof) of

chromatin modifications by the “reader” or “writer” domains of

DNA- and histone-modifying enzymes. As exciting advances in

chromatin biochemistry and epigenomics continue to surface,

researchers are equipped with powerful tools to gain a more

comprehensive and deeper appreciation of how these epigenetic

marks communicate (see also Box 1).

First, the majority of biochemical and structural analysis thus far

involves isolated domains of chromatin enzymes and histone tail

peptides. However, as illustrated by studies of UHRF1, extensive

inter-domain remodeling occurs during enzyme–histone engage-

ment. Furthermore, since nucleosomes are the physiological

substrates for chromatin-modifying enzymes, the use of histone

peptides may lead to incomplete or misguided mechanistic insights

(Vaughan et al, 2018). Recent innovations in synthesizing chemi-

cally modified “designer” nucleosomes and nucleosome arrays

Figure 4. Reprogramming of DNA methylation during cancer progression.

The transition from normal to cancerous state is associated with changes in genome-wide patterns of DNA methylation. While promoter CpG islands of active genes
marked by H3K4me3 remain free of DNA methylation, polycomb-regulated promoter CpG islands become hypermethylated, possibly due to aberrant targeting of
DNMT3A/B through an unknown mechanism. The gene-poor, H3K9 methylation-rich, late-replicating lamina-associated domains undergo progressive loss of
maintenance methylation during cancer cell replication. Gene body and intergenic regions marked by H3K36 methylation are protected from such mitotically linked DNA
hypomethylation, presumably due to the preferential targeting and activity of de novo methyltransferases DNMT3A/B.

Box 1. In need of answers.

i Are there additional functional domains in DNMTs and TET
family enzymes that interact with modified histone to guide the
genomic targeting of these DNA modifiers? Conversely, which
histone-modifying complexes are sensitive to CpG methylation
and how?

ii How do multiple functional domains of DNMT cooperate to rec-
ognize histone modifications in the nucleosome context? What
is the underlying biochemical and structural basis?

iii How does the imbalance between NSD1/H3K36me2, PRC2/
H3K27me3, and DNMT3A/CpG methylation contribute to dysreg-
ulated gene expression during development and OGID syn-
dromes?

iv Does aberrant histone–DNA methylation crosstalk contribute to
cancer-associated chromatin abnormalities? If yes, how?

v What is the therapeutic potential for inhibitors of “reader”
domains of DNA and histone methylation? How do we ration-
ally combine DNA and histone methyltransferase inhibitors as
more effective treatment strategy for human cancer and devel-
opmental diseases?
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provide ways to overcome this limitation (Holt & Muir, 2015). In

addition, the revolution of cryogenic electron microscopy (cryo-EM)

has offered unprecedented opportunities to visualize the structure of

fully assembled large chromatin complexes bound to nucleosomes

(Jang & Song, 2019), such as the recently reported structure of

DNMT3A2-DNMT3B3-nucleosome (Xu et al, 2020). We anticipate

that these technologies will help reveal critical new insights into the

molecular basis of DNA-histone methylation crosstalk and uncover

new functional domains, such as the recently described nuclear

localization signal within the N-terminal domain of DNMT3A1

(Zeng et al, 2020).

Second, our study of the histone and DNA methylation interplay

is heavily based on bulk tissue cultures which offer limited physio-

logical relevance. However, the recent explosion of new epigenome-

profiling technologies, such as CUT&RUN and CUT&Tag, enables

analysis of genome-wide histone modifications with extremely low

cell numbers or even single cell (Ai et al, 2019; Carter et al, 2019;

Hainer et al, 2019; Kaya-Okur et al, 2019). Single-cell CpG methy-

lome analysis is also possible (Karemaker & Vermeulen, 2018). With

these tools, we are now able to profile the epigenome in rare cell

populations such as early embryos and adult tissue stem cells.

Furthermore, we expect the rapid development of technology for

simultaneous single-cell analysis of histone and CpG methylation,

which will allow interrogation of their interplay at unprecedented

scale and resolution.

Finally, we look forward to the discovery and optimization of

highly specific inhibitors that block the binding of chromatin

“reader” domains to DNA and histone methylation. These inhibitors

will serve as powerful probes to study the kinetics of chromatin

interplay at high temporal resolution. Furthermore, compared to

inhibitors of catalytic domains, “reader” domain inhibitors may be

more effective in correcting mis-targeting of chromatin enzyme

activities, thus serving as potent and less toxic drug candidates for

human developmental disorders and cancers driven by epigenetic

abnormality.
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