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Restenosis is one of the main adverse effects of the treatment of atherosclerosis
through balloon angioplasty or stenting. During the intervention, the arterial
wall is overstretched, causing a cascade of cellular events and subsequent
neointima formation. This mechanical stimulus and its mechanobiological
effects can be reproduced in biomechanical simulations. The aim of these
models is to predict the long-term outcome of these procedures, to help
increase the understanding of restenosis formation and to allow for in silico
optimization of the treatment. We propose a predictive finite-element model
of restenosis, using the homogenized constrained mixture modelling frame-
work designed to model growth and remodelling in soft tissues. We
compare the results with clinical observations in human coronary arteries
and experimental findings in non-human primate models. We also explore
the model’s clinical relevance by testing its response to different balloon
loads and to the use of drug-eluting balloons. The comparison of the results
with experimental data shows the relevance of the model. We show its ability
to predict both inward and outward remodelling as observed in vivo and we
show the importance of an improved understanding of restenosis formation
from a biomechanical point of view.
1. Introduction
Endovascular treatment is a widespread approach to treat coronary and periph-
eral artery disease, commonly caused by atherosclerosis. Balloon angioplasty
widens the partially blocked vessel. Afterwards, when necessary, a stent is
placed in the affected region to avoid elastic recoil of the vessel. Despite advan-
tages, such as the high success rate immediately after the procedure and its
minimally invasive nature, the long-term outcomes are more problematic.

Restenosis, or the re-narrowing of the treated vessel, either within the stent or
following angioplasty, is caused by an inflammatory response due to overstretch-
ing of the arterial wall and endothelial denudation. Arterial smooth muscle cells
(SMCs) in the media dedifferentiate into their synthetic phenotype, while becom-
ing more proliferative and migratory, causing a significant thickening of the
intima, called neointimal hyperplasia [1]. Reported restenosis rates range from
less than 5% up to 50% in the first year, depending on the artery treated and
the nature of the treatment [2]. The different treatment approaches include percu-
taneous transluminal angioplasty or the use of bare metal stents, drug-eluting
stents or drug-eluting balloons. Drug-eluting stents show improved results
[2,3]. Also the effectiveness of the use of drug-coated balloons has been shown,
targeting a decreased cell proliferation, for example, in the treatment of femoropo-
pliteal occlusive disease [4]. Further risk factors for restenosis include patient
features, such as haematological indices [5], diabetes [6] and the complexity
and size of the lesion [7].

Restenosis is initiated by mechanical damage after mechanical overloading.
Therefore, biomechanical modelling is an important tool in the improved
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understanding of the formation of restenosis and to
optimize surgical procedures. A predictive model can
relate the mechanical stimulus on the arterial wall during
treatment to the tissue damage and consequent long-term
restenosis. A number of predictive models for restenosis
have been developed. The most basic model contains a
single mathematical equation, defining the number of SMCs
over time [8].

Tahir et al. [9] used the complex automata approach
by Caiazzo et al. [10], and later improved their model by
adding more complex biological phenomena [11–13]. The
logistic growth predicted during in-stent restenosis results
from a complex interaction between multiple single-scale
models, predicting inner elastic lamina rupture based on
the hoop stress after stent deployment, blood flow through
lattice Boltzmann modelling and SMC growth with an
agent-based model. Boyle et al. [14] also combined multiple
modelling approaches by iterating between a finite-element
model predicting wall stress and an agent-based model
predicting SMC growth.

Most finite-element models related to angioplasty and
stenting only predict acute outcomes, and, more specifically,
the damage inflicted on the arterial wall [15–17]. More
recently, finite-element modelling has also been directed to
the long-term development of restenosis. Fereidoonnezhad
et al. [18] presented a kinematic growth model, where the
overall growth of the wall is based on a certain overloading
level, and a subsequent mass increase after balloon angio-
plasty, inspired by Schwartz et al. [8]. He et al. [19] use a
similar approach, but include tissue damage in the form of
a Mullins effect and include balloon, stent and plaque geome-
tries in their idealized model. Escuer et al. [20] present a two-
dimensional axisymmetric finite-element model of tissue
growth after stent implantation, taking into account multiple
aspects of an inflammation reaction mechanism.

Although the latter model is a more biofidelic approach
to capturing the mechanobiological phenomena, all these
models still lack the advantages of the constrained mixture
modelling framework for growth and remodelling of
soft tissue [21]. It allows for a more reliable representation of
arterial biomechanics, since every constituent in the material
has a specific rest length and can grow and remodel
independently. To benefit from this increased biofidelity,
along with the relatively low computational cost of kine-
matic growth models [22], a hybrid approach was presented
and used, known as the homogenized constrained mixture
model [23–25].

This approach will be used in the present study to predict
restenosis after balloon angioplasty. The feasibility of com-
bining existing growth and remodelling laws with the
homogenized constrained mixture model will be explored, as
well as the clinical relevance and the ability to match existing
long-term measurements of restenosis development in
coronary [26] and iliac [27] arteries.
2. Methods
2.1. Homogenized constrained mixture model
2.1.1. Elastic deformation gradient
In this study, arterial tissue is modelled as a constrained mixture
of multiple constituents that behave as hyperelastic materials. We
consider SMCs, as well as extracellular matrix, consisting of
collagen fibre families and nearly incompressible elastin. Accord-
ing to the homogenized constrained mixture model, the elastic
deformation gradient of constituent j is [23,24]

Fj
e ¼ FF�1

g (Fj
r)
�1: (2:1)

F is the deformation gradient of the mixture as a whole
with respect to a reference configuration, usually chosen as
the in vivo mechanobiologically homeostatic configuration.
In this configuration, F = I and the constituents experience an
elastic deformation equal to their deposition stretch, defined
as Gelas and Gcoll,i for elastin and collagen fibre family i,
respectively.

Fg is the inelastic growth deformation tensor for all constitu-
ents due to the deposition of new material without causing
stress, and Fj

r is the inelastic remodelling deformation gradient
of constituent j due to the constant deposition of material at a
different stretch state than the extant material. During growth
and remodelling, these deformation gradients evolve as
explained further in §§2.1.4 and 2.1.5.
2.1.2. Strain energy function
The total strain energy function per unit reference volume is
written as

C ¼ relasWelas þ
X
i

rcoll,iWcoll,i þ rsmcWsmc, (2:2)

where ρelas and ρsmc are the respective mass densities with
respect to the reference volume of elastin and SMCs and ρcoll,i

of collagen fibre family i. Welas, Wsmc and Wcoll,i are the corre-
sponding strain energies. Volume changes of elastin are
also captured in Welas. The isochoric mechanical behaviour of
elastin is defined as a neo-Hookean function and the behaviour
of collagen is defined with a Fung-like exponential formulation,
while the mechanical contribution of the SMCs is neglected.
Therefore,

Welas ¼ C10 �Ielas1 � 3
� �

þ 1
D

Jelase � 1
� �2

and Wcoll,i ¼ k1
2k2

exp k2(Icoll,i4 � 1)2
n o

� 1
h i

,

9>>=
>>; (2:3)

where C10, D, k1 and k2 are material parameters, Je ¼ det(Felas
e )

and �Ielas1 is the first invariant of the right Cauchy–Green defor-
mation tensor related to the isochoric part of the elastic
deformation gradient of elastin Felas

e ,

�Celas
e ¼ J�2=3(Felas

e )TFelas
e

and �Ielas1 ¼ tr(�Celas
e ),

9=
; (2:4)

with J the determinant of the deformation gradient of the mixture
F. Icoll,i4 is a pseudo-invariant of the right Cauchy–Green tensor
related to the elastic deformation gradient of collagen fibre
family i aligned with M i upon deposition. Icoll,i4 represents the
square of the elastic stretch felt by the fibre. We write

Ccoll,i
e ¼ (Fcoll,i

e )TFcoll,i
e

and Icoll,i4 ¼ Mi � (Ccoll,i
e M i):

9=
; (2:5)

Note that we use the full invariant Icoll,i4 instead of the isochoric
invariant �Icoll,i4 to account for realistic anisotropic behaviour in
compressible deformations [28]. The two symmetrical fibre
families in the circumferential—axial plane form an angle α
with the circumferential direction, such that, in a cylindrical
coordinate system,

Mi ¼ [0, cosa, + sina]: (2:6)
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2.1.3. Cauchy stress
The Cauchy stress of constituent j is

sj ¼ rtot

J
@W j

@F
FT , (2:7)

with

rtot ¼ relas þ
X
i

rcoll,i þ rsmc: (2:8)

Therefore, with �Belas
e ¼ J�2=3Felas

e (Felas
e )T and Je ¼ det(Felas

e ),

selas ¼ 2rtot

J
C10 �Belas

e � 1
3
I�Ielas1

� �
þ 2rtot

DJg
(Je � 1) I

and scoll,i ¼ 2rtot

J
@Wcoll,i

@Icoll,i4

Fcoll,i
e Mi� �� Fcoll,i

e Mi� �
,

9>>>>=
>>>>;

(2:9)

with

@Wcoll,i

@Icoll,i4

¼ k1 exp k2 Icoll,i4 � 1
� �2� 	

Icoll,i4 � 1
� �

: (2:10)

The total Cauchy stress of the mixture is

stot ¼ relas

rtot
selas þ

X
i

rcoll,i

rtot
scoll,i: (2:11)

2.1.4. Growth
During growth the mass densities change over time. In case
every constituent grows in the same direction along unit vector
ag, at time t, Fg may be written as [24]

Fg ¼ rtot(t)
rtot(0)

ag � ag þ (I � ag � ag), (2:12)

where ρtot(t) is the total mass density that can evolve through
time. In the case of anisotropic growth in the wall thickness
direction, in a cylindrical coordinate system

ag ¼ [1, 0, 0]: (2:13)

Note that, at t = 0, in the homeostatic reference configuration Fg
reduces to the identity tensor.

In the case where the constituents grow in different direc-
tions, the reader is referred to Braeu et al. [24] for an alternative
expression of Fg.

2.1.5. Remodelling
Ignoring migration, the rate of mass density change of constitu-
ent j can be decomposed into a rate of deposition _r

j
þ and

degradation _rj� as

_rj(t) ¼ _r
j
þ(t)þ _rj�(t): (2:14)

From equations (12) and (15) in Cyron et al. [23], it follows that
for constituent j at time t

_r
j
þ(t)
rj(t)

(sj(t)� sj
pre(t)) ¼

@sj(t)

@Fj
e(t)

 !
F,Fg¼ct

: [Fj
e(t) _F

j
r(t)(F

j
r(t))

�1]:

(2:15)

_F
j
r is the time derivative of the remodelling deformation gradient

and can in theory be obtained by solving the set of equations
in equation (2.15). Note that, for clarity, the time dependence is
not explicitly stated in the following equations. s

j
pre is

the stress of the material at deposition rotated to the current
material orientation,

sj
pre ¼ rtot(0)R

@Wj(Gj)
@F

FTRT , (2:16)
knowing that J(0) = 1. The rotation tensor to the current
orientation is obtained from the polar decomposition F =RU.

In the case of elastin, _relasþ is always zero because elastin is not
produced in mature arterial walls. Therefore, from equation
(2.15), Felas

r is a constant tensor, initialized with G�1
e to satisfy

Felas
e ¼ FF�1

g Ge.
The mechanical contribution of SMCs is neglected, such that

equation (2.15) only needs to be solved for collagen. However,
the tensor @s j=@F j

e is often singular. For example, in the case
of dispersed fibres, equation (2.15) yields a set of five inde-
pendent equations to obtain five components of _F

coll,i
r . The

remaining components can be obtained for example by assuming
incompressibility of the deformation and symmetry of the tensor.

In the present case, however, fibres are simplified as non-
dispersed one-dimensional structures, such that only one
independent equation remains. Therefore, a unique unknown
_l
coll,i
r , the rate of lcoll,ir , is considered, and [23–25]

Fcoll,i
r ¼ lcoll,ir Mi �Mi þ 1ffiffiffiffiffiffiffiffiffiffi

lcoll,ir

q (I �Mi �Mi): (2:17)

By computing the time derivative of Fcoll,i
r and multiplying it

with its inverse, we obtain

_F
coll,i
r (Fcoll,i

r )�1 ¼
_l
coll,i
r

lcoll,ir

3
2
Mi �Mi � 1

2
I

� �
: (2:18)

From equation (2.9) in index notation,

@scoll,i

@Fcoll,i
e

 !F,Fg¼ct

ijkl

¼4rtot

J
@2Wcoll,i

@Icoll,i4

� �2 Fcoll,i
e Mi� �

i F
coll,i
e Mi� �

j F
coll,i
e Mi� �

k M
�

þ2rtot

J
@Wcoll,i

@Icoll,i4

dik Fcoll,i
e M iÞj Mi� �

lþdjk Fcoll,i
e Mi� �

i M
i� �
l

� i
,

h
(2:19)

with

@2Wcoll,i

(@Icoll,i4 )2
¼ k1 exp k2 Icoll,i4 � 1

� �2� 	
1þ 2k2 Icoll,i4 � 1

� �2� �
: (2:20)

By projecting equation (2.15) onto the current fibre direction
mi ¼ Fcoll,i

e M i=kFcoll,i
e Mik, i.e. performing a double contraction

with m i⊗m i, and remembering that Icoll,i4 ¼ kFcoll,i
e Mik2, we

obtain the following expression for _l
coll,i
r :

_l
coll,i
r ¼ _rcoll,iþ

rcoll,i
(scoll,i

f � scoll,i
pre,f )

� J
4rtot

lcoll,ir
@2Wcoll,i

(@Icoll,i4 )2
Icoll,i4

2 þ @Wcoll,i

@Icoll,i4

Icoll,i4

 !�1

,

(2:21)

where

scoll,i
f ¼scoll,i : (mi�mi)¼ 2rtot

J
@Wcoll,i

@Icoll,i4

Icoll,i4

and scoll,i
pre,f ¼scoll,i

pre : (mi�mi)

¼ 2rtot(0)
@Wcoll,i(Icoll,i4 ¼ gcoll,i2)

@Icoll,i4

[(RGcoll,iMi) � (Fcoll,i
e Mi)]2:

9>>>>>>>>=
>>>>>>>>;

(2:22)

gcoll,i is the deposition stretch of collagen and its inverse is
equal to the remodelling stretch at homeostasis. Therefore,
Fcoll,i
r (0)¼Gcoll,i�1

and

Gcoll,i ¼ gcoll,iMi�Miþ 1ffiffiffiffiffiffiffiffiffiffi
gcoll,i

p (I�Mi�Mi): (2:23)
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Figure 1. Steps of the restenosis prediction simulation. Step 1: mechanobiological homeostatic state of the artery. Step 2: inflation to balloon load and initiation of
growth. Step 3: release of balloon load. Step 4: 378 days of growth.
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2.2. Restenosis model
In order to obtain a complete model for restenosis, compatible
with the homogenized constrained mixture approach, equation
(2.14) must be made explicit for the different constituents. A
model for the prediction of restenosis is presented, inspired by
an existing model by Boyle et al. [14] and adapted to fit in this
modelling framework. Note that we also present three additional
restenosis models in appendix A.1, which are inspired by differ-
ent sources, in order to assess the added value of the current
approach.

Boyle et al. [14] take into account a number of agents related
to growth and remodelling during restenosis and present a set of
differential equations to quantify their respective presence over
time. Adapted to the present modelling approach, we get

_e ¼ �kdegmþ kefrsmc,

_m ¼ �kdegmþ kmd,

_g ¼ �dggþ kgd,

_d ¼ d0(svm)� kdegm,

_f ¼ �kdfþ kd(1� e)
and _rsmc ¼ psmcr

smcfg,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2:24)

where e, m, g, d and ϕ are dimensionless entities that represent the
density of extracellular matrix, matrix degrading factor, growth
stimulus, damage and SMC phenotype, respectively, and kdeg,
ke, km, dg, kg, kd and psmc are parameters defining the remodelling
rates. d0 denotes a certain level of damage, as explained below.
Two main changes are made with respect to Boyle et al. [14].
First, the production of extracellular matrix, modelled with the
second term in the equation for _e, now assumes that extracellular
matrix is produced depending on the amount of active SMCs
ϕρsmc, with ϕ denoting the fraction of active synthetic SMCs.
Second, the proliferation function of SMCs _rsmc is based on
the probability for proliferation in Boyle et al. [14], where the
SMC density was not explicitly used as a variable owing to
their agent-based modelling approach.

In the homeostatic state, as initial conditions, the extracellular
matrix is fully intact, i.e. e(0) = 1, while m, g, d and ϕ are initially
zero. The whole remodelling process is initiated by a damage
parameter d0, depending on the von Mises stress σvm calculated
from the total Cauchy stress tensor σ tot,

d0(svm) ¼
0 svm � s ft,

10(s fl�svm)=t s ft , svm � s fl
1 s fl , svm ,

8<
: , (2:25)

with τ a negative stress-like parameter and σfl and σft the failure
stress and fatigue strength, respectively. The latter is defined as a
threshold below which no damage is accumulated.
In the present model, e is translated to the integrity of
collagen, such that at all times t ρcoll,i(t) = e(t)ρcoll,i(0). Therefore,

_rcoll,iþ ¼ rcoll,i

Tcoll,i þ kefrsmcrcoll,i(0)

and _rcoll,i� ¼ � rcoll,i

Tcoll,i � kdegmrcoll,i(0),

9>>=
>>; (2:26)

where the term ρcoll,i/Tcoll,i denotes the normal turnover of col-
lagen and the parameter Tcoll,i is related to the half life time of
collagen by a factor log 2.

Elastin is the main other part of the extracellular matrix. It is
assumed to degrade along with collagen. It can however not be
produced, such that

_relasþ ¼ 0

and _relas� ¼ �kdegmrelas(0):

)
(2:27)

The parameter values for kdeg, ke, km, dg, kg, kd, psmc, σft, σfl and
τ are estimated such that the outcomes approximately match the
clinical data presented by Nobuyoshi et al. [26]. The parameters
kdeg, km, dg, kg and kd were introduced by Boyle et al. [14] and
their values are defined per time unit. All original parameter
values are multiplied by 9/11 in order to obtain time-scaled
results where the peak proliferation time is closer to 52 days.
2.3. Finite-element model
In all presented simulations, the geometry of an artery is
approximated by a quarter cylinder in the finite-element soft-
ware Abaqus/Standard 2017. A mesh convergence study
indicates the need for 12 elements through the thickness of the
wall with the use of full integration hybrid hexahedral elements
(C3D8H). Details of the mesh convergence study are given in
appendix B. Symmetry boundary conditions are applied at the
axial and circumferential cutting planes.

An overview of the main steps of the simulation is shown in
figure 1. In the first part of the simulation, the in vivohomeostatic con-
figuration is determined by applying a prestressing algorithm
[29,30], resulting in the elastin deposition stretch tensor Gelas, in
which theaxial componentGelas

zz is fixed.Also the collagendeposition
stretch gcoll,i is fixed. These deposition stretches ensure mechanical
equilibrium in the reference geometry that is loaded with the
in vivo pressure P= 12 kPa, corresponding to a typical value of
mean arterial pressure [31]. In the second part of the simulation,
balloon angioplasty is simulated by applying a higher pressure
PBA = 40 kPa to the inner surface of the artery. Then, growth and
remodelling is initiated by means of the restenosis model presented
in §2.2. Thereafter, the homeostatic pressure level is restored, while
further growth and remodelling are simulated during 378 days.

The model is implemented in a UMAT subroutine in
Abaqus/Standard 2017. Every time step is considered to last 1



Table 1. Overview of the parameter values used for the simulations of
balloon angioplasty and restenosis of coronary arteries.

generala

C10 0.233 MPa

D 0.002 MPa−1

k1 0.0182 MPa

k2 32.0

α 1.00 rad

ρelas(0) 0.17

ρcoll,i(0) 0.34

ρsmc(0) 0.15

Gelaszz 1.044 [34]

gcoll,i 1.05

Tcoll,i 101.0 days [24]

restenosis modelb

kdeg 0.4 day−1 · 9/11 [14]

ke 0.0545 day−1

km 0.04 day−1 · 9/11 [14]

dg 0.011 day−1 · 9/11 [14]

kg 0.04 day−1 · 9/11 [14]

kd 0.2 day−1 · 9/11 [14]

psmc 12.7 day−1

σft 0.090 MPa

σfl 0.680 MPa

τ −0.50 MPa
aFor simplicity, we attribute the dimension of MPa to C10 and k1 and use a
dimensionless version of the mass densities, which are normalized with the
total initial density. bAll parameters introduced by Boyle et al. [14] are
scaled by 9/11 to match clinical data as explained in §2.2.

Table 2. Overview of the parameter values different from table 1 used for
the simulations of balloon angioplasty and restenosis of the iliac artery.
Note that all parameters introduced by Boyle et al. [14] are scaled by
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day. The remodelling stretches in equation (2.21), the constituent
densities and the agents in equation (2.24) are updated every
time step through a forward Euler integration scheme.

2.3.1. Coronary artery
The restenosis model is run on a model of a human coronary
artery with an in vivo inner radius of 1 mm [26] and a wall thick-
ness of 0.84mm. The outcome is compared with clinical data of
the mean inner radius over time measured in 91 patients [26] in
order to estimate the growth and remodelling parameters. The
same outcomes are extracted from the three additional restenosis
models, presented in appendix A.2.

The model is also used to predict different outcomes at differ-
ent balloon loads PBA. The possibility of adapting the model to
predict restenosis with the use of a drug-eluting balloon is
explored as well. The eluted drug inhibits the proliferation of
the SMCs. This is integrated in the model by changing (2.24)_5
into

_f ¼ �kdfþ kDEB
d (1� e), (2:28)

where kDEB
d � kd, such that the change to a more synthetic and

proliferative phenotype of the SMCs, based on the amount of
extracellular matrix, is reduced. This way, the proliferation of
these cells is reduced, as targeted by the antiproliferative drugs
paclitaxel or sirolimus, for example [32,33].

Table 1 gives an overview of all used parameter values.
Values are either estimated based on the clinical data [26] or
adopted directly from the literature.

2.3.2. Iliac artery
The restenosis model is also tested on a human common iliac
artery. A finite-element model is built with an in vivo inner
radius of 5 mm and a wall thickness of 1.3 mm. The outcome is
compared with experimental measurements in the iliac arteries
of cynomolgus monkeys obtained by Geary et al. [27], who pre-
sent a non-human primate model of restenosis. They report
mean values of relative lumen area and external elastic lamina
area at four time points after balloon angioplasty in four to six
animals. These values are extracted and translated to values for
the inner and outer rradii over time.

A number of parameter values are changed with respect to
table 1, in order to obtain a more satisfactory match with the
different observed time lines of remodelling. The parameters
that are different with respect to §2.3.1 are given in table 2.
18/11 to match experimental data.

general

ρcoll,i(0) 0.2075

ρsmc(0) 0.415

Gelaszz 1.2 [35]

restenosis model

kdeg 0.4 day−1 · 18/11 [14]

ke 0.078 day−1

km 0.04 day−1 · 18/11 [14]

dg 0.011 day−1 · 18/11 [14]

kg 0.04 day−1 · 18/11 [14]

kd 0.2 day−1 · 18/11 [14]

psmc 4.0 day−1

σft 0.18 MPa

σfl 1.50 MPa

τ −2.0 MPa
3. Results
3.1. Coronary artery
Figure 2 shows the evolution over time of the predicted inner
and outer radii of the coronary artery after balloon angio-
plasty, compared with clinical observations of the inner
radius [26]. Similar results for the three additional models
of restenosis are given in appendix A.3.

The sensitivity of the restenosis model to the applied bal-
loon load is shown in figure 3, where the evolution of
restenosis is shown after the application of five different bal-
loon loads, indicated by the corresponding applied balloon
pressure and resulting radial expansion. Note that, for the
highest load level, the curvature change from convex to con-
cave around 72 days is due to a slightly underdamped
evolution of the SMC density, compared with an overdamped
course in the lower load cases. This indicates that the dynami-
cal system becomes less stable and more oscillatory at higher
balloon loads.
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The parameter d0 that initializes damage during balloon
angioplasty (see equation (2.25)) is shown in figure 4 through
the wall thickness for the highest and lowest tested balloon
load. From the figure, it is clear that the lowest load only trig-
gers remodelling in the two innermost elements of the wall
and the highest load in four. Note that d0 is only non-zero
during the application of the balloon load and is therefore
only used as a trigger to initialize the tissue remodelling.

Figure 5 shows the predicted effect of the use of drug-
eluting balloons, ranked based on the value of kDEB

d and
the percentage of phenotype switch inhibition, defined
as the ratio of kDEB

d and kd. The evolution of the densities of
elastin, collagen and SMCs, ρelas,

P
i r

coll,i and ρsmc, is
shown in figure 6 for kDEB

d ¼ kd and kDEB
d ¼ 0:2 kd. Note that

the two fibre families are fully symmetric and experience
the same remodelling in this ideal axisymmetric geometry,
such that throughout restenosis ρcoll,1 = ρcoll,2. The figure
shows a clear reduction in SMC proliferation for a lower
value of kDEB

d , also resulting in a slower restoration of the
collagen density, since collagen is produced by the SMCs.
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Figure 7. The inner radius (solid line and filled dots) and outer radius
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3.2. Iliac artery
Figure 7 gives an overview of the predicted inner and outer
radius evolution of the iliac artery during restenosis. The
results are compared with reported average data by Geary
et al. [27]. There is a clear correspondence between the model
and experiment, except for the very high experimentally
observed radii at 4 days after the intervention, which are not
predicted accurately.

Figure 8 shows the elastin, collagen and SMC densities,
ρelas,

P
i r

coll,i and ρsmc, over time. There is a higher loss of
extracellular matrix, compared with figure 6, to allow for a
greater increase in the outer radius, while the subsequent
SMC growth causes the inner radius to remain more or less
constant and the outer radius to increase further.

4. Discussion
The aim of this study is to develop a remodelling model for
the prediction of restenosis, combining features of existing
predictive models with the advantages of finite-element mod-
elling and the use of the homogenized constrained mixture
theory. The presented model is based on an agent-based
model [14] and adapted in order to represent the number
of SMCs as an evolving mass density, as required by the pre-
sent modelling framework.

This previous modelling approach [14], combining a finite-
element model to predict wall stress and an agent-based
model to predict SMC growth, has shown its merits in predict-
ing restenosis. However, the present approach, in which the
homogenized constrained mixture theory is integrated in a
finite-element model, allows for a more direct interaction
between the tissue mechanics and growth and remodelling
phenomena. Growth and remodelling are initiated by a
damage stimulus, which depends on the von Mises—Cauchy
stress during and after angioplasty. This stimulates an SMCphe-
notype switch, the production of growth and matrix degrading
factors, the production of collagen and SMC proliferation.

In appendix A.1, the implementations of three more predic-
tive models of restenosis in combination with the constrained
mixture theory are presented; these are inspired by Schwartz
et al. [8], Tahir et al. [9] and Fereidoonnezhad et al. [18], respect-
ively. This is done in order to assess the added value of a
detailed description of biological effects, compared with the
three more phenomenological models. As shown in figure 9,
all models predict a similar progression of inner radius over
time in the coronary artery, and match clinical findings [26]
shown in figure 2. However, we assume that the three additional
models presented in appendix A.1 show a limited potential of
clinical relevance. On the one hand, the evolutions of the SMC
density in models 1 and 2 are independent of the mechanical
stimulus, making it impossible to optimize the balloon load in
future studies. On the other hand, model 3 is dependent on
the mechanical stimulus, but it is indirectly based on Schwartz
et al. [8], who simply presented an equation for the number of
SMCs over time specifically corresponding to the clinical data
[26] and shown in figure 2. Therefore, a match with this data
is inevitable. However, there is limited evidence that this phe-
nomenological model allows other forms of remodelling to
occur after balloon angioplasty.
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For example, oversizing of the balloon negatively impacts
vessel wall remodelling [36]. Moreover, more than 50 per cent
of the neointima formed after balloon angioplasty may be
collagenous [37]. Some studies, for example Geary et al. [27],
also show important positive remodelling of the tissue, counter-
acting thenegative effects of neointima formation. Therefore, it is
relevant to also consider growth and remodelling of the extra-
cellular matrix instead of focusing on SMC growth only.

The main presented model gives a detailed description of
the biological processes during restenosis. Despite the draw-
back of the high number of parameters, it has a clearer
potential for clinical applicability than the phenomenological
approaches. For example, during preoperative planning optim-
ization may be performed in order to obtain a sufficiently high
balloon load to partly damage the plaque,while optimizing the
long-term outcomes by limiting the applied stress. To investi-
gate this, the predictive model is further used to predict the
outcomes of different balloon loads. The outcomes are shown
in figure 3. To the best of our knowledge, no experimental
data on long-term restenosis evolution exist that depend on
the balloon load. This information is required to improve our
model’s sensitivity to the mechanical stimulus. Note that the
different balloon loads in figure 3 are indicated with the
pressure applied directly on the inner surface of the wall.
This pressure does not correspond to the inflation pressure of
the balloon since at its nominal diameter the balloon takes up
most of the tension owing to its high stiffness. Only a part of
the tension is transferred to the arterial wall. Therefore, a per-
centage of radius increase is indicated as well in order to
allow for a better comparison with clinical practice, knowing
that the size of the balloon usually matches the healthy diam-
eter of the artery, such that the stretch is mainly determined
by the extent of the plaque.

The clinical applicability is further explored through a
modification of the model to grasp the effects of the use of
drug-eluting balloons. The results are shown in figure 5. The
action of the drug is simplified since the proposed model is
not detailed enough to take into account the effects of dedicated
cellular signalling pathways and molecular actions. More
detailed experimental or clinical data are required to make a
clear assessment of this approach and to determine whether
more detailed processes should be included in the model.

Geary et al. [27] show that both inward and outward wall
remodelling can occur in the iliac artery of cynomolgus mon-
keys. Therefore, the reliability of the model is also shown
when comparing figure 7 with figure 2, since it shows that
both kinds of remodelling can be predicted by the model
by adjusting the parameters for extracellular matrix loss
and SMC growth. The predicted outward remodelling in
the iliac model is initially due to the loss of collagen and
elastin. However, the outer radius keeps increasing after
stabilization of these respective densities owing to the con-
tinuous update of collagen stretch, which is impossible to
predict with a kinematic growth model as used in previously
developed finite-element models of restenosis [18,19,38]. This
is the main advantage associated with the use of the con-
strained mixture model. On the other hand, disadvantages
are related to the mathematical complexity compared with
the kinematic growth theory and the increased difficulty of
accounting for migration with respect to agent-based models.

Although we show a potential for clinical relevance through
the predicted outcomes of different surgical interventions
and the consequent possibility to optimize treatment, a few
improvements are required. First, the data obtained by Geary
et al. [27] and presented in figure 7 show a substantial initial
increase of radius followed by a rapid reduction. This effect,
possibly due to plaque and media fracture, followed by SMC
contraction [27], is not captured well in the presented model.
Integration of the mechanical contribution of contractile SMCs
and the plaque geometry, along with a better understanding
of all chemical, biological and mechanobiological processes
after a balloon injury, will increase the model’s reliability.

It would also be beneficial to consider a multi-layered
model of the artery instead of a homogeneous material, allow-
ing for a clearer distinction between load-bearingmedial SMCs
and intimal SMCs whose mechanical contribution in vivo is
likely to be negligible. This hypothesis is based on the fact
that the long-term decrease in lumen size after angioplasty is
mostly caused by the deposition of new material, and less
because of contraction. This is supported, for example, by
fig. 4 in Geary et al. [27], where the outer radius might
remain constant or increase, but does not decrease over time.

Apart from the homogeneity of the wall, assumptions are
also made about the mechanical properties of the tissue. The
tissue is considered to behave as a hyperelastic material. The
mechanical properties of elastin are defined with a neo-
Hookean model, and collagen is modelled with an exponential
stress–strain law, since Schriefl et al. [39] show a near-linear be-
haviour of elastin and strain stiffening behaviour of collagen
during mechanical testing of selectively enzymatically
degraded tissue. As stated by Humphrey [40], during mechan-
ical testing, arterial tissue displays a Mullins-like softening
behaviour. However, this effect disappears after a number of
so-called preconditioning cycles. Therefore, the assumption of
fully elastic behaviour in homeostatic cyclic loading conditions
seems reasonable. Non-elastic softening effects beyond these
conditions are taken into account in the form of extracellular
matrix damage during balloon inflation. In accordance with
Boyle et al. [14], this damage, used as a trigger for remodelling,
is based on the von Mises stress in the arterial wall during bal-
loon angioplasty. However, owing to the composite nature of
arterial tissue, considering constituent-specific damage based
on the individual constituent’s strain energy might be more
realistic, for example as done by He et al. [17].

Figures 3 and 4 show a very high, and probably unrealistic,
sensitivity of the model to the mechanical stimulus. This also
causes a big difference in SMC proliferation at the inner and
outer side of the wall, while in reality the SMC accumulation at
the inner wall is probably due to cell migration and less to stress
differences over the wall. Considering this migration, along with
diffusion of all agents, as done by Escuer et al. [20], and consider-
ing the eluted drug as an extra agent in the model, would also
considerably improve the model’s reliability, but would require
an improved understanding of the biological effects.

This improved understanding can be acquired by the
design of dedicated experimental set-ups, which are also
necessary to obtain more reliable parameter values. Indeed,
as mentioned earlier, another limitation of this study is related
to the high number of parameters, as is obvious from table 1.
However, most parameters have a physical meaning owing
to the biologically inspired nature of the model, as opposed
to more phenomenological approaches, enabling parameter
values to be obtained experimentally. Comparing table 1
with table 2 shows that the parameters are currently rather
sensitive to the data they are fitted to. Therefore, the availability
of larger experimental datasets would help to identify possible
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inconsistencies between the model and the data in order to
further improve the proposed equations’ reliability.
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5. Conclusion
In summary, we present a predictive computational model of
restenosis, composed of a finite-element model of balloon
angioplasty on the arterial wall. The consequent growth and
remodelling of the tissue is modelled with a homogenized con-
strained mixture approach, allowing a direct connection
between mechanical quantities and SMC growth. A predictive
model of SMC growth is presented and the outcomes are com-
pared with clinical data from human coronary arteries [26]. We
also further investigate the clinical relevance of the detailed bio-
logically inspired approach by testing the resulting restenosis
rate at different balloon loads and by tuning a parameter for
SMC phenotype switch to predict the outcome of the use of
drug-eluting balloons. Finally, the model is also applied to a
finite-element model of the iliac artery and the outcomes are
compared with experimental data in cynomolgus monkeys
[27]. The model outcomes show great similarities to experimen-
tal data and show that both inward and outward remodelling
can be predicted. However, a better understanding and
mathematical description of chemical, biological andmechano-
biological processes will further improve the clinical relevance
of the presented model.
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Appendix A
Three additional models for the prediction of restenosis are
integrated in the above-mentioned modelling framework.
These three models are inspired by existing models in the
literature and adapted to fit in the homogenized constrained
mixture model, as explained below. The outcomes are
compared with the model presented in §2.2.
A.1. Additional restenosis models

A.1.1. Model 1
The first model is inspired by Schwartz et al. [8]. The change
of SMC density over time is

_rsmc ¼ rsmcb1t exp (�v1t), (A 1)

where β1 and ω1 are two growth parameters. Explicitly, at
time t the SMC density is

rsmc(t) ¼ rsmc(0) exp
b1

v2
1
{1� (v1t� 1) exp (�v1t)}

� 	
: (A 2)

Schwartz et al. [8] do not mention extracellular matrix
growth. Therefore, elastin is assumed not to degrade or be
produced and collagen is subjected to continuous turnover,
where the production and degradation are always in equili-
brium. Therefore,

_relasþ ¼ _relas� ¼ 0

and _rcoll,iþ ¼ � _rcoll,i� ¼ rcoll,i

Tcoll,i :

9>=
>; (A 3)

The maximal and steady-state SMC density is obtained
from equation (A2) as

rsmc
m ¼ rsmc(0) exp

b1

v2
1

� �
(A 4)

and the corresponding time tm at which the growth rate is
maximal is obtained from

b1t
2
m exp (�v1tm)� tmv1 þ 1 ¼ 0: (A 5)

The parameters β1 and ω1 are determined in order to obtain
tm ≈ 52 days and a rsmc

m that yields results corresponding to
the clinical data [26].

A.1.2. Model 2
From the results of their predictive agent-based model, Tahir
et al. [9] found a logistic course for the number of SMCs over
time. Therefore, in the second presented model, we write

_rsmc ¼ rrsmc 1� rsmc

rsmc
m

� �
, (A 6)

where r defines the rate of growth and rsmc
m is the maximal

and steady-state SMC density. Explicitly,

rsmc(t) ¼ rsmc
m rsmc(0) exp (rt)

rsmc
m � rsmc(0)þ exp (rt)rsmc(0)

: (A 7)

There is again no mention of extracellular matrix growth,
such that equation (A3) still holds.

The maximal rate of growth occurs at

tm ¼ 1
r
log

rsmc
m � rsmc(0)
rsmc(0)

� �
: (A 8)

The parameters r and rsmc
m are obtained using the same cri-

teria as in §A.1.1.

A.1.3. Model 3
Fereidoonnezhad et al. [18] present a kinematic growth
model, where the growth function of the wall is based on
the model by Schwartz et al. [8], but is also dependent
on the loading history of the tissue. This model is adapted
to the homogenized constrained mixture modelling approach
as follows. We define

_rsmc ¼ rsmcb2t exp (�v2t)hD�Dthi, (A 9)

where β2 and ω2 are parameters and 〈D−Dth 〉 is zero when
the damage D is smaller than the damage threshold Dth. D
is dependent on the maximal isochoric energy Ciso

max, defined
by the highest value of C� (relas=D)(Jelase � 1)2 in the loading
history. Therefore,

D ¼ 1
r1
erf

Ciso
max

m1

� �
, (A 10)

with damage parameters r1 and m1. Assuming that D is
related to the damage of collagen and elastin, ρcoll,i(t) = (1−
D)ρcoll,i(0) and ρelas(t) = (1−D)ρelas(0). Taking into account

https://bme-soft-tissue.pages.gitlab.kuleuven.be/restenosis/
https://bme-soft-tissue.pages.gitlab.kuleuven.be/restenosis/
https://bme-soft-tissue.pages.gitlab.kuleuven.be/restenosis/


Table 3. Overview of the parameter values of the three additional
restenosis models.

model 1

β1 0.00242 day−2

ω1 0.0373 day−1

model 2

rsmcm 0.855

r 0.0298 day−1

model 3

β2 0.0187 day−2

ω2 0.0373 day−1

Dth 0.1 [18]

r1 1.59 [18]

m1 0.05
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main model
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Figure 10. (a) Average SMC density over time for the three additional
restenosis models and the model presented in §2.2 (solid line). (b) Time
derivative of the average SMC density, normalized with its maximum.
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Figure 11. Overview of the mesh convergence results. Every mesh size is
tested for model 3, while only the two finest meshes are tested for the
three remaining models. The mesh size is defined by the number of elements
through the thickness of the wall. (a) Final outer radius after remodelling.
(b) Final inner radius after remodelling.
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that Ccoll,i
max and therefore D can only increase, it approximately

influences _rcoll,i� and _relas� as

_rcoll,iþ (t) ¼ rcoll,i(t)
Tcoll,i ,

_rcoll,i� (t) ¼ � rcoll,i(t)
Tcoll,i � (D(t)�D(t� Dt))rcoll,i(0),

_relasþ (t) ¼ 0

and _relas� (t) ¼ �(D(t)�D(t� Dt))relas(0),

9>>>>>>>>>=
>>>>>>>>>;
(A 11)

where Δt represents the length of a time step.
The parameter values of Dth and r1 are obtained from

Fereidoonezhad et al. [18] and m1 is determined in order to
obtain a realistic value of D. Since equation (A9) is equivalent
to equation (A1) up to a scaling factor 〈D−Dth 〉, we choose
ω2 = ω1 and β2 is determined to fit the clinical data [26].

A.2. Finite-element model
The three additional models of restenosis are integrated in the
finite-element model of the coronary artery (see §2.3.1) and
the results are compared with those obtained with the reste-
nosis model presented in §2.2. The used material parameters,
obtained as explained in §A.1, are given in table 3.

A.3. Results
Figure 9b shows the evolution of the inner radius of the cor-
onary artery after balloon angioplasty with respect to the
number of days after angioplasty for the four models. Note
that the extracellular matrix damage in the additional
model 3 occurs immediately during balloon angioplasty,
such that the inner radius at day 0 is increased, while in the
original model (solid line) the damage build-up is more
gradual. Figure 9a also shows the outer radius evolution.

Figure 10a gives an overview of the average SMC density
over time, while figure 10b shows the corresponding normal-
ized time derivative, indicating that the maximal SMC
growth occurs at around 52 days for all four models.
Figure 10a shows that models 1 and 2 require approximately
twice the amount of SMCs to yield the same inner radius.
These two models are independent of the mechanical state of
the material, such that all elements through the wall thickness
grow equally, and that there is as much inward as outward
growth. On the other hand, in model 3 and the original
model (full line), the inner elements grow more than the
outer elements because they experience greater stress and
strain energy during the balloon inflation. Therefore, the
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limited increase in the outer radius observed in figure 9a is
mainly due to the loss of extracellular matrix, and less to
outward growth.

Appendix B
Amesh convergence study is conducted with model 3 and the
coronary artery geometry described in §2.3.1. As in all simu-
lations, full integration hybrid hexahedral elements (C3D8H)
are used in Abaqus/Standard 2017. The coarsest mesh has
two elements through the wall thickness, after which the
mesh is continuously refined. For each simulationwith a differ-
ent mesh size, the final inner and outer radii after 378 days of
remodelling are extracted and used as convergence criteria.
The inner radius varies more for the different mesh sizes, but
is considered to converge at 12 elements through the thickness,
with a relative radius difference of 0.27% between the results of
the meshes with 12 and 14 elements. After that, the conver-
gence is also verified for the three remaining models, where
only themeshes with 12 and 14 elements through the thickness
are used. The biggest difference in results between these two
mesh sizes is found for the main model explained in §2.2,
with a relative difference of 1.34% for the inner radius and
0.33% for the outer radius. This error is still deemed small
enough to consider the mesh to be converged. An overview
of these results is shown in figure 11.
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