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ABSTRACT:
Traditionally, real-time generation of spectro-temporally modulated noise has been performed on a linear amplitude

scale, partially due to computational constraints. Experiments often require modulation that is sinusoidal on a loga-

rithmic amplitude scale as a result of the many perceptual and physiological measures which scale linearly with

exponential changes in the signal magnitude. A method is presented for computing exponential spectro-temporal

modulation, showing that it can be expressed analytically as a sum over linearly offset sidebands with component

amplitudes equal to the values of the modified Bessel function of the first kind. This approach greatly improves the

efficiency and precision of stimulus generation over current methods, facilitating real-time generation for a broad

range of carrier and envelope signals.
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I. INTRODUCTION

Spectro-temporal modulation (STM) is of great interest

in psychoacoustics and auditory physiology because of its

relevance to speech decoding1–3 as well as the broad appli-

cability of the modulation-based linear-systems approach to

parametric investigations. Investigations involving STM

have used a variety of modulator shapes and carrier types.

The two most common carriers are broadband noise and

tonal complexes, although the details of each vary from

study to study.

Creating STM with modulation that is sinusoidal on a

logarithmic amplitude scale through explicit evaluation of

the time-domain representation is computationally costly—

far too costly to be practical for generating stimuli for pre-

sentation during an experiment. To make use of such expo-

nential STM, stimuli frequently must be calculated in

advance using fixed parameters, which limits the psycho-

physical methods that can be used. Additionally, an insuffi-

ciently robust set of pre-generated stimuli requires limiting

adaptive procedures or risks design flaws due to the recog-

nizability of frozen noise.4 As a result of these

computational constraints and the relative simplicity of its

form, many studies use STM with a modulation envelope

that is sinusoidal on a linear amplitude scale. A stimulus

comprised of the sum of N simple carrier tones decomposes

into 3N different tones under linear modulation. However,

one of the oldest, best-established psychoacoustics princi-

ples is that sensitivity to sound intensity is logarithmic not

linear.5 This is a critical assumption of most estimates of

the internal excitation in response to an acoustic stimulus.6–9

Thus, implementing the desired modulation pattern on a log-

arithmic amplitude scale ensures a similar pattern to a first

approximation at the level of excitation, which translates to

applying exponential rather than linear modulation.

Existing methods for achieving exponential STM tend

to be either unsuitable for real-time generation because they

are too computationally intensive or poorly suited for

research due to constraints or inherent imprecision. Further,

some attempts to limit the cost of generating stimuli, such as

making use of low carrier-tone densities, have led to

unwanted stimulus artifacts.10 A computationally efficient

method for generating exponential STM from independent

carrier tones in the frequency domain is presented here

along with metrics comparing the resultant stimulus with the

explicit form and an existing alternative.

II. STM

When generating signals that vary in intensity as a func-

tion of time and frequency, it is necessary to consider how
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variation is represented by the amplitude and phase as a

function of frequency. An inherent feature of any finite,

practical auditory filter (like that of the human auditory sys-

tem) is some degree of frequency selectivity. Given any

such auditory filter and using noise composed of stationary,

uncorrelated tones, a tone-density sensitivity threshold

exists above which the system is insensitive to further

increases in tone density.11 This is part of the basis for the

common practice of generating noise in the frequency

domain as a sum of a limited number of stationary, uncorre-

lated tones distributed through a frequency band.

The fact that complex stimuli can be represented as a

linear sum of simple carrier tones has long been appreciated

(and exploited). It allows for the leveraging of powerful

mathematical technology, like the discrete Fourier transform

(DFT), to generate stimuli much more rapidly than could

otherwise be done. Improvements to the computational effi-

ciency of generating stimuli allows for the flexible genera-

tion of custom stimuli in real-time, circumventing the

aforementioned issues that arise when relying on pre-

generated stimuli. Computational complexity and, thus, gen-

eration time can be limiting factors for real-time generation

of robust, broad-spectrum noise.

A generalized form that can be used to represent the

time waveform, S(t), of STM generated from noise that is

composed as of a sum of N pure sine wave carrier tones is

given by

SðtÞ ¼
XN

n¼1

An sin ð2 pfntþ /nÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Carrier tone

Mðfn; tÞ
zfflfflffl}|fflfflffl{Modulator

; (1)

where each carrier tone is described by an amplitude An, a

frequency fn, and a phase /n, and Mðfn; tÞ is the modulator—

a function of both time and carrier frequency. This represen-

tation cleanly separates the properties of the underlying

noise, such as the different statistical distributions and spec-

tral shaping, which would be reflected in the carrier tone

amplitudes, An, from the modulator function, Mðfn; tÞ. With

different choices for the modulator, this form can represent

both exponential and linear STM, as well as their respective

spectral modulation (SM) and temporal modulation (TM)

counterparts. Starting with this general, conceptual model

helps establish a common framework in which linear and

exponential modulations can be developed and compared

without unnecessarily constraining how they are applied.

A. Linear modulation

Linear modulation is often used either because of the

simplicity of its form or the efficiency of generating such a

stimulus in the frequency domain. Using the above general-

ized form, simple linear modulation could be expressed as

MLinðf ; tÞ ¼ 1þ m sin ð2 p x tþ Uðf ÞÞ; (2)

where m is the linear modulation depth and a value in the

range [0,1),12 x is the TM rate in Hz, and Uðf Þ is a function

that determines the modulation phase. Application of this

modulator to the carrier-tone sum results in each tone

receiving a sinusoidal temporal envelope with an envelope

phase shift determined by its frequency, which is responsi-

ble for creating the progressive spectral offset that is charac-

teristic of STM. A scaling prefactor for normalization has

been dropped for convenience and clarity. Direct use of this

form of the modulator would change the root-mean-square

(RMS) level of the carrier, requiring either the level of the

output stimulus to be rescaled or the normalization constant

to be calculated beforehand. In the literature, the linear mod-

ulation depth is frequently reported as 20 log10m.

Typically, SM that is periodic on a logarithmic fre-

quency (octave) scale is desired, in which case, the envelope

phase would be

Uðf Þ ¼ 2 p X log2 f=f0ð Þ þ U0; (3)

where X is the spectral density of the modulation in terms of

cycles per octave, U0 is the phase shift of the entire modula-

tion envelope, and f0 is any reference frequency (typically

the lower-bound of the spectral domain of the noise,

although in principle any value can be used as it only deter-

mines which frequency receives the modulator phase shift

of U0). While Eq. (3) was included for clarity and complete-

ness, it is not necessary to specify the spectral properties of

the modulation envelope to derive a result for either linear

or exponential STM and as such, the results apply broadly to

any spectral relationship whether logarithmic, linear, or con-

stant as is the case with TM. For notational convenience, the

envelope phase of the nth carrier tone will be defined as

Un � UðfnÞ, although the results can be reinterpreted for

continuous frequency distributions simply by reversing this

substitution.

When MLin [Eq. (2)] is substituted into the general form

[Eq. (1)] as the modulator function M and the trigonometric

product rules are applied, the product of this modulator and

each carrier tone simplifies to the sum of three simple sine

waves, representing a base carrier tone of frequency f and

two sidebands of frequencies f þ x and f � x [see Eq. (18)

and Table I].

B. Exponential modulation

Exponential modulation requires a more complex

representation,

M Exp ðf ; tÞ ¼ 10ðm=20Þ sin ð2pxtþUðf ÞÞ; (4)

where m is the modulation depth in decibels, a positive

value representing the level difference between a peak or a

valley and the midpoint, x is the TM rate in Hz, and Uðf Þ is

a function that determines the modulation phase. Note that

when m ¼ 0 dB, the modulator is strictly equal to one, leav-

ing the carrier tone unmodified. A significant downside to

this form, and likely the reason it has been neglected in

favor of the simpler linear modulator, is that the modulator
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can no longer be represented by sidebands determined by a

simple trigonometric relationship as in the linear case.

Much like linear STM, exponential STM can be accu-

rately represented as the sum over a limited number of side-

bands [see Eq. (17) and Table II]. The full derivation of the

sideband relationship can be found in Sec. III. Whereas the

analytic solution contains a sum over an infinite number of

sidebands, Sec. IV A discusses how the sum converges

quickly enough that a very limited number of sidebands is

sufficient to produce an accurate stimulus across the range

of modulation depths required in practice.

III. DERIVATION

The goal is to manipulate the expression for the expo-

nential modulator [Eq. (4)] so that it is expressed solely as a

sum of pure tones with well-defined frequencies, ampli-

tudes, and phases. Such a representation can then be

exploited to a proiri calculate a STM stimulus in the fre-

quency domain, reducing the entire computational cost of

generating exponential STM to little more than that of a sin-

gle DFT and potentially reducing the computational burden

by several orders of magnitude.

A. Overview

The first step is to find the Taylor expansion of the expo-

nential to pull the sine wave in the exponent into a marginally

more cooperative form, an infinite sum over powers of sine

[Eq. (6)]. Next, the sine power reduction formula is used to

rewrite each power of sine into a sum of sine and cosine terms

[Eq. (10). The formula being invoked here is the result of the

recursive application of the trigonometric product rules [such

as 2 sin h sin / ¼ cos ðh� /Þ � cos ðhþ /Þ]. However,

because this formula has a different form for even and odd

exponents of sine (as sine and cosine end up transforming

back and forth with each additional power), these terms are

temporarily split into a sum over the even terms, a sum over

the odd terms, and the 0th term.

The result of this manipulation is a finite sum inside an

infinite sum. The next step is to collect every trigonometric

function with the same argument together and sum the

amplitudes. To take the even sum, as an example, the first

term of the outer sum (m ¼ 2) is a scalar value multiplied by

cos 2h, and the second term of the outer sum (m ¼ 4) is a

cos 2h term plus a cos 4h term. Similarly, the third term of

the outer sum (m ¼ 6) is a sum of a cos 2h term, a cos 4h
term, and a cos 6h term. This expression becomes signifi-

cantly simpler if the sums are rearranged and all of the

cos 2h terms are collected together, all of the cos 4h terms

are collected together, etc., effectively turning the nested

sum inside out. The simplified representation that this yields

is a sum over constant values [Eq. (11a)], cosine terms [Eq.

(11b)], and sine terms [Eq. (11c)].

This new representation is in the form of a particularly

well-studied function, the modified Bessel function of the
first kind, I�ðzÞ [Eq. (12)]. Bessel functions, of which I�ðzÞ is

included, appear throughout physics and engineering due to

involvement in the representations of spherical harmonics. It

is pertinent here to note that many mathematical packages

include this function (besseli in MATLAB, for instance),

and highly efficient numerical recipes exist for it as well

(see Ref. 13). The expression collapses into a sum over sine

and cosine terms with amplitudes equal to values of the

Bessel functions [Eq. (15)].

Finally, the modulator expression is multiplied by its

corresponding carrier tone [Eq. (1)], and the trigonometric

product rules are applied to generate the final representation:

a base tone plus sidebands that are linearly offset by integer

multiples of the TM rate with amplitudes equal to values of

the modified Bessel function of the first kind [Eq. (17)].

This form is closely parallel to the linear modulation form

[Eq. (18)] albeit with a little more complexity. Nonetheless,

the values of IkðzÞ drop off rapidly as k increases, especially

in the range of physiologically relevant modulation (see the

discussion on error in Sec. IV A for more details), allowing

for high accuracy with the use of as few as ten sidebands.

B. Complete derivation

The first step to finding a cleaner representation of the

exponential modulation is to use the Taylor expansion of the

TABLE I. The transformation to apply to each carrier tone in order to apply

linear modulation. Each carrier tone is replaced with a base tone and two

sidebands of linearly offset frequency.

Linear modulation sidebands

Frequency Amplitudea Phase

Base fn An /n

Upper band fn þ x � 1
2

mAn /n � p
2
þ Un

Lower band fn � x 1
2

mAn /n � p
2
þ Un

aWhereas it is improper to express amplitude as a negative value, it does

greatly simplify the comparison with the exponential sidebands in this for-

mat. To recover the proper amplitudes and phase shifts, remove the factor

of �1 appearing in an amplitude term and add a phase shift of p.

TABLE II. The transformation to apply to each carrier tone in order to

apply exponential modulation. Each carrier tone is replaced with a base

tone and its associated sidebands. The first sidebands correspond to k ¼ 1.

The even-numbered sidebands use the appropriate Even k row, the odd-

numbered sidebands use the respective Odd k row. The amplitude terms fall

off exponentially for successive sidebands. For 20-dB peak-to-valley modu-

lation (m ¼ 10), by the fifth set of sidebands (k ¼ 5), each subsequent

amplitude term is more than 1 order of magnitude smaller than the prior.

Exponential modulation sidebands

Frequency Band Amplitudea,b,c Phase

Base fn — I0ðM0ÞAn /n

Upper bands fn þ kx (Even k) ð�1Þk=2IkðM0ÞAn /n þ kUn

(Odd k) ð�1Þðkþ1Þ=2IkðM0ÞAn /n � p
2
þ kUn

Lower bands fn � kx (Even k) ð�1Þk=2IkðM0ÞAn /n � kUn

(Odd k) ð�1Þðk�1Þ=2IkðM0ÞAn /n � p
2
� kUn

aThe substitution M0 � ðm=20Þ ln ð10Þ is made for readability.
bI�ðzÞ is the modified Bessel function of the first kind of order � and argu-

ment z.
3See the footnote regarding negative amplitudes in Table I.
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exponential. This will pull the modulating sine wave out of

the exponent, allowing for easier manipulation.

10x ¼
X1
n¼0

xn lnðnÞð10Þ
n!

; (5)

where ln ðxÞ is the natural logarithm or logeðxÞ. By substituting

this into the equation for the modulator, Eq. (4) becomes

M Exp ðfn; tÞ ¼
X1
a¼0

1

a!

a ln ð10Þ
20

� �a

sinað2 p x tþ UnÞ:

(6)

Several expressions make repeated reappearances,

therefore, it is prudent to make substitutions for clarity and

brevity. The argument to the sine function in the modulator

is substituted with HnðtÞ � 2 p x tþ Un, and a constant fac-

tor appearing as the amplitude is represented with

C � m ln ð10Þ=20. Using these simplifying expressions, the

modulator becomes

M Exp ðfn; tÞ ¼
X1
a¼0

Ca

a!
sinaðHnðtÞÞ: (7)

To simply this, an explicit, analytic substitution for

sinnðhÞ, called the sine power-reduction formula14 is used

sinnðhÞ ¼

2

2n

Xðn�1Þ=2

k¼0

ð�1Þðn�1Þ=2þk n

k

 !
sin ðn� 2kÞ hð Þ; n is odd;

1

2n

n
n

2

 !
þ 2

2n

Xn=2�1

k¼0

ð�1Þn=2þk n

k

 !
cos ðn� 2kÞ hð Þ; n is even;

8>>>>>><
>>>>>>:

(8)

where the binomial coefficient is defined as

a
b

� �
� a!

ða� bÞ! b!
: (9)

Substituting the sine power-reduction formula into the expression for the modulator M Exp ðfn; tÞ [Eq. (6)] yields

M Exp ðfn; tÞ ¼

even
X1
a¼0

Ca

2a a!

a
a

2

 !
þ

even
X1
a¼2

Ca

2a�1 a!
�1ð Þa=2

Xa=2�1

k¼0

�1ð Þk a

k

 !
cos ða� 2kÞHnðtÞð Þþ

odd
X1
a¼1

Ca

2a�1 a!
�1ð Þða�1Þ=2

Xða�1Þ=2

k¼0

�1ð Þk a

k

 !
sin ða� 2kÞHnðtÞð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
; (10)

where even and odd refer to only summing over the even

and odd terms, respectively.

Separating the unitary, cosine, and sine terms into sepa-

rate expressions for convenience and collecting the similar

sine and cosine terms, the modulation terms becomeX1
a¼0

C2a

22a a! a!
; (11a)

even
X1
a¼2

2Ca

2a �1ð Þa=2
cos aHnðtÞð Þ

X1
k¼0

C2k

k!ðk þ aÞ!22k
;

(11b)

odd
X1
a¼1

2Ca

2a �1ð Þða�1Þ=2
sin aHnðtÞð Þ

X1
k¼0

C2k

k!ðk þ aÞ!22k
:

(11c)

Next, the modified Bessel function of the first kind is

required,

I�ðzÞ �
z

2

� ��X1
k¼0

z2k

22k k! Cð� þ k þ 1Þ
; (12)

where the Gamma function, when the argument is restricted

to natural numbers, is equal to a factorial

CðnÞ ¼ ðn� 1Þ! 8 n 2N: (13)

When values of � are constrained to the set of natural

numbers (as will be true in this case), Eq. (12) simplifies to

I�ðzÞ ¼
z

2

� ��X1
k¼0

z2k

22k k! ð� þ kÞ!
: (14)
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Expressions following this form appear in Eqs. (11a),

(11b), and (11c). Using the definition of the modified Bessel
function of the first kind and substituting these expressions

back into Eq. (10) yields

M Exp ðfn; tÞ ¼

I0 Cð Þþ

even 2
X1
k¼2

�1ð Þk=2
Ik Cð Þcos k HnðtÞð Þþ

odd 2
X1
k¼1

�1ð Þðk�1Þ=2
Ik Cð Þsin k HnðtÞð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (15)

Substituting this back into the generalized form of modulated noise [Eq. (1)] and multiplying out yields

SðtÞ ¼
XN

n¼1

An

I0 Cð Þsin ð2pfntþ /nÞþ

even 2
X1
k¼2

�1ð Þk=2
Ik Cð Þcos k HnðtÞð Þsin 2pfntþ /nð Þþ

odd 2
X1
k¼1

ð�1Þðk�1Þ=2Ik Cð Þsin k HnðtÞð Þsin 2pfntþ /nð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (16)

Simplifying Eq. (16) with the trigonometric product rules yields the following expression:

SðtÞ ¼
XN

n¼1

An

I0 Cð Þsin 2pfntþ /nð Þþ

even
X1
k¼2

�1ð Þk=2
Ik Cð Þsin 2pðfn þ k xÞ tþ /n þ k Unð Þþ

even
X1
k¼2

�1ð Þk=2
Ik Cð Þsin 2pðfn � k xÞ tþ /n � k Unð Þþ

odd
X1
k¼1

�1ð Þðkþ1Þ=2
Ik Cð Þcos 2pðfn þ k xÞ tþ /n þ k Unð Þþ

odd
X1
k¼1

�1ð Þðk�1Þ=2
Ik Cð Þcos 2pðfn � k xÞ tþ /n � k Unð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: (17)

As a useful comparison, the linear modulation of Eq.

(2) can be expanded to take the form

SðtÞ ¼
XN

n¼1

An

sin ð2pfntþ /nÞ

þm

2
cos ð2pðfn � xÞ tþ /n � UnÞ

�m

2
cos ð2pðfn þ xÞ tþ /n þ UnÞ

8>>>><
>>>>:

9>>>>=
>>>>;
:

(18)

A common interpretation of the linear modulation result

above is that each carrier tone becomes the sum of three

waves. The base wave is of amplitude An, frequency fn, and

phase /n, and the remaining two are sidebands with fre-

quencies of fn þ x and fn � x, phases of /n þ Un þ p and

/n � Un, and both with amplitudes of 1
2

Anm (see Table I).

In this context, Eq. (17) can be interpreted as a base

tone plus an infinite number of diminishing pure-tone side-

bands (see Table II). This representation is convenient

because the sidebands converge to zero fairly quickly, and a

number of efficient numerical recipes for evaluating the

modified Bessel function exist,13 and it is included in stan-

dard MATLAB functions like besseli.

Representing STM in this way enables quickly and effi-

ciently composing a stimulus in the frequency domain from

many thousands of carrier tones and generating the time-

domain representation with a single inverse discrete Fourier

transform (IDFT). This method is easily fast enough to be

used for real-time stimulus generation—decreasing the com-

putation time for a 1-s stimulus by over 3 orders of magni-

tude to less than 40 ms (see Sec. IV B).

IV. STRENGTHS AND LIMITATIONS

Whereas the solution derived for representing expo-

nential modulation is explicit and analytic, making use of it

is not without necessarily invoking some simplifying

assumptions.
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A. Error

Although the analytic representation of exponential

modulation is expressed as a sum over an infinite number of

sidebands, in practice, this expression does not require the

inclusion of many terms to be highly accurate. Figure 1

demonstrates a direct comparison between the proposed

sideband approach [Fig. 1(a)] and the explicit evaluation of

the modulation [Fig. 1(b)]. One stimulus exemplar was gen-

erated with each method, using the same carrier component

frequencies, amplitudes, phases phases, and 20-dB mid-

point-to-peak modulation. The differences between the

respective spectrograms, which are equivalent to the ratios

in the spectral power density, visualzied in Fig. 1(c) show

the signals to be nearly identical.

Figure 2 visualizes how quickly the sum over the side-

bands converges to the proper infinite sum. It is worth not-

ing that the sideband convergence ordinate is in units of

decibels plotted on a logarithmic scale, and the linear fea-

tures shown in this scale represent hyper-exponential con-

vergence. Thus, the midpoint ordinate value of �10�5

represents a -0.00001-dB difference between the partial sum

and the complete sum, or effectively 0.00001 dB of

“missing” energy. The trend is that the greater the depth of

modulation, the more sidebands are required to capture the

dynamics. Even an envelope with a 40-dB midpoint-to-peak

modulation depth (80-dB peak-to-valley) requires only 21

terms (20 sidebands between �10x and þ10x plus the fun-

damental frequency) to have a power spectrum accurate to

one part in 109 in decibels. The perceptual relevance of

these small level differences is difficult to evaluate because

of the many different stimulus types that can be created and

the variety of perceptual tasks that one might use with such

stimuli. Using the extremely conservative estimate that a

total energy difference of 0.01 dB due to omitted sidebands

should be physiologically undetectable, a sideband extent of

four would be sufficient for modulation depths up to 40 dB.

In comparison to perceptual data, the best thresholds

obtained by incrementing a single component in a tonal

complex correspond to about a �20-dB signal-to-standard

ratio,15 which corresponds to a level difference of

0.828 dB.16

B. Computational complexity

As previously alluded to, the DFT is a powerful tool.

When feasible, generating stimuli in the frequency domain

can be several orders of magnitude faster than comparable

time-domain methods. For example, generating a 1-s sample

of STM with 10 000 carrier tones in the frequency domain

with the proposed algorithm is consistently over 1200 times

faster than exhaustively evaluating the explicit form of the

stimulus in the time domain.17 In fact, the difference in com-

putational complexity between the linear and exponential

modulation cases in the frequency domain is relatively small

as the cost for stimuli of duration greater than even 100 ms

is dominated by the cost of the DFT [a fast Fourier trans-

form (FFT) in this case], which is represented equally in the

complexity of both algorithms. In the aforementioned test

FIG. 1. (Color online) Spectrographic analysis of sideband-based STM. Multiple comparisons of the proposed sideband-based generation method with a

classic numerical solution for a midpoint-to-peak modulation depth of 20 dB (40 dB peak-to-valley). (a) Spectrogram of the STM created with the proposed

Bessel function sideband approach using a sideband extent of five (ten sidebands), (b) spectrogram of the STM created by exhaustively evaluating the

explicit form for exponential modulation, and (c) ratio of the Bessel function sideband-generated stimulus to the explicit form of the stimulus. Note that the

colormap limits are 66� 10�4 dB for the spectral power ratio.

FIG. 2. (Color online) The ratio between the energy of each term in the par-

tial sum over a limited number of sidebands and the energy of the complete

infinite sum, expressed in decibels and shown for several midpoint-to-peak

modulation depths. Because sidebands are distributed symmetrically about

the carrier tone, they are counted in terms of “sideband extent,” which is

half of the total number of sidebands. The visualized “power ratio” value

can be interpreted as the energetic contribution of the omitted terms relative

to the entire sum. The values converge to zero quickly enough such that

few total datapoints are visible when visualized with a linear ordinate axis.
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case, it took on average 38 ms to generate 1 s of exponential

STM composed of 10 000 carrier tones in the frequency

domain, whereas 48.7 s were required to generate the same

stimulus in the time domain.

This comparison can also be made in the language of

algorithmic complexity. In terms of big O complexity, using

C for the carrier tone count, N for the number of samples,

and B for the number of sidebands used, the complexity of

the explicit calculation is OðCNÞ, whereas the sideband-

based approach is OðN ln NÞ when N is a power of two and,

thus, the FFT can be used. The latter would contain the addi-

tion of a term of BC, but it falls away due to insignificance.

However, the algorithmic complexity only captures part of

the computational savings of the frequency domain

approach as a result of the unequal cost of evaluating differ-

ent arithmetic operations. In particular, the exponentiation

and trigonometric function evaluations, which are evaluated

B times for every sample in the explicit form, are notably

slower than the addition and multiplication operations that

form the backbone of the FFT.

Consideration of computational efficiency is particu-

larly pertinent in light of Resnick et al.,10 demonstrating the

effects of the spectral aliasing that occurs when generating

STM with an insufficient carrier density. Low carrier densi-

ties have been used in the past to offset computational con-

straints, but the proposed sideband approach renders such

carrier degradation optional.

V. VALIDATION

Validation of the proposed sideband exponential stimu-

lus generation technique can be further explored using met-

rics of the spectro-temporal envelope fluctuations as the

basis for comparison between the explicit calculations and a

third existing exponential technique as described by Chi

et al.1,18 Direct, meaningful evaluation of the envelope of

STM with its characteristic spectral and temporal variation

is challenging. However, both pure SM and pure TM allow

for much simpler approaches in accessing and analyzing the

envelope. The modulation envelope in SM is directly

inscribed into the spectrum just as the modulation envelope

in TM appears in the time-domain envelope. Because all of

the approaches analyzed here are composed of a sum over

modulated carrier tones, the difference between SM and

STM is the omission of the TM term in Eq. (4), x, which

advances the envelope phase with time, whereas the Uðf Þ
term that advances the envelope phase with frequency in the

same equation is omitted in the case of TM. The envelope of

the spectrum of pure SM is the focus of this analysis to best

resolve any frequency-sensitive artifacts that might be pre-

sent in the tested generation methods.

To evaluate the spectral envelope, 100 stimulus exem-

plars were computed with each method at each of 20

selected modulation depths, using maximum-density car-

riers with amplitudes sampled from a Rayleigh distribution

and scaled to match a bandpass filter (�32 dB/octave) from

400 to 3200 Hz. The SM frequency was 2 cycles/octave, and

the starting phase of the modulator was randomized. For

each exemplar, two metrics of the spectral-envelope fluctua-

tion were computed.

The first metric used to analyze the signals was the nor-

malized fourth moment (M4) of the spectrum,19,20

M4 ¼
�E

4

E2ð Þ2
; (19)

where E is the stimulus spectrum, obtained from a DFT. The

fourth moment characterizes the degree of fluctuations of a

signal and could potentially capture issues like inadequate

curvature or frequency-dependent modulation artifacts.

Figure 3(a) shows the normalized fourth moment of the

spectrum as a function of modulation depth (peak-to-valley

difference in dB) from 0 to 50 dB. The three functions repre-

sent the explicit evaluation (black, open circles), the existing

method (red, open squares),1 and the proposed sideband

method (green, filled triangles). The most important obser-

vation in this context is that the proposed sideband method

(green triangles) maps directly onto the explicit method

(black circles), indicating that the minimal computational

error discussed above has minimal effect on modulation

envelope curvature and depth. Also of potential interest is

the fact that the normalized fourth moment values for the

existing method (red squares) are quite different from the

other two methods. For modulation depths below about

20 dB, the normalized fourth moment is greater than the

other two methods, and for greater modulation depths, the

normalized fourth moment is less.

The second metric was the crest factor, CF, of the

spectrum,

CF ¼ jEpeakj
Erms

; (20)

where Epeak is the peak in the spectral envelope, and Erms is

the RMS magnitude of the spectrum. The crest factor char-

acterizes the extrema of a signal and would reveal if a

method suppressed or exaggerated transients and peaks.

This metric, shown in Fig. 3(b), also confirms that the

explicit method and proposed sideband method are nearly

identical in terms of envelope peaks, whereas the existing

method had an elevated crest factor (by about 36% on aver-

age across modulation depths).

Overall, these methods of quantifying spectral envelope

fluctuations show that the explicit and proposed sideband

methods yield roughly the same spectral envelope depth and

both differ from the envelope of the existing method even

when the same spectral envelope parameters are specified

during stimulus generation. Although the differences

between theses methods shown in Fig. 3 do point to poten-

tial envelope cues introduced by using the existing method,

it is currently unknown what impacts, if any, the differences

in envelope actually have on perception. With the proposed,

more efficient method in hand, it will now be much easier to

systematically examine exactly which spectral and temporal
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cues are responsible for sensitivity to STM and how this

interacts with the stimuli that have been used to measure

sensitivity in the past.

VI. SUMMARY AND CONCLUSIONS

The derivation of an explicit, analytic expression for

the sidebands necessary to capture exponential modulation

has been presented. Where existing solutions capable of

real-time execution either estimate this effect through

coarser Fourier transforms or approximate filtering, the

proposed solution solves for the precise sideband values

necessary to capture the behavior. A set of metrics evaluat-

ing the spectral envelope demonstrate that the modulation

generated by the proposed method more closely matches

the expected form than does an accepted alternative. The

degree to which the modulation envelope shape interacts

with the auditory system and impacts STM detection is an

area of study that is still evolving, and empirical evidence

on the impact of differences in shape is limited. For exam-

ple, Shamma and Versnel21 reported that modulation shape

did not lead to a difference in ferret cortical single-unit

responses. Isarangura et al.,22 however, reported that SM

detection thresholds differed significantly based on the

spectral envelope shape. Consequently, efficient methods

of generation like the proposed sideband approach will

help keep differences and potential errors in generation

from slowing progress in our further understanding of the

perceptual and physiological bases and implications of

modulation sensitivity.
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APPENDIX A: PSEUDOCODE

In the interest of maximizing clarity and usability, a

pseudocode making use of the sideband representation is

presented below. For a given modulation depth M, carrier

tone count N, sideband extent B, TM rate x, modulator

phases Un, carrier frequencies fn, carrier amplitudes An, and

carrier phases /n.

Carrier tone frequencies, amplitudes, and phases would

be as described in U Appendix B, Un would follow the

example in Eq. (3), and the sideband extent B need not be

larger than ten for highly accurate values (see Fig. 2).

An example of a MATLAB code implementing this proce-

dure and generating Fig. 1 is included as supplementary

material.23

FIG. 3. (Color online) Metrics of spectral envelope fluctuations in SM compared among three generation methods: black open circles for the explicit evalua-

tion, red open squares for the existing method, and green filled triangles for the proposed sideband method. The calculations were performed on 100 exem-

plars across each of 20 modulation depths for each stimulus generation method. (a) The fourth moment of the spectrum (ordinate) as a function of the SM

depth (abscissa). Error bars indicate the standard deviation across the 100 exemplars. (b) The crest factor of the spectral envelope (ordinate) as a function of

the SM depth (abscissa). Error bars indicate the standard deviation across 100 samples.

for n¼ 1 to N do � Carrier tones

for b ¼ �B to B do � Sidebands

if (b¼ 0) then � Base tone

sb  1

/ 0

else if (b is Even) then � Even sidebands

sb  ð�1Þb=2

/ 0

else � Odd sidebands

sb  ð�1Þðb�1Þ=2

/ �p=2

end if

Anb  sb � An � IbðM ln ð10Þ=20Þ � Amplitude

fnb  fn þ b � x � Frequency

/nb  /n þ b � Un þ / � Phase

AddTone(Anb,fnb, /nb) � Add sideband

end for

end for

IDFT() � IDFT of accumulated

frequency samples
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APPENDIX B: CARRIER COMPOSITION

The frequencies and amplitudes used for carrier tones in

the generation of STM critically determine spectral properties

of the resulting stimulus like whether the underlying stimulus

is white noise, pink noise, a tonal complex of a desired density

(i.e., frequency spacing), or some other carrier entirely.

1. Linear frequency spacing

Mathematically, the simplest way to distribute carrier

tones over a frequency range is to do so linearly. Noise gen-

erated this way, if no additional frequency-dependent factors

are applied to the amplitude of the carrier tones, can have

the long-term spectral shape and short-term statistical com-

position of white noise—a flat power distribution throughout

the linear frequency space with Rayleigh (Chi square) dis-

tributed magnitudes. This means that, on average, the fre-

quency ranges of 100–200 Hz and 1000–1100 Hz should

contain the same power. For N carrier tones between fre-

quencies fLB and fUB,

fn ¼ fLB þ ðfUB � fLBÞ
n� 1

N � 1
;

An ¼ R;
/n ¼ ½0; 2pÞ;

where R represents random numbers sampled from a

Rayleigh distribution, which can be approximated from a

flat distribution as R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln ð½0; 1�Þ

p
.

Pink noise has an even energy distribution throughout log-

arithmic frequency space. This means that, on average, the

same power should be carried by components between 100

and 200 Hz as between 1000 and 2000 Hz, or doubling the fre-

quency range of any spectral band should halve the power. If

one wants to generate noise with a pink spectral quality with a

linear frequency distribution, then an additional factor of

1=
ffiffiffiffi
fn

p
must be applied to the amplitude, giving

fn ¼ fLB þ ðfUB � fLBÞ
n� 1

N � 1
;

An ¼
Rffiffiffiffi
fn
p ;

/n ¼ ½0; 2pÞ:

2. Exponential frequency spacing

An alternative method of handling the distribution of

carrier tone frequencies is to do so exponentially. For suffi-

cient densities, this is perceptually indistinguishable from

the linear distribution,11 but using the methods described

above requires much less computational effort be spent for

broad stimuli. This is consistent with a fixed number of car-

rier tones per octave.

Generating noise using an exponential frequency distri-

bution and no additional restrictions on the amplitude gener-

ates pink noise as it implicitly reduces the spectral power

per octave by 3 dB. For N carrier tones between frequencies

fLB and fUB,

fn ¼ fLB

fUB

fLB

� �ðn�1Þ=ðN�1Þ
;

An ¼ R;
/n ¼ ½0; 2pÞ:

Alternatively, to generate white noise from such a fre-

quency distribution, one must recover the power lost to the

frequency distribution by applying an additional factor to

the amplitude. This leads to

fn ¼ fLB þ ðfUB � fLBÞ
n� 1

N � 1
;

An ¼ R
ffiffiffiffi
fn

p
;

/n ¼ ½0; 2pÞ:
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