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Abstract

In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape 

sensory experience, including pain. We set out to identify the potential interactions between 

sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and 

human RNA-sequencing datasets and computational analysis, we created interactome maps 

between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types as well as 

colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic 

tumor tissue. These maps revealed a common correlation between the abundance of heparin-

binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a 

member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that 

increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons 

through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor 

interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the 

complexity of cell-to-neuron signaling in chronic pain states.

Introduction

Nociceptive sensory neurons are responsible for detecting changes in the environment 

through specific receptors and then transmitting this signal to the central nervous system 

(CNS) by generation of action potentials (1). These nociceptors innervate almost every 

tissue in the body, playing a critical role in detecting injury and/or pathology to skin, joints, 

bones and visceral organs (2, 3). While nociceptor function is needed to navigate 

environments safely (4) and to recover after injury (5), these cells can also create misery 

when they become persistently active (6–8). Nociceptor hyperexcitability and spontaneous 

activity are key contributors to many chronic pain states driven by inflammation, arthritis, 
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nerve injury, cancer or other pathologies (1, 2, 6–8). It is widely accepted that tissue injury is 

directly linked to changes in the activity of nociceptors that innervate that tissue (9). 

Relatively little is known about the factors that are released by cells within specific tissues 

and how these factors act on the nociceptors innervating the tissue. Our goal was to catalog 

this potential “interactome” because such a resource can suggest identification of new 

targets that could be manipulated to treat pain disorders.

RNA sequencing (RNA-seq) experiments have defined tissue-wide and cell-specific 

transcriptomes for much of the body in both mice (10–12) and humans (13, 14). Cell 

profiling experiments on normal and diseased tissues have identified key molecular players 

in an increasing number of disease processes (15), including disorders with a strong pain 

component (16, 17). However, these studies mostly focus on gene expression within a 

specific tissue or across cell types in a tissue and do not characterize how multiple tissues 

may interact to promote disease. This type of cross-tissue interaction is especially critical to 

pain. Nociceptors express a wide variety of receptors that allow them to detect ligands that 

are produced in the tissues they innervate (1–3). Tissue pathology frequently drives changes 

in gene expression resulting in de novo or enhanced expression of ligands (for example, 

cytokines and chemokines). Since many pathological tissue states produce enhanced 

nociception and pain (1, 5, 9), it is logical to assume that changes in ligand expression cause 

changes in signaling frequency or intensity through receptors expressed by nociceptors. 

These ligand-receptor interactions are candidates for drivers of pain states.

Here, we developed a computational framework that identified potential ligand-receptor 

mediated interactions on a genome-wide scale (interactome) between target tissues and 

sensory neurons using publicly available RNA-seq datasets. We first used this tool to 

identify potential interactions between nociceptors in mouse dorsal root ganglia (DRG) and 

other tissues or cell types. Then, we performed three case studies to demonstrate the utility 

of this tool for identifying potential drivers of pain states. First, we used single-cell RNA-seq 

(scRNA-seq) data from colon-innervating nociceptors in the mouse (17) to explore how 

these neurons might interact with normal and inflamed enteric glial cells (18). Second, we 

examined how human DRG (hDRG) neurons (14, 19) may interact with macrophages taken 

from the joints of people with rheumatoid arthritis (RA) (16). Finally, we assessed how 

pancreatic cancer (20) could drive ligand-receptor interactions with hDRG neurons, 

potentially providing new insight into tumor–neuron interactions in this notoriously painful 

disease. An intriguing theme emerging from these distinct interactomes is the prominence of 

corresponding ligands for the ErbB family of epidermal growth factor receptors (including 

EGFR) as possible mediators of interactions between diseased tissue and mouse and human 

nociceptors. This finding is consistent with recent preclinical and clinical findings 

suggesting efficacy of blocking ErbB family signaling for chronic pain (21–24). As RNA 

sequencing resources continue to proliferate, our tool can be used to mine for potential 

signaling pathways and pharmacological targets in a data-driven manner based on high-

throughput assay analyses.
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Results

Cell type-enriched interactomes for DRG nociceptors from 42 cell types in the Tabula Muris 
dataset

DRG neurons interact with nearly every tissue in the body and express an array of receptors 

that enable them to receive signals from distinct cell types within these tissues (2, 3). To map 

these potential ligand-receptor interactions, we curated a database of ligand and receptor 

pairs across the genome, based on the literature and curated bioinformatics databases (25–

30). This led to the creation of a ligand-receptor pair interactome containing more than 3000 

interactions.

We first sought to examine ligand-receptor interactions between different classes of mouse 

sensory neurons and a diverse array of peripheral cell types under normal conditions. To do 

this, we used mouse DRG (mDRG) scRNA-seq data (12) and scRNA-seq datasets from 

tissues innervated by the DRG using the Tabula Muris project (10). While many subtypes of 

sensory neurons have been identified (11, 12), for simplicity we clustered these into three 

well-identified neuronal subpopulations: peptidergic (PEP) nociceptors, non-peptidergic 

(NP) nociceptors and neurofilament-positive, large diameter, low-threshold 

mechanoreceptors (NF) (1–3). This predicted a broad interactome between 42 cell types 

found in 19 tissues, and PEP, NP and NF sensory neurons from the DRG, and established a 

ligand-receptor interaction map for sensory neurons and the tissues they innervate or interact 

with in the mouse (data file S1). We extracted the pairs of ligand-receptor interactions for 

each of these cell types where the receptor was expressed in at least one type of sensory 

neuron (PEP, NP, or NF) and looked for enriched pharmacology-relevant gene ontology 

(GO) terms using the Enrichr analysis tool (31, 32), focusing on the top five GO terms for 

biological process (large-scale “biological programs” accomplished by several coordinated 

molecular activities) and molecular function (molecule level activities performed by gene 

products, for instance) (Fig. 1). For the biological process GO terms found for ligand genes, 

the “extracellular matrix organization” term appeared in the top five for all but one cell-type, 

and was ranked as the top one in 37 of the 42 cell types. This likely occurred because among 

the 894 ligand genes we included in the interactome, many are secreted and 89 of them are 

among the 229 total genes classified under the biological process GO term “extracellular 
matrix organization”. This biases our dataset to show this particular GO term to be enriched. 

The GO terms of “positive regulation of cell proliferation”, “regulation of cell proliferation”, 
“positive regulation of cell motility”, and “positive regulation of cell migration” were also 

enriched in both non-immune cell types and macrophages. For terms that were enriched 

specifically in immune cells, “cytokine-mediated signaling pathway” was enriched in most 

of the immune cell-types, while “regulated exocytosis” and “cellular protein metabolic 
process” GO terms were specific to T cells and natural killer (NK) cells (Fig. 1). This shows 

that, for most cell types, extracellular matrix and cell adhesion ligands represent the most 

abundant ligand-receptor interaction between these peripheral cells and sensory neurons. 

The exception was immune cells, which our interactome predicts to primarily interact with 

sensory neurons through diffusible factors.
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For receptor genes found in sensory neurons, the same five GO terms were enriched for 

molecular functions: “transmembrane receptor protein kinase activity”, “G protein-coupled 
receptor activity”, “transmembrane receptor protein tyrosine kinase activity”, “mitogen 
activated protein (MAP) kinase kinase binding”, “MAP kinase kinase kinase activity” (Fig. 

1). The biological process GO terms were also consistent for sensory neuron receptors 

identified from this interactome. The same four GO terms were enriched for most of the cell-

types: “positive regulation of protein phosphorylation”, “positive regulation of MAPK 
cascade”, “negative regulation of cell communication”, “regulation of MAPK cascade”. Two 

other GO terms, “negative regulation of signaling” and “positive regulation of ERK1 and 
ERK2 cascade” were enriched in non-immune cell-types and macrophages or T cells and 

NK cells, respectively. This highlights the key role that MAPK (mitogen-activated protein 

kinase) signaling plays in transducing signals from cells throughout the body to signaling 

within sensory neurons. Because MAPK signaling in nociceptors plays a critical role in the 

generation of pain states (33–36), this suggests that ligand-receptor interactions between 

nociceptors and most cell types found in the body could be capable of inducing 

hyperexcitability in nociceptors leading to persistent pain.

While the interactome described above shows commonalities between ligand-receptor 

interactions between sensory neurons and a variety of tissues and cells found in the mouse, it 

does not reveal cell type-specific interaction points that may play important roles in normal 

physiology and/or pathology. To find these more specific interactions in an unbiased fashion, 

we performed iterative hierarchical bi-clustering on cell-types and genes based on gene 

expression levels using scrattch.hicat analysis (37). This analysis revealed 18 classes of cell 

types (cell clusters A to R in Fig. 2A) and 25 gene co-expression modules expressed across 

subsets of those cell types (Fig. 2A). For each of these 25 gene modules, we then extracted 

all the ligand genes from our ligand-receptor database for each module and constructed an 

interactome with receptors expressed by different classes of mouse sensory neurons (data 

file S2). We focused on two module interactomes enriched in immune cell types for 

graphical representation: the macrophage and leukocyte enriched cluster, and the T cell- and 

NK cell-enriched cluster. We chose these based on the key role these immune cell types play 

in neuropathic pain models in male and/or female mice (38–43). The ligand-receptor 

interactomes emerging from this gene cluster enrichment analysis revealed distinct factors 

expressed by these immune cells that are known to play a role in neuropathic pain states. 

The macrophage and leukocyte cluster included Mmp9, Il1b and Osm gene products 

signaling to their cognate receptors expressed by mouse nociceptors (Fig. 2B). Macrophage 

recruitment by tumor necrosis factor alpha (TNF-α) induces matrix metalloproteinase 

MMP9 signaling which then promotes neuropathic pain after peripheral nerve injury (44). 

Cytokines IL1β and oncostatin M (OSM) have also been identified as important pain 

signaling molecules in previous studies in rodent pain models (45, 46) and in DRG samples 

from neuropathic pain patients (19). The T cell and NK cell cluster showed expression of 

many genes associated with the TNF-α superfamily, including Lta, Tnfsf14 and Tnfsf11, but 

also highlights the Ltbr gene which is paired with several of these T cell- and NK cell-

expressed ligands (Fig. 2C). This analysis also identified a specific interaction between T-

cells and sensory neurons driven by the action of interferon gamma (IFNγ) through its 

receptors (IFNGR1, IFNGR2) expressed on sensory neurons. IFNγ had previously been 
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shown to enhance glutamate release in excitatory synapses in spinal cord and contributes to 

persistent pain (47). Collectively this previous work implicates these factors in persistent 

pain, but our analysis shows that these immune cells express these factors at baseline. This 

suggests that recruitment of these immune cells to the peripheral nerve may be a key factor 

in driving persistent pain rather than plasticity in the transcriptomes of these cell types. This 

notion is supported by recent studies in rodent models (40, 41, 43) and patient 

transcriptional profiling (19). This cell-type and gene module bi-clustering approach reveals 

potential ligand-receptor interactions for peripheral cell types with sensory neurons that can 

be further mined for identification of new pain targets.

Ligand-receptor interactions among cell types within the mDRG are identified from the 
mousebrain.org dataset

The interactomes described above map ligand-receptor pairs between sensory neurons and 

many other cell types found in target tissues for these neurons. The DRG is composed of 

many different cell types besides sensory neurons, including Schwann cells and satellite glial 

cells. These glial cells are known to contribute to acute and chronic pain states (48–50) but 

how they interact with sensory neurons has not been characterized thoroughly. Moreover, 

how sensory neurons may interact with these cells through release of transmitter substances 

is almost completely unexplored. To examine ligand-receptor interactions that might occur 

within the DRG, we constructed ligand-receptor interactomes between NP, PEP and NF 

sensory neurons and satellite glial cells and Schwann cells. We did this with single cell RNA 

sequencing data from the mousebrain.org dataset (12). In our first analysis of this 

interactome, it was clear that “Cell Adhesion Molecule and Extracellular Matrix” (ECM) 

categories dominated the ligand-receptor interactions for these cell types (data file S3, figs. 

S1 and S2). This is not surprising, given the close proximity of these cells within the DRG 

and the obvious structural role that interactions between these cells play within the ganglion. 

The role of cell adhesion molecules and ECM molecules in chronic and neuropathic pain has 

been described in the literature (51, 52). However, because we wanted to focus on 

interactions driven by diffusible transmitter substances within the DRG, we chose to remove 

these two categories from this analysis of intercellular ligand-receptor signaling within the 

mDRG. These categories are included in subsequent analyses.

When examining which neuronal ligands potentially signal to satellite glia and/or Schwann 

cell expressed receptors, we made several interesting observations (Fig. 3). First, growth 

factor interactions were the dominant category of interactions when considering neuron to 

glial signaling, with 30 of the 133 interactions being between growth factors and their 

receptors. This is consistent with previous findings in the field (53–55). Second, we found 

indications of robust brain-derived neurotrophic factor (BDNF) signaling within the DRG. 

We noted that gene products of Bdnf, which was expressed by NP and PEP nociceptors, has 

potential interactions with satellite glia and Schwann cells through its traditional receptor 

tropomyosin/tyrosine receptor kinase B (TrkB, encoded by Ntrk2), as well as through 

discoidin domain-containing receptor 2 (DDR2, encoded by Ntrkr3r) and sortillin (encoded 

by Sort1). Finally, we found that calcitonin gene-related peptide (CGRP, encoded by Calca), 

a signature peptide of PEP nociceptors, had an interaction with the amylin receptor RAMP2 

in DRG glia cells. While it is known that CGRP can signal through receptors containing the 
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amylin subunit (56), there is no previous literature on CGRP signaling through this receptor 

in DRG glia.

We then assessed DRG glial ligand signaling to neuronal receptors. This interactome was 

more diverse and revealed an increased number of these interactions. There were 133 

neuronal ligands interactions with glial receptors; conversely, there were 199 glial ligand and 

neuronal receptor interactions. While the classes of ligands coming from glia did not fall 

into one main category, 56 of the 199 receptors for neurons were comprised of GPCRs, ion 

channels, or cytokine receptors (Fig. 4). A prominent ligand-receptor interaction emerging 

from this dataset was the broad expression of platelet derived growth factor family genes in 

satellite glial cells and Schwann cells, gene products of which signal to a single neuronal 

receptor whose gene (Pdgfrb) expression is enriched in the NP class of nociceptors. While 

PDGF is known to sensitize nociceptors leading to increased mechanical sensitivity (57, 58), 

little work has been done on PDGF signaling within the DRG, making this an attractive 

target for further exploration. When comparing these two sets of data, it is notable that there 

was an enormous variety in the interactions between glial ligands and neuronal receptors. 

Our data support previous findings in the literature regarding neuronal signaling in the DRG, 

while identifying potential new interactions which will need further investigation. In the 

mDRG, we find similar neuron – glia ligand-receptor interaction profiles for peptidergic 

(PEP) and nonpeptidergic (NP) nociceptors but several differences between non-nociceptive 

neurofilament neurons (NF) and nociceptors (Fig. 4). An example is Schwann cell- and 

satellite glial cell (SGC)-derived platelet-derived growth factor (PDGF) signaling to one of 

its receptors, PDGFRB, which was exclusively found in NP neurons.

An interactome between enteric glia and colon-innervating nociceptors defines gut-neuron 
interactions in a colitis model

Thus far, we have described interactomes between peripheral tissues and DRG neurons, as 

well as within the DRG, by using sequencing experiments from naïve mice. Certain ligand-

receptor interactions may not exist in this state and may only be revealed during pathology 

where those interactions play a critical role in promoting disease. This principle is the basis 

of the use of most drugs that are used to treat disease. To explore how the ligand-receptor 

interactome of DRG sensory neurons changes in a disease state, we examined how colonic 

enteric glial cells react and communicate with retrogradely labelled and single cell 

sequenced sensory neurons innervating the colon (17) in the mouse 2,4-di-nitrobenzene 

sulfonic acid (DNBS) colitis model. We used an existing dataset of RiboTag RNA-seq of 

enteric glial cells in this colitis model (18), as this technique affords cellular specificity 

combined with an in vivo inflammatory disease model. A scRNA-seq dataset of retrogradely 

traced sensory neurons that innervate the colon was chosen because these cells make contact 

with enteric glia and are at least partially transcriptomically distinct from other DRG sensory 

neurons (17).

Transcriptomic changes in the DNBS-treated enteric glial dataset were evaluated first. 

Differential gene expression analysis was performed between vehicle and DNBS-treated 

groups to identify genes with substantial differences in abundance. This gene list was then 

intersected with our interactome analysis against retrogradely traced, mouse colonic sensory 
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neuron scRNA-seq data. The original study identified seven cell-types from these 

retrogradely traced mouse colonic sensory neurons. These cell-types were defined by 

expression profiles (NP, PEP, NF) and they were further defined by their anatomical location 

(either thoracolumbar and lumbosacral DRG, or lumbosacral only) (17). We separated these 

into five cell-types that were found in both thoracolumbar and lumbosacral DRGs (hereafter 

and in the figure denoted as mixed populations; Fig. 5A), and two cell-types that were only 

found in lumbosacral DRG (pelvic populations; Fig. 5A). The interactome between 

differentially expressed ligands in DNBS-treated enteric glia and paired receptors enriched 

in one of these seven cell-types are presented (Fig. 5A and data file S4, sheet 1), with ligand-

receptor pairs that did not show any DRG neuron enrichment for any of the seven cell types 

are shown in the supplement (data file S4, sheet 2). We found that for 17 out of 22 

interactions where the receptor gene was enriched in the two pelvic specific cell-types, their 

ligand-pair gene expression was substantially decreased. In contrast, in 39 out of 64 

interactions where the receptor gene was enriched in mixed DRG cell-types, their paired 

ligand gene expression was substantially increased. Under the premise that increased gene 

(and potentially protein) abundance leads to increased protein interactions, this shows that 

there is a potential difference in signaling between enteric glia and colonic sensory neurons 

wherein inflammation relatively specifically augments ligand-receptor interactions between 

mixed population afferents whereas there is a tendency of decrease in interactions between 

enteric glia and pelvic afferents (Fig. 5B).

Based on the premise that elevated gene abundances could cause robust protein interactions 

and may be important for pelvic pain disorders, we looked more closely at this part of the 

interactome. Among increased ligand genes that signaled to DRG neurons in the mixed 

population we found that Bdnf and Gdnf were prominent. BDNF signaling to TrkB is known 

to play an important role in pain plasticity where it has primarily been studied in the context 

of BDNF release from primary afferents in the spinal cord (59, 60), but has also been linked 

to inflammatory visceral pain disorders (61–63). Glial cell line-derived neurotrophic factor 

(GDNF), which was linked to Gfra1 and Gfra2 expression, was also found to be increased in 

relative gene abundance in DNBS-treated enteric glial cells. Other studies have indicated 

that GDNF upregulation in target tissues enhances nociception (64–66). ARTN (artemin), a 

ligand in the same family as GDNF, was also found to be increased in gene expression and 

linked with Gfra1 and Gfra3 expression. This demonstrates a coordinated increased 

expression of neurotrophins in enteric glia that are likely to signal through pelvic and 

lumbosacral mechanisms to promote visceral pain (61–67).

Disease-promoting macrophages from rheumatoid arthritis patients interact with hDRG 
through an EGFR-enriched pathway

The interactome analysis described above shows that we can identify ligand-receptor 

signaling pathways in a mouse model of visceral pain. However, discoveries made in mouse 

models are not always consistent with actual human disease states (68, 69). Therefore, we 

sought to assess whether this interactome approach could be used to identify novel targets in 

human disease states. This requires availability of human DRG sequencing data and 

sequencing data from target tissues or cells from patients with chronic pain diseases. We 
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chose to investigate how macrophages from rheumatoid arthritis (RA) patient synovium 

might communicate with cell types in the human DRG, especially human sensory neurons.

A previously published scRNA-seq study of synovial tissue from RA and osteoarthritis (OA) 

patients identified 4 specific sub types of macrophages within the joints of patients with 

either of these diseases (16). A total of 12 RA patients (7 females and 5 males) and two OA 

patients (both male) were enrolled in the Kuo et al. study (16). To find macrophage-driven 

interactions with human DRG neurons that are potentially responsible for promoting pain in 

RA, we contrasted the RA-enriched macrophage cell types with the OA-enriched 

macrophage cell-types. Ligand genes that were highly expressed in the RA macrophages 

compared with the OA macrophages were selected, then filtered by whether their receptor 

genes were detected in human DRG RNA-seq data (14, 19), resulting in RA-enriched 

ligand-receptor pairs (Fig. 6). OA-enriched interactions—which includes pathways related to 

bone regeneration—are in the supplement (data file S5). Notably, of the 20 RA-enriched 

ligand-encoding genes, four of them—HBEGF, EREG, DCN, and HSP90AA1—encode 

proteins that signal through EGFR. This suggests that ErbB family receptors may play a key 

role in promoting persistent pain in RA patients. Increased expression of ErbB family-

related ligands and receptors is seen in RA patients. For instance, ErbB family pathway 

changes are triggered by increased abundance of amphiregulin and epiregulin (EREG) in RA 

patients (70), while experiments in mice have shown the development of cytokine-induced 

arthritis can be suppressed with local blockade of these ligands in the joint (71). The 

importance of the ErbB family pathway in chronic pain has been previously noted in the 

literature, but not in the context of RA pain. For instance, EREG-mediated EGFR activation 

causes pain sensitization through PI3K-AKT-mTOR pathways in inflammatory pain models 

(23) and EGFR inhibition with gefitinib reduces opioid tolerance and hyperalgesia (72). 

Moreover, ErbB receptor family inhibitors have been used successfully for the treatment of 

neuropathic pain in patients (22, 24). RA treatment has been transformed by the use of TNF-

α–targeting biologics, but chronic pain remains a persistent problem for RA patients (73, 

74). With previous findings showing ErbB family inhibitors can be used to treat RA in 

mouse models (71, 75), we propose that inhibitors of the ErbB receptor family could 

potentially be repurposed to treat inflammation and RA pain at the same time.

Pancreatic cancer cells suppress inhibitory and enhance excitatory signaling to human 
DRG neurons

Pancreatic cancer involves cancer driven mutational changes, and large-scale transcriptional 

reprogramming. It is often associated with severe pain, and many patients are resistant to 

pharmacological pain treatment of any kind, requiring neurolytic treatments (76, 77). A 

better understanding of how cells from pancreatic cancerous tissue signal to DRG neurons 

could lead to identification of therapies that can alleviate pancreatic cancer pain.

We utilized a bulk RNA-seq dataset of pancreatic cancer tissue where we could control for 

individual differences in transcriptomes by having matched cancer and non-cancer 

pancreatic samples from each of four patients (2 females and 2 males) in the TCGA database 

(20). These four patients had stage II tumors (one of them stage IIa, and the other 3 stage 

IIb). According to the definition of pancreatic cancer stages by the American Cancer 
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Society, stage IIb pancreatic cancer has spread to no more than 3 nearby lymph nodes, and 

may be considered as unresectable by physicians (https://www.cancer.org/cancer/pancreatic-

cancer/detection-diagnosis-staging/staging.html). Over 80% of these patients with 

unresectable pancreatic cancer experience pain (78, 79) . Ligands that systematically 

increased or decreased in abundance in cancer samples across all 4 patients were used for 

the interactome analysis. These interactions were then filtered by whether their receptor 

genes were detected in hDRG RNA-seq data (19). Among 41 ligand-receptor pairs identified 

(Figs. 7 and 8 and further detailed in data file S6), we noted that genes of certain mediators 

that are well-known pain suppressing ligands showed decreased expression in cancerous 

tissue compared with healthy tissue. These included the endogenous opioid ligand POMC 

and the anti-inflammatory cytokine IL10. On the other hand, the expression of many pain-

promoting and/or inflammatory ligand-encoding genes was increased, including SHH, 

TGFA, TFF1. These findings suggest that a central problem in pancreatic cancer pain may 

be a loss of balance between pain-suppressing and pain-promoting signal transduction that is 

found within the normal pancreas. Notably, 4 of these 41 ligand-encoding genes—

CEACAM1, FGF1, TFF1, TGFA—encode proteins known to signal through EGFR, 

suggesting (as above in RA) that the ErbB receptor family may play a role in driving pain in 

the context of pancreatic cancer. While the corresponding ligands of ErbB receptor family 

members have been previously studied in the context of cancer (where EGFR and ErbB2 are 

known targets), they have not been widely studied in the context of pain. Additionally, ErbB 

receptor family inhibitors have been shown to provide pain relief in previous cancer clinical 

trials (80). This may occur because of inhibition of tumor-to-nociceptor signaling or as 

tumor shrinkage decreases pressure on nearby nerves, like the celiac plexus.

HBEGF stimulates mDRG neurons and causes pain in vivo

Our results suggest a potential role of ErbB receptor family in many types of pain, but the 

only corresponding ligand that has been confirmed to cause pain in vivo is epiregulin (23). 

To the best of our knowledge, HBEGF has never been assessed for pro-nociceptive actions, 

but our datasets suggest a possible role in several pain states. We applied HBEGF (10 ng/ml) 

to mDRG neurons from male and female mice and observed a Ca2+ signal in ~ 30% of 

neurons (Fig. 9, A and B). This effect was completely blocked by the ErbB family 

antagonist lapatinib (6 nM) (Fig. 9, C and D). Lapatinib blocks receptor kinase activity for 

both EGFR and ERBB2 (81). To examine the effect of HBEGF in peripheral tissues 

innervated by sensory nerve endings, we injected HBEGF (50 ng) into the paw of mice to 

test for mechanical sensitivity and grimacing. Male ICR and female C57BL/6 mice were 

used in order to test sex and strain differences. In male mice we observed mechanical 

hypersensitivity (Fig. 9E) and a trend toward increased grimacing (Fig. 9F). In female mice 

HBEGF also caused mechanical hypersensitivity (Fig. 9G) and grimacing at 1 hour after 

injection (Fig. 9H). Examining pooled data from male and female mice revealed a strong 

effect on mechanical hypersensitivity lasting for at least 24 hours (Fig. 9I) and a significant 

effect on grimacing at 1 hour after injection (Fig. 9J). Because responses were qualitatively 

similar between the two groups of mice, it is unlikely that there are major sex or strain 

differences in HBEGF responses in mice. We conclude that like epiregulin, HBEGF is an 

ErbB receptor family agonist that causes pain in vivo, likely through a direct action on 

ErbB2 receptors expressed by DRG nociceptors.
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Discussion

We have created an interactome identification framework for the examination of how 

specific subtypes of cells in the body interact with sensory neurons that innervate the target 

tissues where these cells reside. This resource can be used to mine interactions between 

sensory neurons and many of the cell types found in the bodies of mice. Many of these 

ligand-receptor interactions are generic; however, a surprisingly large number of them show 

specificity. For instance, T cells and NK cells appear to use lymphotoxin alpha (Lta) to 

lymphotoxin beta receptor (Ltbr) as a unique mechanism to signal to nociceptors. Our work 

also elucidates how ligand-receptor interactions can potentially change in chronic pain 

disease states such as rheumatoid arthritis and pancreatic cancer. Our database and 

computational framework can be useful for identifying new targets for disease treatment (for 

example, HBEGF acting on ErbB receptors). We anticipate that continuing advances in 

sequencing techniques (82), such as spatial transcriptomics (83), and their application to 

human disease tissues will enable targeted therapeutic discoveries using this interactome 

framework.

One of the key findings emerging from our work is the complexity of the potential ligand-

receptor interactions that are found in these interactomes. Pain is widely acknowledged to be 

a complex disease, but most pain therapeutic development focuses on a single factor, such as 

NGF or CGRP sequestering antibodies, or receptor or enzyme antagonists (84). Some of 

these approaches, for instance NGF (85) and CGRP (86) targeting, have been effective in the 

clinic. However, not all patients respond to these therapeutics and even when patients do 

respond, these therapies are not cures. Our work shows that chronic pain disease states are 

accompanied by complex changes in ligands produced in diseased tissues and that many of 

these ligands have considerable potential to have an action on the nociceptors that innervate 

that tissue. This likely means that multiple ligand-receptor interactions need to be 

simultaneously targeted to effectively treat chronic pain states. Of course, this is not a new 

concept, but our work starts to provide a toolkit to quantify these ligand-receptor interactions 

and design therapeutic strategies that have an increased chance of success. Continuing to 

develop transcriptomic maps of human tissues, at the bulk and single cell level, including in 

disease states, will ultimately be needed to achieve this goal. Such efforts are well underway 

and the technology to do such studies at the individual patient level are rapidly becoming 

available (82).

Another key finding is the degree to which ECM and cell adhesion molecules govern ligand-

receptor interactions between peripheral cells and sensory neurons. These interactions 

dominated our ligand-receptor interactomes and many of these interactions have not been 

studied at all in the context of sensory neurobiology. Several studies in the past decade have 

pointed out the key role that ECM molecules play in the development of chronic pain states 

(51, 87, 88), but, again, these studies have only focused on a small number of the many 

interactions that were apparent in our interactomes. These ECM and adhesion molecule 

interactions may also play a critical role in recruitment and proliferation of immune cells to 

peripheral nerves and the DRG after nerve injury. Insofar as these neuro-immune 

interactions in the periphery are emerging as key players in nerve regeneration (41) and 

neuropathic pain (40, 89), gaining a better understanding of how this occurs will yield new 
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insight into disease states. Therefore, this is almost certainly an area that is ripe for further 

exploration from the perspective of fundamental neurobiology knowledge and therapeutic 

target discovery.

A theme emerging from our interactomes built using sequencing data from human disease 

was the involvement of ErbB family receptors and their corresponding ligands. Previous 

studies have implicated the pathway associated with this family of receptors with chronic 

pain, but to our knowledge HBEGF has not been specifically studied in this context. Genetic 

associations studies link the ErbB family of receptors and the ligand epiregulin (encoded by 

the EREG gene) to chronic temporomandibular joint pain (23). Animal pain models suggest 

that ErbB family activation by epiregulin promotes inflammatory and neuropathic pain and 

that ErbB receptor family signaling is critical for pain promoting effects of opioids (23, 72). 

Finally, several clinical trials have been done with inhibitors that target ErbB family 

receptors for neuropathic pain and some of these have been positive (21, 22, 24). Our results 

point to a diversity of ligands specific to the ErbB family of receptors that are increased in 

abundance in painful tissues such as joints of people with RA and in pancreatic cancer. 

These ligands were distinct in these clinical cohorts and did not include epiregulin, whose 

ortholog is reported to be unique among ErbB receptor ligands in sensitizing nociceptors in 

mice (23). Some of them did include HBEGF, and we show here using mice that HBEGF 

can activate mDRG neurons in an ErbB receptor family-dependent fashion to cause pain in 

vivo. In mice, DRG neurons do not apparently express Egfr, but both peptidergic and non-

peptidergic nociceptors express Erbb2 (12). HBEGF induced Ca2+ transients in mDRG 

neurons that were completely blocked by lapatinib, which inhibits both EGFR and ErbB2. It 

is very likely that pain promoting effects of HBEGF in mice are mediated by ErbB2. In 

human DRG, however, both EGFR and ERBB2 genes are expressed (14, 90), suggesting a 

potential species difference. Another consideration is that different ErbB family ligands have 

differential signaling bias when activating ErbB receptors in neurons, as shown by Martin 

and colleagues (23). It is likely necessary to study the effects of ErbB family ligands on 

human nociceptors as several published reports have demonstrated important differences 

between rodent and human nociceptors (19, 91–93). Nevertheless, our findings are 

promising from the perspective of broadening study of ErbB family receptor inhibitors for 

different chronic pain conditions. Our work highlights HBEGF, in addition to epiregulin, as 

EGFR agonists that may be involved in pathological pain.

There are some key limitations to our work. The first is that most of the interactomes 

presented are not precisely matched for the innervation of the target tissue. The exception is 

the colonic sensory neuron to enteric glia interactome. Future work will focus on building 

additional interactomes where the target cell types are matched to the subsets of nociceptors 

that specifically innervate those cells and, if possible, taken from samples with the same 

pathophysiological state. This will have important implications for more precise target 

identification. The second is that single-cell resolution is not yet available for the hDRG, so 

the human disease-based interactomes should be interpreted with some caution. Our bulk-

sequencing data affords a broad view of possible interactions between target tissues and 

hDRG neurons, but single-cell sequencing on hDRG neurons would improve confidence in 

targets emerging from these types of experiments. A third limitation is in gaps in the ligand-

receptor interactome. While we have made a concerted effort to include as many enzyme-
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derived small molecule interactions as we can in this database, it is not comprehensive. 

There are also many ligand-receptor interactions that are not yet known, and these are 

necessarily not part of our interactome. Therefore, while our work elucidates many aspects 

of ligand-receptor interactions that are potentially involved in driving painful disease states, 

it cannot be viewed as a comprehensive resource. Finally, while gene expression of ligands 

and receptors may predict signaling, post-transcriptional and post-translational regulation—

as well as mRNA and protein transport or localization—can modulate the degree and 

viability of such protein interactions. For candidate signaling pathways, interventional 

studies need to be performed to validate the predicted interactome. Our mouse HBEGF 

study provides a roadmap in how such studies may be designed. Nonetheless, our findings 

create a resource that may be built upon with further validation work and rapid advances in 

sequencing and other technologies. From this, we envision new therapeutic targets specific 

to various chronic pain disorders may be identified.

Materials and Methods

Mouse RNA-seq resources

The Tabula Muris dataset (10) contains scRNA-seq data generated by two methods: Smart-

seq2 sequencing of specific cells using a fluorescence-activated cell sorting (FACS) method, 

and a microfluidic emulsion method. The scRNA-seq data generated by the FACS method 

includes more tissue-types and greater sensitivity (higher number of genes detected per cell); 

therefore, we used that data for our analysis. From all cell types identified in the Tabula 

Muris dataset, we selected cells from tissues that are strongly innervated by DRG neurons 

and identified 42 component cell types likely to interact directly with DRG-derived nerve 

endings and used these in our analysis. Details of the tissues and cell types found in the 

Tabula Muris dataset, and which ones we chose for analysis in this work are located in data 

file S7.

scRNA-seq data from the mDRG (12) was used to generate the transcriptome profile of 

individual cell-types within DRG. Expression values and metadata for each subpopulation of 

component cells provided in databases (L5_All.agg.loom) created by the original 

publication was used in our analysis. Neurofilaments (NF1–3), non-peptidergic neurons 

(NP1–6), peptidergic neurons (PEP1–8), satellite glial cells (SATG1–2), and Schwann cells 

(SCHW) cell-types from DRG tissue were selected for analysis. These were further grouped 

as described in the results section.

Previously published RiboTag RNA-seq data of enteric glial cells from colon tissue was 

used (18). In this study, colonic inflammation was used to study how the active translatome 

of enteric glia changes with inflammation. The RiboTag procedure driven by Sox10-cre was 

used to generate enteric glia translatomes in vehicle treated and colonic inflammation 

conditions. In turn, this was used to generate the interactome between colonic sensory 

neurons (details below) and enteric glia. Raw sequencing data were provided by the authors 

of the original paper, and mapped to gencode vM16 mouse genome annotation (94) and 

quantified using STAR 2.6.1c (95, 96). Read counts per gene per sample were provided as 

output by STAR and suitably normalized and used in downstream analysis.
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Previously published scRNA-seq of mDRG neurons retrogradely traced from colon (97) 

were used in the interactome analysis for colonic inflammation. Read counts per gene per 

cell, as well as cell-type labels (based on clustering) and gene marker information for cell-

types were provided by the authors.

Human RNA-seq resources

Human DRG tissue samples, previously sequenced using bulk RNA-seq and analyzed by our 

laboratory (14, 19), were used for quantifying the transcriptome profile of hDRG. 

Normalized read counts per gene [as transcripts per million (TPMs)] reported in those 

papers were used in the analysis here.

We analyzed data from Kuo et al. (16), who obtained scRNA-seq data from 940 human 

synovial CD14+ cells, enriched in macrophages, isolated from patients with rheumatoid 

arthritis (RA) and osteoarthritis (OA), to build the RA- and OA-associated interactomes. The 

original scRNA-seq data provided as read counts per gene per cell in the original publication 

and clustering-based cell-type labels for each cell were used. Based on the Kuo et al. study 

(16), one cell cluster was enriched in RA samples when compared with OA samples (RA-

enriched macrophages). Conversely, a second cluster was enriched in OA patients when 

compared to RA patients (OA-enriched macrophages). These two cell types were picked for 

the interactome analysis to compare macrophages from RA patients versus macrophages 

from OA patients.

Pancreatic cancer tissue bulk RNA-seq data was acquired from The Cancer Genome Atlas 

(TCGA) database (20). Samples from individuals that had matched healthy and cancerous 

pancreatic tissue were used for analysis in this paper. There was a total of four pairs of 

samples in TCGA pancreatic cancer database that fit the criteria and all pairs were used. 

TCGA database provides normalized read counts per gene (as FPKMs), which was used for 

downstream analysis.

Reference annotation for receptor and ligand pairs

Ramilowski et al. (25) identified 2557 pairs of ligand-receptor interactions that were used as 

the basis for generating the full database of ligand-receptor pairs used here. To curate a more 

complete list of ligand- and receptor-like interactions, we manually curated and incremented 

this database as follows: Additional genes whose products are ligands and receptors were 

identified from gene annotation databases, like the HUGO (28) and AMIGO (30) databases, 

as well as the literature. Their corresponding signaling interaction partners were identified 

from the literature and an existing database (27).

It is to be noted that not all ligand-receptor pair interactions are directly encoded in the 

genome so we added enzymes that are known to synthesize ligands to the ligand database 

and paired these with receptors for the synthesized ligand. Some interactions between 

proteins found at the surface of cells do not have a clear ligand-receptor relationship, for 

instance in some extracellular matrix and cell adhesion protein interactions. In these cases, if 

one of the pair was expressed in the DRG (transcriptionally), the corresponding gene was 

included in the receptor database, and its interacting protein partner’s gene name was 

included in the ligand database. The COMPARTMENT database (26) and literature was 
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additionally used to filter out ligand-side proteins that are not known to be secreted or 

localized in the extracellular matrix.

Gene annotations for cell adhesion molecules (CAM), G protein-coupled receptor (GPCR), 

growth factor, ion channels, neuropeptides, nuclear receptors, and receptor kinases obtained 

from the literature, the human HUGO (28) and human and mouse AMIGO (30) databases, 

were used to additionally populate our database on top of the Ramilowski et al. (25) protein 

interaction lists. A total of 3098 pairs of ligand-receptor interactions are used in our 

interactome analysis (entire list shown in data file S8).

Gene relative abundance normalization

RNA-seq read counts per gene are typically normalized for gene length and whole-

transcriptome coverage to quantify relative abundance of transcripts for each gene. We used 

several different normalization strategies based on the public availability of read counts and 

normalized data, and what was the most appropriate normalization in the context of the 

analysis. While there is some heterogeneity in normalization procedures across RNA-seq 

datasets we analyzed, within each dataset normalization was performed consistently using a 

single approach.

Gene abundances for the human pancreatic cancer samples in Fragments per Kilobase per 

Million Mapped Fragments (FPKM, obtained from the TCGA website), and RNA-seq data 

for human DRG samples in transcripts per million (TPM, obtained from the original paper) 

were used for downstream analysis. However, some of the RNA-seq datasets used in this 

paper were obtained as read counts per gene per sample (for bulk RNA-seq) or per cell (for 

scRNA-seq); thus, we normalized these using standard approaches (98). Since we did not 

explicitly compare expression levels across different genes, normalization by gene length 

was not performed as it does not influence our analysis. We calculated Reads per Million 

Mapped Reads (RPM) for bulk RNA-seq and for scRNA-seq datasets that had lower 

transcriptome coverage, upper decile normalized RPM (udRPM) were used to normalize 

sequencing depth while accounting for coverage differences across multiple samples in low 

sequencing depth situations (like scRNA-seq). RPM and udRPM of a gene were calculated 

with the following formulas:

RPMgene =
Rgene × 106

∑geneRgene

where Rgene stands for the read counts for a specific gene, Σgene Rgene stands for the read 

count sum of all genes.

udRPM =
RPMgene

90tℎ percentile of RPMgene witℎin tℎe sample
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Interactome identification

Interactomes were predicted for ordered pairs of relevant tissues or cell types. Based on the 

biological context, we identified ligand-to-receptor signaling from one tissue or cell type to 

the other (unidirectional), or from each tissue or cell type to the other (bidirectional). The 

first step in building the interactome was to overlay ligand-encoding gene expression levels 

in all samples, cells in the tissue, or cell type wherein we investigate the upstream 

component of the signaling, and to similarly overlay the receptor-encoding gene expression 

levels in the tissue or cell type wherein we investigate the downstream component. 

Depending on the data available and the question being asked in each of our case studies, the 

interactions were then ranked based on ligand-side or receptor-side criteria (like degree of 

differential expression, specificity of expression in that tissue or cell type) and filtered out if 

the gene expression was not consistently detectable across biological replicates. Our 

approach uses gene expression levels as a surrogate for protein abundance levels, due to the 

difficulty of generating high-throughput, high signal-to-noise ratio protein abundance data.

Identification of cell-type restricted gene expression patterns in mouse scRNA-seq 
datasets

The Tabula Muris dataset was specifically analyzed to identify gene co-expression modules 

that were not expressed ubiquitously across all 42 relevant cell types in the database but 

restricted to a subset of them. To identify gene modules that were enriched in different cell-

types, a cell and gene bi-clustering was performed on the udRPM per gene per cell-type 

matrix generated in the for the 42 cell types. The scrattch.hicat package from the Allen 

Institute (37) was used to generate clusters to identify gene modules.

The udRPM matrix was first multiplied by 1000 (to limit the effect of adding a smoothing 

factor), and 1 was added to each element of the matrix before it was log2-tranformed. Such a 

log-transformed matrix is an approximation of the qualitative expression patterns of different 

genes across all 42 cell types.

We performed hierarchical clustering through a top-down approach, identifying a total of 

8189 genes that were generically expressed across all pre-identified cell types in the first 

round, which were labelled as ubiquitously expressed and set aside from the clustering. In 

the next round of clustering, another 5117 genes were identified to have low to no 

expression across all cell types and were excluded from the analysis. Distinct clusters of 

cell-types and gene modules were identified in the final round of clustering, and genes from 

these co-expression modules that were restricted in expression to a subset of the cell-types 

were used to characterize a “cell-type enriched” interactome. The parameters for each round 

of clustering are listed in data file S9.

Criteria for a gene to be considered detectable in a given cell type

Ligands and/or receptors were filtered in some of the interactomes for our case studies on 

the basis of whether reads were consistently detectable in biological replicates for one (or 

more) groups. Because scRNA-seq data usually have low sequencing depth per cell, 

trinarization scores were used to estimate if a gene is expressed in a particular cell type. 

Briefly, the trinarization score, described previously by Zeisel et al. (12), is a formulation of 
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the posterior probability whether a gene is detected in a cell type. The parameters used here 

in the calculation of the trinarization score were: f = 0.05, α = 1.5, and β = 2. Genes with 

probability P > 0.95 were considered expressed.

Criteria for identifying differential expression of gene relative abundance

Additionally, ligand and receptor genes are ranked by degree of differential expression in 

interactomes of some of our case studies. While traditional statistical hypothesis testing is 

the norm for identifying differential expression, in experimental setups involving limited 

replication, differential expression analysis can be performed using related statistics like the 

Strictly Standardized Mean Difference or Bhattacharyya Distance, which take both between 

and within group variance into account when ranking genes by differential expression.

The strictly standardized mean difference (SSMD) (99, 100) was used to characterize the 

difference in means of two groups, controlled by within-group variability, and was used to 

estimate effect size between 2 different groups under comparison, using the following 

formula:

SSMD =
μp − μq
σq2 + σp2

where in a particular gene, for two groups p and q, σ2 stands for the variance and μ stands 

for mean of the gene expression levels across libraries for each group in question 

(represented by a subscript).

The Bhattacharyya distance (90, 101) was used to calculate the similarity of the probability 

distributions of scRNA-seq data from 2 different conditions using the following formula. 

The related Bhattacharyya Coefficient (derived from the Bhattacharyya Distance DB) was 

used to calculate the amount of overlap in the area under the curve of the two sample 

distributions being compared:

DB p, q = 1
4ln 1

4
σp2

σq2
+

σq2

σp2
+ 2 + 1

4
μp − μq

2

σq2 + σp2

In this formula D stands for distance, p and q stands for gene expression level across all cells 

in the first condition and second condition respectively, σ stands for standard deviation and μ 
stands for mean. Genes with a distance > 0.3 between 2 conditions of scRNA-seq were 

considered differentially expressed.

Interactome analysis methodological details for case studies

For analysis of the publicly available mouse scRNA-seq datasets, interactome analysis was 

performed between 42 cell types in tissues innervated by the DRG identified in the Tabula 

Muris dataset (10) and three broad classes of mDRG sensory neurons (top-level 

subpopulations of PEP, NP and NF neurons, obtained by merging all subcategories under 

them on the basis of hierarchical clustering) from the mDRG scRNA-seq study by Zeisel et 
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al. (12). For each of the 42 Tabula Muris cell-types and the three mDRG subpopulations 

from mousebrain.org, individual cells in these subcategories were pooled and summed per-

gene read counts were normalized to udRPM to obtain a single value for each gene’s relative 

expression in each cell type.

Additionally, based on the biclustering of genes and cell types of the Tabula Muris dataset, 

25 co-expression modules were identified that showed restricted expression across 18 

classes of cell types over the 42 constituent cell types in Tabula Muris. Interactome analysis 

was then performed for each of the 42 Tabula Maris cell types to each of the 3 mouse 

sensory neuronal cell types. Finally, interactomes were built using the set of genes present in 

the 25 gene co-expression modules having cell type restricted expression in Tabula Muris to 

the three sensory neuronal subpopulations.

Interactomes were then filtered by the receptor gene expression level in DRG sensory 

neurons. Ligand-receptor interactions with receptor expression level < 0.001 udRPM across 

all three types of sensory neurons (PEP, NF, and NP) were excluded from the results.

GO term analysis was performed on the ligand and receptor genes for the individual 

interactomes using Enrichr (31, 32) and the top 5 (ranked by adjusted p-value) GO terms for 

GO biological process and GO molecular function were collected and shown. Data sheets 

are presented in data file S1 and results are visualized in Fig. 1.

Bidirectional interactome between different cell types within the mDRG

scRNA-seq mouse neuronal and glial subpopulations in the DRG scRNA-seq data (12) were 

further pooled into five main groups on the basis of how similar their expression profiles 

were: Neurofilament (NF), non-peptidergic (NP), and peptidergic (PEP) sensory neurons, 

satellite glial cells (SATG), and Schwann cells (SCHW). The mean of the normalized 

expression values across the related subpopulations was used for the expression level of each 

merged group, and udRPMs were calculated. These were then used as the transcriptome 

profile of different cell types from the mDRG.

Interactome analysis on mDRG cell clusters was performed in two separate directions: 

ligands from neuronal cells (NF, NP, PEP) signaling to receptors on glial cells (SCHW, 

SATG), and vice versa. All identified ligand-receptor interactions were filtered by whether 

the ligands and receptors were both expressed at the mRNA level in at least one source cell 

type. The trinarization score was calculated to determine if a gene was to be considered 

expressed in a certain cell type (score > 0.95). Circle plots were generated to present these 

interactions using the Circos program (102) (Figs. 3 and 4), wherein each identified ligand 

and receptor interaction is represented on the plot. To better present how certain groups of 

ligands or receptors may interact with each other, the ligand-encoding and receptor-encoding 

genes on the circle plots were ordered by hierarchical bi-clustering (Euclidean distance, 

average distance between elements of two clusters used as representative distance between 

those clusters) of the ligand- and receptor-encoding genes based on their interactions with 

each other. Additionally, each gene was identified as expressed in NF, NP, PEP, SATG or 

SCHW, and marked as such on the plot.

Wangzhou et al. Page 17

Sci Signal. Author manuscript; available in PMC 2021 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mousebrain.org


Interactome between retrogradely traced colonic sensory neurons and enteric glial cells in 
a colitis model

For the transcriptome of retrogradely traced colonic sensory neurons (97), reads from all 

cells of the same cell-type were pooled together to generate the gene expression level per 

cell type (as RPM). The interactome was then generated between these seven cell-types and 

enteric glial cells after vehicle or DNBS treatment (18). Ligand-receptor interactions were 

filtered by the following criteria: ligand genes were required to be consistently expressed (> 

0.01 RPM) in enteric glial cells across all replicates in at least one condition (vehicle- or 

DNBS-treated); ligand-encoding genes were considered to be altered by treatment when the 

|SSMD| > μ|SSMD| + 1.2σ|SSMD|; and finally, receptor-encoding genes with trinarization 

score > 0.95. Putative interactions where the receptor genes were enriched in specific 

populations of colonic afferents are shown in Fig. 5. All ligand receptor interactions are 

provided in data file S4.

Interactome between macrophages enriched in human RA synovial tissue versus OA, and 
hDRG

The interactome was generated between RA- or OA-enriched macrophages (16), and human 

DRG (14). Predicted ligand-receptor interactions were filtered by the following criteria: (i) 

Ligand-encoding genes were required to be considered expressed in either RA-enriched 

macrophages or OA-enriched macrophages using the trinarization score > 0.95; (ii) Ligand-

encoding genes were considered substantially differentially expressed between RA enriched 

macrophages and OA enriched macrophages, using Bhattacharyya distance > 0.3; and (iii) 

Receptor genes were required to be consistently expressed (> 0.1 TPM) in all 3 human DRG 

samples. Interactions where the ligand genes were highly expressed in RA enriched 

macrophages are presented in Fig. 6; the interactions with ligand-encoding genes highly 

expressed in OA-enriched macrophages are provided in sheets 1 and 2 of data file S5.

Interactome between human pancreatic cancer tissue and human DRG

The interactome was generated between four paired healthy and cancer tissue samples from 

pancreatic cancer patients (TCGA) and hDRG samples (14). Ligand-receptor interactions 

were filtered by the following criteria: (i) Ligand genes were considered significantly 

increased in pancreatic cancer samples vs healthy samples by statistical testing (paired 

Student’s t-test, p-value < 0.05), since the low sample size (four pairs) does not allow us to 

stringently perform multiple testing p-value correction, an additional criteria was imposed 

that direction of change in ligand gene abundance had to be consistent for all four pairs of 

samples; (ii) Receptor genes were required to be consistently expressed (> 0.1 TPM) in all 

three hDRG samples. All interactions that met the filtering criteria are presented in Figs. 7 

and 8.

Animals

All animal protocols were approved by the University of Texas at Dallas Institutional 

Animal Care and Use Committee and were consistent with the NIH Guide. Mice were kept 

on a 12-hour light-dark cycle with food and water provided ad libitum. Both C57BL/6 and 

ICR mice were bred at The University of Texas at Dallas.
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Experimental Reagents

Recombinant human HBEGF (259-HE) was purchased from R&D Systems and 

reconstituted to 50 μg/ml in 0.1% BSA. For hind paw injections, stock HBEGF was diluted 

in 0.9% saline to 5 ng/ul. Hind paw injections (10 μl) were done with a 30G needle (305106; 

BD Biosciences) and glass gastight syringe (80901; Hamilton Co.).

Behavioral methods

Male ICR mice and female C57BL/6 mice (7 to 9 weeks old) were used for behavioral 

experiments, and experimenters were blinded to treatment. Mice were habituated to acrylic 

(behavior boxes 11.4×7.6×7.6 cm) with a wire mesh bottom (1 cm2) prior to experiments. 

Hind paw mechanical withdrawal thresholds were determined using calibrated von Frey 

filaments (Stoelting Co.) and the up-down method (103). As a measure of spontaneous pain, 

mouse grimace scale (MGS) scores were determined by observation of facial action units as 

described by Langford et al. (104). Facial action unit intensity ratings were averaged to yield 

a MGS score for each mouse at each time point.

DRG cultures

The neuronal cultures used in the calcium imaging, DRG’s (Dorsal Root Ganglion) were 

dissected from adult male and female C57BL/6 mice and suspended in Hank’s Balanced Salt 

Solution without calcium or magnesium before culturing. The DRG’s were then 

enzymatically digested using collagenase A and collagenase D (each 1 mg/ml, from Roche) 

with papain (30 units/ml) for 20 min at 37°C. Following this ganglion were suspended and 

triturated in 1ml HBSS. The solution was passed through a 70μm cell strainer for the 

removal of debris. The cells were then resuspended in DMEM/F12/GlutaMAX (Gibco) 

culture media nourished with 10% fetal bovine serum (FBS; SH30088.03; Hyclone) and 1% 

penicillin/streptomycin (Pen-Strep; 15070-063; Gibco). Cells were plated on pre-coated 

poly-D-lysine dishes (P35GC-1.5-10-C; MatTek) which were additionally coated with 

laminin (L2020; Sigma). The plated cells were then kept undisturbed in an incubator for 2 

hours to allow them to adhere. The cells were then supplemented with the same culture 

media as described above but with the addition of 10 ng/ml nerve growth factor (NGF; 01–

125; Millipore) and 3 ug/ml 5-fluoro-2′-deoxyuridine + 7 ug/ml uridine (FRD+U; Sigma). 

Finally, the cells were kept in an incubator with 5% CO2 and maintained at 37 °C for 48 

hours before use.

Ca2+ imaging

The cultures prepared and plated as described previously remained undisturbed in the 

incubator for 48 hours after plating. Cells were then loaded with 1 μg/μl Fura 2 AM 

(108964-32-5; Life Technologies) for 1 hour. In the case of the experiments performed with 

the Lapatinib (6nM, Tocris, 6811) the cells were incubated in the drug 30 mins before 

loading with Fura 2 AM. After the incubation period the Fura 2 AM solution was replaced 

with normal bath solution (135 mM NaCl, 5 mM KCl, 10 mM HEPES, 1 M CaCl2, 1 M 

MgCl2 and 2 M glucose, adjusted to pH 7.4 with N-methyl-glucamine, the osmolarity of 

300±5 mOsm). After a 30-minute incubation in the bath, the cells were then treated with 10 

ng/ml solution of HBEGF for 10 minutes (105). The recordings were done using an 
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Olympus IX73 inverted microscope at 40X magnification and the MetaFluor Fluorescence 

Ratio Imaging Software. The cells that exhibited a 20% ratiometric change (340 nm/380 nm) 

in Ca2+ levels when subjected to KCl treatment were classified as neurons. From there, the 

neurons that exhibited a 40% ratiometric change in response to HBEGF treatment were 

considered as responsive.

Statistical analysis

Computational analysis was performed using Matlab and MS Excel, and plots were made 

using Matlab and Prism GraphPad. Identification of differentially expressed genes were 

performed using strictly standardized mean differences, and the Bhattacharyya distance. 

Presence or absence of gene expression in specific cell populations were estimated using the 

trinarization score, by estimating the posterior distribution using a beta prior on Bernoulli 

trials (outcome determined by whether or not a gene is detected in individual cells of the 

population). Details of RNA-seq quantification and testing are present in the associated 

methods section. Differences in time series for Ca2+ concentration were tested using the 

Chi-square test. For testing behavioral responses at different times, two-way ANOVA (for 

different times and treatment regimes) was performed, with Bonferroni post-test correction. 

Differences in effect size were tested using t-tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: GO and interactome analysis of ligand and receptor gene expression reveals shared 
principles of cell-to-neuron signaling across tissues.
Interactome analysis was performed between all 42 peripheral cell types from the Tabula 

Muris project (10) and 3 types of sensory neurons (11, 12). Only interactions where ligands 

were detected in the corresponding cell-type and receptors were detected in at least one of 

the 3 sensory neuron types were included for the GO term enrichment analysis. For the 

interactions identified in each cell-type, the corresponding ligand and receptor genes were 

separately analyzed with Enrichr for their enriched GO terms in both biological process and 

molecular function. The results of this analysis are shown in four different groups of 

columns. The 5 columns of color- and number-coded boxes within each of these four groups 

of columns represent the top 5 enriched GO terms in that group, ranked from left to right. 

Cell types are listed as rows and ordered by the cell type and gene bi-clustering, as described 

in the Methods. N = 889 cells for NP-type DRG, 126 cells for NF-type DRG, and 565 cells 

for PEP-type DRG neurons; sample sizes for other cell types are provided in data file S7.
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Figure 2: Potential cell type-specific ligand-receptor interactions with sensory neurons.
(A to C) Iterative hierarchical bi-clustering was performed on genes and cell-types from 

mouse scRNA-seq gene expression data in Tabula Muris (10) using Scrattch.hicat (37). The 

42 cell-types grouped into eighteen cell-type modules and 25 gene modules [labelled “A” to 

“R” and 1 to 25 respectively in (A), and listed in data file S2] were identified, and 

corresponding gene expression was displayed as a heatmap. Two of these gene modules, 

numbers 23 and 24—ligand genes enriched in macrophages and leukocytes [cell-type 

modules L and N; (B)] or in T cells and natural killer cells [cell-type modules O, P and R; 

(C)], as outlined—are highlighted below, alongside DRG receptor expression heatmaps (12) 

and annotated with potential ligand-receptor interactomes. Gene categories as labeled are 

defined in the in-figure legend. For DRG neurons: N = 889 cells for NP, 126 cells for NF 

and 565 cells for PEP; sample sizes for other cell types provided in data file S7.
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Figure 3. Ligand-receptor interactions from neurons to glial cells within the DRG.
Interactome analysis was performed to identify potential signaling connections between 

ligands expressed by DRG neurons [PEP-type (n=565 cells), NP-type (n=889 cells) and NF-

type (n=126 cells)] and the paired receptor expressed by DRG glial cells [satellite glia 

(n=681 cells) and Schwann cells (n=47 cells)] from the Zeisel et al. mouse scRNA-seq 

dataset (12). Outermost circles indicate the generic class of the cells expressing the 

corresponding ligand or receptor genes. The middle layer shows the specific cell type that 

the gene is detected in, with the dots color-coded for cell type. The inner layer contains gene 

names, color-coded for their corresponding ligand or receptor categories. Connections are 

marked as lines between ligand genes and receptor genes, color-coded for the neuron-

expressed ligand gene category.
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Figure 4. Ligand-receptor interactions from glial cells to neurons within the DRG.
Interactome analysis was performed to identify potential signaling connections between 

ligands expressed by glial cells [satellite glia (n=681 cells) and Schwann cells (n=47 cells)] 

and the paired receptor expressed by DRG neurons [PEP-type (n=565 cells), NP-type 

(n=889 cells) and NF-type (n=126 cells)] from the Zeisel et al. mouse scRNA-seq dataset 

(12) . Outermost circles indicate the generic class of the cells expressing corresponding 

ligand or receptor genes. The middle layer shows the specific cell type that the gene is 

detected in, with the dots color-coded for cell type. The inner layer contains gene names, 

color-coded for the corresponding ligand or receptor categories. Connections are marked as 

lines between ligand genes and receptor genes, color-coded for the neuron-expressed 

receptor gene category.
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Figure 5: Differential expression and interactome analysis of ligands in enteric glia and of 
receptors in colonic-projecting sensory neurons reveals potential drivers of visceral pain.
(A) Differential expression of ligand-encoding genes in RiboTag RNA-seq of enteric glial 

cells from mice treated with saline or DNBS (N = 3 each) (18), and gene expression of 

corresponding receptor-encoding genes in scRNA-seq of DRG sensory neurons (314 cells) 

(17), grouped by type as indicated. Ligand-receptor pairs between the enteric glia and colon-

innervating neurons are connected between the plots, wherein red (above the dashed line in 

the plot, left) indicates ligand expression was increased in enteric glial cells after DNBS 

treatment, and blue indicates a decrease. Ligand and receptor genes are labelled with color-

coded category labels, defined in the in-figure legend. Cell types prefixed with “p” denote 

populations primarily from lumbosacral (pelvic) DRG, while those prefixed with “m” denote 

populations sampled from a mixture of thoracolumbar and lumbosacral DRG. (B) Table 

enumerating the number of glia-expressed ligands—those that were upregulated and, 
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separately, downregulated in DNBS-treated animals —that corresponded to receptors in the 

indicated grouped subtypes of DRG neurons.
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Figure 6: DRG receptor-associated ligand expression in synovial joint macrophages identifies 
potential drivers of persistent pain in rheumatoid arthritis.
Differential expression of ligand-encoding genes in synovial macrophages isolated from RA 

patients (394 cells) and those isolated from OA patients (139 cells), based on human 

scRNA-seq data from Kuo et al. (16). Only ligand genes with higher expression level in RA 

macrophages compared with OA macrophages are shown. Gene expression level in reads per 

million (RPM) for each cell is shown (RA macrophages in blue; OA macrophages in orange) 

with the solid line as the mean and error bars representing SEM. Corresponding receptor 

genes detected in human DRG (N = 3 from individual organ donors) are noted under each 

ligand gene. Corresponding ligand or receptor categories are color-coded and labeled for 

each ligand or receptor gene as shown in the legend.
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Figure 7: DRG receptor-associated ligand expression in normal and malignant pancreatic tissue 
from humans, part I, reveals potential mediators of pancreatic cancer pain.
Differential expression of ligand-encoding genes between healthy and cancerous tissue from 

4 individuals with pancreatic carcinoma, obtained from the TCGA bulk RNA-seq datasets 

(20) and presented in part, in alphabetical order. Only ligand genes with a corresponding 

receptor gene expressed in the human DRG dataset (N = 3 from individual organ donors) are 

shown. Gene expression level in fragments per kilobase million (FPKM) is shown (healthy 

tissue in orange; cancerous tissue in red) with the connected line marking the samples from 

the same patient. Corresponding receptor genes detected in human DRG are shown under 

each ligand gene. Corresponding ligand or receptor categories are color-coded and labeled 

for each ligand or receptor gene as shown in the legend.
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Figure 8: DRG receptor-associated ligand expression in normal and malignant pancreatic tissue 
from humans, part II.
Additional data from the interactome analysis on normal and malignant pancreatic tissue 

with human DRG, performed and analyzed as described in Fig. 7, continued here in 

alphabetical order.
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Figure 9: HBEGF excites mDRG neurons and causes pain in vivo.
(A to D) Intracellular Ca2+ concentration in mouse male and female DRG neurons in 

response to HBEGF (A, analyzed in B) or HBEGF with the EGFR antagonist lapatinib (C, 

analyzed in D). N = 306 and 595 neurons, respectively. (E to J) Mechanical sensitivity to 

von Frey filaments, as inferred from paw withdrawal thresholds and grimacing, in male ICR 

mice (E and F) and female C57BL/6 mice (G and H) one hour after hindpaw injection with 

saline or 50 ng HBEGF. Pooled data for all male and female are displayed in (I and J). N = 5 

to 11 mice each, as noted in the figure. * p <0.05, ** p<0.01, *** p<0.001 by two-way 

ANOVA with Bonferroni post test, or t-test for effect size. Sample sizes are shown in the 

figure. Horizontal bars or boxes represent the mean, and error bars represent SEM.
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